
Introduction

The following thesis plays a central role in deformation theory:
(∗) If X is a moduli space over a field k of characteristic zero, then a formal neighborhood of any point

x ∈ X is controlled by a differential graded Lie algebra.
This idea was developed in unpublished work of Deligne, Drinfeld, and Feigin, and has powerfully influenced
subsequent contributions of Hinich, Kontsevich-Soibelman, Manetti, and many others. The goal of this
paper is to give a precise formulation of (∗) using the language of higher category theory. Our main result
is Theorem 6.20, which can be regarded as an analogue of (∗) in the setting of noncommutative geometry.
Our proof uses a method which can be adapted to prove a version of (∗) itself (Theorem 5.3).

Let us now outline the contents of this paper. Our first step is to define precisely what we mean by a
moduli space. We will adopt Grothendieck’s “functor of points” philosophy: giving the moduli space X is
equivalent to specifying the functor R 7→ X(R) = Hom(SpecR,X). We will consider several variations on
this theme:

(a) Allowing R to range over the category Ring of commutative rings, we obtain the notion of a classical
moduli problem (Definition 1.3). We will discuss this notion and give several examples in §1.

(b) To understand the deformation theory of a moduli space X, it is often useful to extend the definition
of the functor R 7→ X(R) to a more general class of rings. Algebraic topology provides such a
generalization via the theory of E∞-ring spectra (or, as we will call them, E∞-rings). We will review
this theory in §3 and use it to formulate the notion of a derived moduli problem (Definition 3.3).

(c) Let k be a field. To study the local structure of a moduli space X near a point x ∈ X(k), it is useful
to restrict our attention to the values X(R) where R is a ring which is, in some sense, very similar
to k (for example, local Artin algebras having residue field k). In §4, we will make this precise by
introducing the notion of a formal moduli problem (Definition 4.6).

(d) Another way of enlarging the category of commutative rings is by weakening the requirement of
commutativity. In the setting of ring spectra there are several flavors of commutativity available,
given by the theory of En-rings for 0 ≤ n <∞. We will review the theory of En-rings in §6, and use
it to formulate the notion of a formal En-moduli problem.

In order to adequately treat cases (b) through (d), it is important to note that for 0 ≤ n ≤ ∞, an En-ring
is an essentially homotopy-theoretic object, and should therefore be treated using the formalism of higher
category theory. In §2 we will give an overview of this formalism; in particular, we introduce the notion of an
∞-category (Definition 2.9). Most of the basic objects under consideration in this paper form ∞-categories,
and our main results can be formulated as equivalences of ∞-categories:

(∗′) If k is a field of characteristic zero, then the∞-category of formal moduli problems over k is equivalent
to the ∞-category of differential graded Lie algebras over k (Theorem 5.3).

(∗′′) If k is any field and 0 ≤ n <∞, the ∞-category of formal En moduli problems over k is equivalent
to the ∞-category of augmented En-algebras over k (Theorem 6.20).

We will formulate these statements more precisely in §5 and §6, respectively.
Assertions (∗′) and (∗′′) can be regarded as instances of Koszul duality: (∗′) reflects a duality between

commutative and Lie algebras, while (∗′′) reflects a duality of the theory of En-algebras with itself. We will
investigate this second duality in §7 by introducing a contravariant functor A 7→ D(A) from the ∞-category
of augmented En-algebras to itself. In §8, we will explain how to use this duality functor to construct the
equivalence (∗′′).

The remaining sections of this paper are devoted to examples. In §9, we will describe how the ideas of
this paper can be applied to study the deformation theory of (differential graded) categories. In §10, we give
a very brief description of ongoing joint work with Dennis Gaitsgory, which describes the braided monoidal
deformations of the representation category of a reductive algebraic group.

Remark 0.1. The subject of deformation theory has a voluminous literature, some of which has substantial
overlap with the material discussed in this paper. Though we have tried to provide relevant references in
the body of the text, there are undoubtedly many sins of omission for which we apologize in advance.
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Warning 0.2. The approach to the study of deformation theory described in this paper makes extensive use
of higher category theory. We will sketch some of the central ideas of this theory in §2, and then proceed to
use these ideas in an informal way. For a more comprehensive approach, we refer the reader to the author’s
book [22]. All of the unproven assertions made in §1 through §8 of this paper, with the exception properties
(K1) through (K3) of the Koszul duality functor (see §7), can be found in the book [22] or the series of
papers [23].

I would like to thank David Ben-Zvi, Vladimir Drinfeld, Pavel Etingof, John Francis, Mike Hopkins, David
Nadler, Bertrand Toën, and Gabriele Vezzosi for helpful conversations related to the subject of this paper.
Special thanks are due to Dennis Gaitsgory, who has inspired (or, in some cases, directly contributed) many
of the ideas considered here.

1. Moduli Problems for Commutative Rings

Let Ring denote the category of commutative rings and Set the category of sets. Throughout this paper,
we will make extensive use of Grothendieck’s “functor of points” philosophy: that is, we will identify a
geometric object X (such as a scheme) with the functor Ring→ Set represented by X, given by the formula
R 7→ Hom(SpecR,X).

Example 1.1. Let X : Ring → Set be the functor which assigns to each commutative ring R the set R×

of invertible elements of R. For any commutative ring R, we have a canonical bijection X(R) = R× '
HomRing(Z[t±1], R). In other words, we can identify X with the functor represented by the commutative
ring Z[t±1].

Example 1.2. Fix an integer n ≥ 0. We define a functor X : Ring→ Set by letting F (R) denote the set of
all submodules M ⊆ Rn+1 such that the quotient Rn+1/M is a projective R-module of rank n (from which
it follows that M is a projective R-module of rank 1). The functor X is not representable by a commutative
ring. However, it is representable in the larger category Sch of schemes. That is, for any commutative ring R
we have a canonical bijection X(R) ' HomSch(SpecR,Pn), where Pn ' Proj Z[x0, . . . , xn] denotes projective
space of dimension n.

For some purposes, the notion of a functor X : Ring → Set is too restrictive. We often want to study
moduli problems X which assign to a commutative ring R some class of geometric objects which depend on
R. The trouble is that this collection of geometric objects is naturally organized into a category, rather than
a set. This motivates the following definition:

Definition 1.3. Let Gpd denote the collection of groupoids: that is, categories in which every morphism is
an isomorphism. We regard Gpd as a 2-category: morphisms are given by functors between groupoids, and
2-morphisms are given by natural transformations (which are automatically invertible). A classical moduli
problem is a functor X : Ring→ Gpd.

Remark 1.4. Every set S can be regarded as a groupoid by setting

HomS(x, y) =

{
{idx} if x = y

∅ if x 6= y.

This construction allows us to identify the category Set with a full subcategory of the 2-category Gpd. In
particular, every functor X : Ring → Set can be identified with a classical moduli problem in the sense of
Definition 1.3.

Example 1.5. For every commutative ring R, let X(R) be the category of elliptic curves E → SpecR
(morphisms in the category X(R) are given by isomorphisms of elliptic curves). Then F determines a
functor Ring → Gpd, and can therefore be regarded as a moduli problem in the sense of Definition 1.3.
This moduli problem cannot be represented by a commutative ring or even by a scheme: for any scheme Y ,
HomSch(SpecR, Y ) is a set. In particular, if we regard HomSch(SpecR, Y ) as a groupoid, every object has a
trivial automorphism group. In contrast, every object of X(R) has a nontrivial automorphism group: every
elliptic curve admits a nontrivial automorphism, given by multiplication by −1.
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Nevertheless, the moduli problem X is representable if we work not in the category of schemes but in
the larger 2-category StDM of Deligne-Mumford stacks. More precisely, there exists a Deligne-Mumford
stack MEll (the moduli stack of elliptic curves) for which there is a canonical equivalence of categories
X(R) ' HomStDM(SpecR,MEll) for every commutative ring R.

Example 1.6. Fix an integer n ≥ 0. For every commutative ring R, let X(R) denote the category whose
objects are projective R-modules of rank n, and whose morphisms are given by isomorphisms of R-modules.
Then X can be regarded as a moduli problem Ring → Gpd. This moduli problem is not representable in
the 2-category StDM of Deligne-Mumford stacks, because projective R-modules admit continuous families of
automorphisms. However, F is representable in the larger 2-category StArt of Artin stacks. Namely, there is
an Artin stack BGL(n) ∈ StArt for which there is a canonical bijection X(R) ' HomStArt(SpecR,BGL(n))
for every commutative ring R.

2. Higher Category Theory

In §1, we discussed the notion of a moduli problem in classical algebraic geometry. Even very simple
moduli problems involve the classification of geometric objects which admit nontrivial automorphisms, and
should therefore be treated as categories rather than as sets (Examples 1.5 and 1.6). Consequently, moduli
problems themselves (and the geometric objects which represent them) are organized not into a category, but
into a 2-category. Our discussion in this paper will take us much further into the realm of higher categories.
We will devote this section to providing an informal overview of the ideas involved.

Definition 2.1 (Informal). Let n ≥ 0 be a nonnegative integer. The notion of an n-category is defined by
induction on n. If n = 0, an n-category is simply a set. If n > 0, an n-category C consists of the following:

(1) A collection of objects X,Y, Z, . . .
(2) For every pair of objects X,Y ∈ C, an (n− 1)-category HomC(X,Y ).
(3) Composition laws φX,Y,Z : HomC(X,Y ) × HomC(Y, Z) → HomC(X,Z) which are required to be

unital and associative.
If η is an object of the (n−1)-category HomC(X,Y ) for some pair of objects X,Y ∈ C, then we will say that
η is a 1-morphism of C. More generally, a k-morphism in C is a (k − 1)-morphism in some (n− 1)-category
HomC(X,Y ).

Example 2.2. Every topological space X determines an n-category π≤nX, the fundamental n-groupoid
of X. If n = 0, we let π≤nX = π0X be the set of path components of X. For n > 0, we let π≤nX be
the n-category whose objects are points of X, where Homπ≤n(x, y) is the fundamental (n − 1)-groupoid
π≤n−1Px,y(X), where Px,y(X) = {p : [0, 1] → X : p(0) = x, p(1) = y} is the space of paths from x to y in
X. Composition in π≤nX is given by concatenation of paths. If n = 1, this definition recovers the usual
fundamental groupoid of X.

Definition 2.1 is informal because we did not specify precisely what sort of associative law the composition
in C is required to satisfy. If n = 1, there is no real ambiguity and Definition 2.1 recovers the usual definition
of a category. When n = 2, the situation is more subtle: the associative law should posit the commutativity
of a diagram having the form

HomC(W,X)×HomC(X,Y )×HomC(Y,Z)
φW,X,Y //

φX,Y,Z

��

HomC(W,Y )×HomC(Y, Z)

φW,Y,Z

��
HomC(W,X)×HomC(X,Z)

φW,X,Z // HomC(W,Z).

Since this is a diagram of categories and functors, rather than sets and functions, we are faced with a question:
do we require this diagram to commute “on the nose” or only up to isomorphism? In the former case, we
obtain the definition of a strict 2-category. This generalizes in a straightforward way: we can require strict
associativity in Definition 2.1 to obtain a notion of strict n-category for every n. However, this notion turns

What is the graded equivalent given by summing over degrees? 
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out to be of limited use. For example, the fundamental n-groupoid of a topological space π≤nX usually
cannot be realized as a strict n-category when n > 2.

To accommodate Example 2.2, it is necessary to interpret Definition 2.1 differently. In place of equality,
we require the existence of isomorphisms

γW,X,Y,Z : φW,X,Z ◦ (idHomC(W,X)×φX,Y,Z) ' φW,Y,Z ◦ (φW,X,Y × idHomC(Y,Z)).

These isomorphisms are themselves part of the structure of C, and are required to satisfy certain coherence
conditions. When n > 2, these coherence conditions are themselves only required to hold up to isomorphism:
these isomorphisms must also be specified and required to satisfy further coherences, and so forth. As n
grows, it becomes prohibitively difficult to specify these coherences explicitly.

The situation is dramatically simpler if we wish to study not arbitrary n-categories, but n-groupoids. An
n-category C is called an n-groupoid if every k-morphism in C is invertible. If X is any topological space,
then the n-category π≤nX is an example of an n-groupoid: for example, the 1-morphisms in π≤nX are given
by paths p : [0, 1] → X, and every path p has an inverse q (up to homotopy) given by q(t) = p(1 − t). In
fact, all n-groupoids arise in this way. To formulate this more precisely, let us recall that a topological space
X is an n-type if the homotopy groups πm(X,x) are trivial for every m > n and every point x ∈ X. The
following idea goes back (at least) to Grothendieck:

Thesis 2.3. The construction X 7→ π≤nX establishes a bijective correspondence between n-types (up to weak
homotopy equivalence) and n-groupoids (up to equivalence).

We call Thesis 2.3 a thesis, rather than a theorem, because we have not given a precise definition of
n-categories (or n-groupoids) in this paper. Thesis 2.3 should instead be regarded as a requirement that any
reasonable definition of n-category must satisfy: when we restrict to n-categories where all morphisms are
invertible, we should recover the usual homotopy theory of n-types. On the other hand, it is easy to concoct
a definition of n-groupoid which tautologically satisfies this requirement:

Definition 2.4. An n-groupoid is an n-type.

Definition 2.4 has an evident extension to the case n =∞:

Definition 2.5. An ∞-groupoid is a topological space.

It is possible to make sense of Definition 2.1 also in the case where n =∞: that is, we can talk about higher
categories which have k-morphisms for every positive integer k. In the case where all of these morphisms
turn out to be invertible, this reduces to the classical homotopy theory of topological spaces. We will be
interested in the next simplest case:

Definition 2.6 (Informal). An (∞, 1)-category is an ∞-category in which every k-morphism is invertible
for k > 1.

In other words, an (∞, 1)-category C consists of a collection of objects together with an ∞-groupoid
HomC(X,Y ) for every pair of objects X,Y ∈ C, which are equipped with an associative composition law.
We can therefore use Definition 2.5 to formulate a more precise version of Definition 2.6.

Definition 2.7. A topological category is a category C for which each of the sets HomC(X,Y ) is equipped
with a topology, and each of the compositions maps HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z) is continuous.
If C and D are topological categories, we will say that a functor F : C → D is continuous if, for every pair
of objects X,Y ∈ C, the map HomC(X,Y ) → HomD(FX,FY ) is continuous. The collection of (small)
topological categories and continuous functors forms a category, which we will denote by Catt.

Construction 2.8. Let C be a topological category. We can associate to C an ordinary category hC as
follows:

• The objects of hC are the objects of C.
• For every pair of objects X,Y ∈ C, we let HomhC(X,Y ) = π0 HomC(X,Y ): that is, maps from X to
Y in hC are homotopy classes of maps from X to Y in C.
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We say that a morphism f in C is an equivalence if the image of f in hC is an isomorphism.

Definition 2.9. Let F : C→ D be a continuous functor between topological categories. We will say that F
is a weak equivalence if the following conditions are satisfied:

(1) The functor F induces an equivalence of ordinary categories hC→ hD.
(2) For every pair of objects X,Y ∈ C, the induced map

HomC(X,Y )→ HomD(FX,FY )

is a weak homotopy equivalence.

Let hCat∞ be the category obtained from Catt by formally inverting the collection of weak equivalences. An
(∞, 1)-category is an object of hCat∞. We will refer to hCat∞ as the homotopy category of (∞, 1)-categories.

Remark 2.10. More precisely, we should say that hCat∞ is the homotopy category of small (∞, 1)-
categories. We will also consider (∞, 1)-categories which are not small.

Remark 2.11. There are numerous approaches to the theory of (∞, 1)-categories which are now known to
be equivalent, in the sense that they generate categories equivalent to hCat∞. The approach described above
(based on Definitions 2.7 and 2.9) is probably the easiest to grasp psychologically, but is one of the most
difficult to actually work with. We refer the reader to [1] for a description of some alternatives to Definition
2.7 and their relationship to one another.

All of the higher categories we consider in this paper will have k-morphisms invertible for k > 1. Conse-
quently, it will be convenient for us to adopt the following:

Convention 2.12. The term ∞-category will refer to an (∞, 1)-category C in the sense of Definition 2.9.
That is, we will implicitly assume that all k-morphisms in C are invertible for k > 1.

With some effort, one can show that Definition 2.7 gives rise to a rich and powerful theory of∞-categories,
which admits generalizations of most of the important ideas from classical category theory. For example,
one can develop ∞-categorical analogues of the theories of limits, colimits, adjoint functors, sheaves, and so
forth. Throughout this paper, we will make free use of these ideas; for details, we refer the reader to [22].

Example 2.13. Let C and D be ∞-categories. Then there exists another ∞-category Fun(C,D) with the
following universal property: for every ∞-category C′, there is a canonical bijection

HomhCat∞(C′,Fun(C,D)) ' HomhCat∞(C×C′,D).

We will refer to objects of Fun(C,D) simply as functors from C to D.

Warning 2.14. By definition, an∞-category C is simply an object of hCat∞: that is, a topological category.
However, there are generally objects of Fun(C,D) which are not given by continuous functors between the
underlying topological categories.

Warning 2.15. The process of generalizing from the setting of ordinary categories to the setting of ∞-
categories is not always straightforward. For example, if C is an ordinary category, then a product of a pair
of objects X and Y is another object Z equipped with a pair of maps X ← Z → Y having the following
property: for every object C ∈ C, the induced map θ : HomC(C,Z) → HomC(C,X) × HomC(C, Y ) is a
bijection. In the ∞-categorical context, it is natural to demand not that θ is bijective but instead that
it is a weak homotopy equivalence. Consequently, products in C viewed as an ordinary category (enriched
over topological spaces) are not necessarily the same as products in C when viewed as an ∞-category. To
avoid confusion, limits and colimits in the∞-category C are sometimes called homotopy limits and homotopy
colimits.

We close this section by describing a method which can be used to construct a large class of examples of
∞-categories.
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Construction 2.16. Let C be an ordinary category and let W be a collection of morphisms in C. Then we
let C[W−1] denote an ∞-category which is equipped with a functor α : C → C[W−1] having the following
universal property: for every ∞-category D, composition with α induces a fully faithful embedding

Fun(C[W−1],D)→ Fun(C,D)

whose essential image consists of those functors which carry every morphism in W to an equivalence in D.
More informally: C[W−1] is the ∞-category obtained from C by formally inverting the morphisms in W .

Example 2.17. Let C be the category of all topological spaces and let W be the collection of weak homotopy
equivalences. We will refer to C[W−1] as the ∞-category of spaces, and denote it by S.

Example 2.18. Let R be an associative ring and let ChainR denote the category of chain complexes of
R-modules. A morphism f : M• → N• in ChainR is said to be a quasi-isomorphism if the induced map
of homology groups Hn(M) → Hn(N) is an isomorphism for every integer n. Let W be the collection of
all quasi-isomorphisms in C; then ChainR[W−1] is an ∞-category which we will denote by ModR. The
homotopy category hModR can be identified with the classical derived category of R-modules.

Example 2.19. Let k be a field of characteristic zero. A differential graded Lie algebra over k is a Lie
algebra object of the category Chaink: that is, a chain complex of k-vector spaces g• equipped with a Lie
bracket operation [, ] : g• ⊗ g• → g• which satisfies the identities

[x, y] + (−1)d(x)d(y)[y, x] = 0

(−1)d(z)d(x)[x, [y, z]] + (−1)d(x)d(y)[y, [z, x]] + (−1)d(y)d(z)[z, [x, y]] = 0
for homogeneous elements x ∈ gd(x), y ∈ gd(y), z ∈ gd(z). Let C be the category of differential graded Lie
algebras over k and let W be the collection of morphisms in C which induce a quasi-isomorphism between
the underlying chain complexes. Then C[W−1] is an∞-category which we will denote by Liedg

k ; we will refer
to Liedg

k as the ∞-category of differential graded Lie algebras over k.

Example 2.20. Let Catt be the ordinary category of Definition 2.9, whose objects are topologically enriched
categories and whose morphisms are continuous functors. Let W be the collection of all weak equivalences
in Catt and set Cat∞ = Catt[W−1]. We will refer to Cat∞ as the ∞-category of (small) ∞-categories. By
construction, the homotopy category of Cat∞ is equivalent to the category hCat∞ of Definition 2.9.

3. Higher Algebra

Arguably the most important example of an ∞-category is the ∞-category S of spaces of Example 2.17.
A more explicit description of S can be given as follows:

(a) The objects of S are CW complexes.
(b) For every pair of CW complexes X and Y , we let HomS(X,Y ) denote the space of continuous maps

from X to Y (endowed with the compact-open topology).
The role of S in the theory of∞-categories is analogous to that of the ordinary category of sets in classical

category theory. For example, for any∞-category C one can define a Yoneda embedding j : C→ Fun(Cop, S),
given by j(C)(D) = HomC(D,C) ∈ S.

In this paper, we will be interested in studying the ∞-categorical analogues of more algebraic structures
like commutative rings. As a first step, we recall the following notion from stable homotopy theory:

Definition 3.1. A spectrum is a sequence of pointed spaces X0, X1, . . . ∈ S∗ equipped with weak homotopy
equivalences Xn ' ΩXn+1; here Ω : S∗ → S∗ denotes the based loop space functor X 7→ {p : [0, 1] →
X|p(0) = p(1) = ∗}.

To any spectrum X, we can associate abelian groups πkX for every integer k, defined by πkX = πk+nXn

for n� 0. We say that X is connective if πnX ' 0 for n < 0.
The collection of spectra is itself organized into an ∞-category which we will denote by Sp. If X =

{Xn, αn : Xn ' ΩXn+1}n≥0 is a spectrum, then we will refer to X0 as the 0th space of X. The construction
X 7→ X0 determines a forgetful functor Sp→ S, which we will denote by Ω∞.
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We will say a spectrum X is discrete if the homotopy groups πiX vanish for i 6= 0. The construction
X 7→ π0X determines an equivalence from the ∞-category of discrete spectra to the ordinary category of
abelian groups. In other words, we can regard the∞-category Sp as an enlargement of the ordinary category
of abelian groups, just as the ∞-category S is an enlargment of the ordinary category of sets.

The category Ab of abelian groups is an example of a symmetric monoidal category: that is, there is
a tensor product operation ⊗ : Ab×Ab → Ab which is commutative and associative up to isomorphism.
This operation has a counterpart in the setting of spectra: namely, the ∞-category Sp admits a symmetric
monoidal structure ∧ : Sp×Sp → Sp. This operation is called the smash product, and is compatible with
the usual tensor product of abelian groups in the following sense: if X and Y are connective spectra, then
there is a canonical isomorphism of abelian groups π0(X ∧ Y ) ' π0X ⊗ π0Y . The unit object for the the
smash product ∧ is called the sphere spectrum and denoted by S.

The symmetric monoidal structure on the ∞-category Sp allows us to define an ∞-category CAlg(Sp) of
commutative algebra objects of Sp. An object of CAlg(Sp) is a spectrum R equipped with a multiplication
R ∧ R → R which is unital, associative, and commutative up to coherent homotopy. We will refer to the
objects of CAlg(Sp) as E∞-rings, and to CAlg(Sp) as the ∞-category of E∞-rings. The sphere spectrum
S can be regarded as an E∞-ring in an essentially unique way, and is an initial object of the ∞-category
CAlg(Sp).

For any E∞-ring R, the product on R determines a multiplication on the direct sum π∗R = ⊕nπnR. This
multiplication is unital, associative, and commutative in the graded sense (that is, for x ∈ πiR and y ∈ πjR
we have xy = (−1)ijyx ∈ πi+j(R)). In particular, π0R is a commutative ring and each πiR has the structure
of a module over π0R. The construction R 7→ π0R determines an equivalence between the ∞-category of
discrete E∞-rings and the ordinary category of commutative rings. Consequently, we can view CAlg(Sp) as
an enlargement of the ordinary category of commutative rings.

Remark 3.2. To every E∞-ring R, we can associate an∞-category ModR(Sp) of R-module spectra: that is,
modules over R in the ∞-category of spectra. If M and N are R-module spectra, we will denote the space
HomModR(Sp)(M,N) simply by HomR(M,N). If M is an R-module spectrum, then π∗M is a graded module
over the ring π∗R. In particular, each homotopy group πnM has the structure of a π0R-module. If R is a
discrete commutative ring, then ModR(Sp) can be identified with the ∞-category ModR = ChainR[W−1]
of Example 2.18. In particular, the homotopy category hModR(Sp) is equivalent to the classical derived
category of R-modules.

We have the following table of analogies:

Classical Notion ∞-Categorical Analogue
Set topological space

Category ∞-Category

Abelian group Spectrum

Commutative Ring E∞-Ring

Ring of integers Z Sphere spectrum S

Motivated by these analogies, we introduce the following variant Definition 1.3:

Definition 3.3. A derived moduli problem is a functor X from the ∞-category CAlg(Sp) of E∞-rings to
the ∞-category S of spaces.

Remark 3.4. Suppose that X0 : Ring → Gpd is a classical moduli problem. We will say that a derived
moduli problem X : CAlg(Sp)→ S is an enhancement of F if, whenever R is a commutative ring (regarded
as a discrete E∞-ring), we have an equivalence of categories X0(R) ' π≤1X(R), and the homotopy groups
πiX(R) vanish for i ≥ 2 (and any choice of base point).
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Example 3.5. Let A be an E∞-ring. Then R defines a derived moduli problem, given by the formula
X(R) = HomCAlg(Sp)(A,R). Assume that A is connective: that is, the homotopy groups πiA vanish for
i < 0. Then X can be regarded as an enhancement of the classical moduli problem Spec(π0A) : R 7→
HomRing(π0A,R).

Example 3.6. LetR be an E∞-ring and letM be anR-module spectrum. We say thatM is projective of rank
r if the π0R-module π0M is projective of rank r, and the map πkR⊗π0R π0M → πkM is an isomorphism for
every integer k. Fix an integer n ≥ 0. For every E∞-ring R, let X(R) denote the∞-category space for maps
of R-modules f : M → Rn+1 such that the cofiber Rn+1/M is a projective R-module of rank n; the maps in
X(R) are given by homotopy equivalences of R-modules (compatible with the map to Rn+1). The X(R) is
an∞-groupoid, so we can regard X as a functor CAlg(Sp)→ S. Then X is a derived moduli problem, which
is an enhancement of the classical moduli problem represented by the scheme Pn = Proj Z[x0, x1, . . . , xn]
(Example 1.2). We can think of X as providing a generalization of projective space to the setting of E∞-rings.

Example 3.7. Let X be the functor which associates to every E∞-ring R the ∞-groupoid of projective
R-modules of rank n. Then X : CAlg(Sp) → S is a derived moduli problem, which can be regarded as an
enhancement of the classical moduli problem represented by the Artin stack BGL(n) (Example 1.6).

Let us now summarize several motivations for the study of derived moduli problems:

(a) Let X0 be a scheme (or, more generally, an algebraic stack), and let X0 be the classical moduli
problem given by the formula F0(R) = Hom(SpecR,X0). Examples 3.6 and 3.7 illustrate the fol-
lowing general phenomenon: we can often give a conceptual description of X0(R) which continues
to make sense in the case where R is an arbitrary E∞-ring, and thereby obtain a derived moduli
problem X : CAlg(Sp) → S which enhances X0. In these cases, one can often think of X as itself
being represented by a scheme (or algebraic stack) X in the setting of E∞-rings (see, for example,
[32], [31], or [23]). A good understanding of the derived moduli problem X (or, equivalently, the
geometric object X) is often helpful for analyzing X0.

For example, let Y be a smooth algebraic variety over the complex numbers, and let Mg(Y ) denote
the Kontsevich moduli stack of curves of genus g equipped with a stable map to Y (see, for example,
[12]). Then Mg(Y ) represents a functor X0 : Ring → Gpd which admits a natural enhancement
X : CAlg(Sp)→ S. This enhancement contains a great deal of useful information about the original
moduli stack Mg(Y ): for example, it determines the virtual fundamental class of Mg(Y ) which plays
an important role in Gromov-Witten theory.

(b) Let GC be a reductive algebraic group over the complex numbers. Then GC is canonically defined
over the ring Z of integers. More precisely, there exists a split reductive group scheme GZ over Spec Z
(well-defined up to isomorphism) such that GZ × Spec C ' GC ([4]). Since Z is the initial object in
the category of commutative rings, the group scheme GZ can be regarded as a “universal version”
of the reductive algebraic group GC: it determines a reductive group scheme GR = GZ × SpecR
over any commutative ring R. However, there are some suggestions that GZ might admit an even
more primordial description (for example, it has been suggested that we should regard the Weyl
group W of GC as the set of points G(F1) of G with values in the “field with 1 element”; see [28]).
The language of ring spectra provides one way of testing this hypothesis: the initial object in the
∞-category CAlg(Sp) is given by the sphere spectrum S, rather than the discrete ring Z ' π0S. It
therefore makes sense to ask: is the algebraic group GC defined over the sphere spectrum? We will
return to this question briefly in §10 (Remark 10.3).

(c) Let X0 : Ring → Gpd be the classical moduli problem of Example 1.5, which assigns to each
commutative ring R the groupoid Hom(SpecR,M1,1) of elliptic curves over R. It is possible to make
sense of the notion of an elliptic curve over R when R is an arbitrary E∞-ring, and thereby obtain an
enhancement X : CAlg(Sp) → S of MEll. One can use this enhancement to give a moduli-theoretic
reformulation of the Goerss-Hopkins-Miller theory of topological modular forms; we refer the reader
to [21] for are more detailed discussion.
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(d) The framework of derived moduli problems (or, more precisely, their formal analogues: see Definition
4.6) provides a good setting for the study of deformation theory. We will explain this point in more
detail in the next section.

4. Formal Moduli Problems

Let X : CAlgSp → S be a derived moduli problem. We define a point of X to be a pair x = (k, η), where
k is a field (regarded as a discrete E∞-ring) and η ∈ X(k). Our goal in this section is to study the local
structure of the moduli problem X “near” the point x. More precisely, we will study the restriction of X to
E∞-rings which are closely related to the field k. To make this idea precise, we need to introduce a bit of
terminology.

Definition 4.1. Let k be a field. We let CAlgk denote the ∞-category whose objects are E∞-rings A
equipped with a map k → A, where morphisms are given by commutative triangles

k

���������

  AAAAAAAA

A // A′.

We will refer to the objects of CAlgk as E∞-algebras over k.

Remark 4.2. We say that a k-algebra A is discrete if it is discrete as an E∞-ring: that is, if the homotopy
groups πiA vanish for i 6= 0. The discrete k-algebras determine a full subcategory of CAlgk, which is
equivalent to the ordinary category of commutative rings A with a map k → A.

Remark 4.3. Let k be a field. The category Chaink of chain complexes over k admits a symmetric monoidal
structure, given by the usual tensor product of chain complexes. A commutative algebra in the category
Chaink is called a commutative differential graded algebra over k. The functor Chaink → Modk is symmetric
monoidal, and determines a functor φ : CAlg(Chaink) → CAlg(Modk) ' CAlgk. We say that a morphism
f : A• → B• in CAlgdg

k is a quasi-isomorphism if it induces a quasi-isomorphism between the underlying
chain complexes of A• and B•. The functor φ carries every quasi-isomorphism of commutative differential
graded algebras to an equivalence in CAlgk. If k is a field of characteristic zero, then φ induces an equivalence
CAlg(Chaink)[W−1] ' CAlgk, where W is the collection of quasi-isomorphisms: in other words, we can think
of the∞-category of E∞-algebras over k as obtained from the ordinary category of commutative differential
graded k-algebras by formally inverting the collection of quasi-isomorphisms.

Definition 4.4. Let k be a field and let V ∈ Modk be a k-module spectrum. We will say that V is small if
the following conditions are satisfied:

(1) For every integer n, the homotopy group πnV is finite dimensional as a k-vector space.
(2) The homotopy groups πnV vanish for n < 0 and n� 0.

Let A be an E∞-algebra over k. We will say that A is small if it is small as a k-module spectrum, and
satisfies the following additional condition:

(3) The commutative ring π0A has a unique maximal ideal p, and the map

k → π0A→ π0A/p

is an isomorphism.
We let Modsm denote the full subcategory of Modk spanned by the small k-module spectra, and CAlgsm

denote the full subcategory of CAlgk spanned by the small E∞-algebras over k.

Remark 4.5. Let A be a small E∞-algebra over k. Then there is a unique morphism ε : A→ k in CAlgk;
we will refer to ε as the augmentation on A.

Let X : CAlg(Sp) → S be a derived moduli problem, and let x = (k, η) be a point of X. We define a
functor Xx : CAlgsm → S as follows: for every small E∞-algebra A over k, we let Xx(A) denote the fiber of
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the map X(A)→ X(k) (induced by the augmentation ε : A→ k) over the point η. The intuition is that Xx

encodes the local structure of the derived moduli problem X near the point x.
Let us now axiomatize the expected behavior of the functor Xx:

Definition 4.6. Let k be a field. A formal moduli problem over k is a functor X : CAlgsm → S with the
following properties:

(1) The space X(k) is contractible.
(2) Suppose that φ : A→ B and φ′ : A′ → B are maps between small E∞-algebras over k which induce

surjections π0A→ π0B, π0A
′ → π0B. Then the canonical map

X(A×B A′)→ X(A)×X(B) X(A′)

is a homotopy equivalence.

Remark 4.7. Let X be a derived moduli problem and let x = (k, η) be a point of X. Then the functor
Xx : CAlgsm → S automatically satisfies condition (1) of Definition 4.6. Condition (2) is not automatic, but
holds whenever the functor X is defined in a sufficiently “geometric” way. To see this, let us imagine that
there exists some ∞-category of geometric objects G with the following properties:

(a) To every small k-algebra A we can assign an object SpecA ∈ G, which is contravariantly functorial
in A.

(b) There exists an object X ∈ G which represents X, in the sense that X(A) ' HomG(SpecA,X) for
every small k-algebra A.

To verify that Xx satisfies condition (2) of Definition 4.6, it suffices to show that when φ : A → B and
φ : A′ → B are maps of small E∞ algebras over k which induce surjections π0A → π0B ← π0A

′, then the
diagram

SpecB //

��

SpecA′

��
SpecA // Spec(A×B A′)

is a pushout square in G. This assumption expresses the idea that Spec(A ×B A′) should be obtained by
“gluing” SpecA and SpecB together along the common closed subobject SpecB.

For examples of∞-categories G satisfying the above requirements, we refer the reader to the work of Toën
and Vezzosi on derived stacks (see, for example, [32]).

Remark 4.8. Let X : CAlgsm → S be a formal moduli problem. Then X determines a functor X :
CAlgsm → Set, given by the formula X(A) = π0X(A). It follows from condition (2) of Definition 4.6 that if
we are given maps of small E∞-algebras A → B ← A′ which induce surjections π0A → π0B ← π0A

′, then
the induced map

X(A×B A′)→ X(A)×X(B) X(A′)

is a surjection of sets (in fact, this holds under weaker assumptions: see Remark 6.19). There is a substantial
literature on set-valued moduli functors of this type; see, for example, [24] and [18].

5. Tangent Complexes

Let X : Ring → Set be a classical moduli problem. Let k be a field and let η ∈ X(k), so that the pair
x = (k, η) can be regarded as a point of X. Following Grothendieck, we define the tangent space TX,x to
be the fiber of the map X(k[ε]/(ε2))→ X(k) over the point η. Under very mild assumptions, one can show
that this fiber has the structure of a vector space over k: for example, if λ ∈ k is a scalar, then the action
of λ on TX,x is induced by the ring homomorphism k[ε]/(ε2)→ k[ε]/(ε2) given by ε 7→ λε.

Now suppose that X : CAlgsm → S is a formal moduli problem over a field k. Then X(k[ε]/(ε2)) ∈ S is
a topological space, which we will denote by TX(0). As in the classical case, TX(0) admits a great deal of
algebraic structure. To see this, we need to introduce a bit of notation.
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Let k be a field and let V be a k-module spectrum. We let k ⊕ V denote the direct sum of k and V (as
a k-module spectrum). We will regard k ⊕ V as an E∞-algebra over k, with a “square-zero” multiplication
on the submodule V . Note that if V is a small k-module, then k ⊕ V is a small k-algebra (Definition 4.4).
For each integer n ≥ 0, we let k[n] denote the n-fold shift of k as a k-module spectrum: it is characterized
up to equivalence by the requirement

πik[n] '

{
k if i = n

0 ifi 6= n

If X is a formal moduli problem over k, we set TX(n) = X(k⊕k[n]) (this agrees with our previous definition
in the case n = 0). For n > 0, we have a pullback diagram of E∞-algebras

k ⊕ k[n− 1] //

��

k

��
k // k ⊕ k[n]

which, using conditions (1) and (2) of Definition 4.6, gives a pullback diagram

TX(n− 1) //

��

∗

��
∗ // TX(n)

in the ∞-category of spaces. That is, we can identify TX(n − 1) with the loop space of TX(n), so that the
sequence {TX(n)}n≥0 can be regarded as a spectrum, which we will denote by TX . We will refer to TX as
the tangent complex to the formal moduli problem X.

In fact, we can say more: the spectrum TX admits the structure of a module over k. Roughly speaking,
this module structure comes from the following construction: for each scalar λ ∈ k, multiplication by λ
induces a map from k[n] to itself, and therefore a map from TX(n) to itself; these maps are compatible with
one another and give an action of k on the spectrum TX .

Remark 5.1. Here is a more rigorous construction of the k-module structure on the tangent complex TX .
We say that a functor U : Modsm → S is excisive if it satisfies the following linear version of the conditions
of Definition 4.6:

(1) The space U(0) is contractible.
(2) For every pushout diagram

V //

��

V ′

��
W // W ′

in the ∞-category Modsm, the induced diagram of spaces

U(V ) //

��

U(V ′)

��
U(W ) // U(W ′)

is a pullback square.
If W ∈ Modk is an arbitrary k-module spectrum, then the construction V 7→ Homk(V ∨,W ) gives an excisive
functor from Modsm to S (here V ∨ denotes the k-linear dual of V ). In fact, every excisive functor arises
in this way: the above construction determines a fully faithful embedding Modk ↪→ Fun(Modsm, S) whose
essential image is the collection of excisive functors.
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If X : CAlgsm → S is a formal moduli problem, then one can show that the functor V 7→ X(k ⊕ V ) is
excisive. It follows that there exists a k-module spectrum W (which is determined uniquely up to equivalence)
for which X(k⊕V ) ' Homk(V ∨,W ). This k-module spectrum W can be identified with the tangent complex
TX ; for example, we have

Ω∞TX = TX(0) = X(k ⊕ k[0]) ' Homk(k[0]∨,W ) ' Ω∞W

Remark 5.2. The tangent complex to a formal moduli problem X carries a great deal of information about
X. For example, if α : X → X ′ is a natural transformation between formal moduli problems, then α is an
equivalence if and only if it induces a homotopy equivalence of k-module spectra TX → TX′ . In concrete
terms, this means that if α induces a homotopy equivalence X(k⊕ k[n])→ X ′(k⊕ k[n]) every integer n ≥ 0,
then α induces a homotopy equivalence F (A) → F ′(A) for every small E∞-algebra A over k. This follows
from the fact that A admits a “composition series”

A = A(m)→ A(m− 1)→ · · · → A(0) = k,

where each of the maps A(j)→ A(j − 1) fits into a pullback diagram

A(j) //

��

A(j − 1)

��
k // k ⊕ k[nj ]

for some nj > 0.

Remark 5.2 suggests that it should be possible to reconstruct a formal moduli problem X from its tangent
complex TX . If k is a field of characteristic zero, then mathematical folklore asserts that every formal moduli
problem is “controlled” by a differential graded Lie algebra over k. This can be formulated more precisely
as follows:

Theorem 5.3. Let k be a field of characteristic zero, and let Moduli denote the full subcategory of Fun(CAlgsm, S)
spanned by the formal moduli problems over k. Then there is an equivalence of ∞-categories Φ : Moduli→
Liedg

k , where Liedg
k denotes the ∞-category of differential graded Lie algebras over k (Example 2.19). More-

over, if U : Liedg
k → Modk denotes the forgetful functor (which assigns to each differential graded Lie algebra

its underlying chain complex), then the composition U ◦ Φ can be identified with the functor X 7→ TX [−1].

In other words, if X is a formal moduli problem, then the shifted tangent complex TX [−1] ∈ Modk can
be realized as a differential graded Lie algebra over k. Conversely, every differential graded Lie algebra over
k arises in this way (up to quasi-isomorphism).

Remark 5.4. The functor Φ−1 : Liedg
k → Moduli ⊆ Fun(CAlgsm, S) is constructed by Hinich in [14].

Roughly speaking, if g is a differential graded Lie algebra and A is a small E∞-algebra over k, then Φ−1(g)(A)
is the space of solutions to the Maurer-Cartan equation dx = [x, x] in the differential graded Lie algebra
g⊗k mA.

Remark 5.5. The notion that differential graded Lie algebras should play an important role in the descrip-
tion of moduli spaces goes back to Quillen’s work on rational homotopy theory ([33]), and was developed
further in unpublished work of Deligne, Drinfeld, and Feigin. Many mathematicians have subsequently taken
up these ideas: see, for example, the book of Kontsevich and Soibelman ([18]).

Remark 5.6. For applications of Theorem 5.3 to the classification of deformations of algebraic structures,
we refer the reader to [15] and [17].

Remark 5.7. In §8, we will sketch the proof of a “noncommutative” version of Theorem 5.3 (Theorem
6.20). Theorem 5.3 can be proven using the same strategy; see Remark 8.22.
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Remark 5.8. Suppose that R is a commutative k-algebra equipped with an augmentation ε : R→ k. Then
R defines a formal moduli problem X over k, which carries a small E∞-algebra A over k to the fiber of the
map

HomCAlgk(R,A)→ HomCAlgk(R, k).

When k is of characteristic zero, the tangent complex TX can be identified with the complex Andre-Quillen
cochains taking values in k. In this case, the existence of a natural differential graded Lie algebra structure
on TX [−1] is proven in [26].

Remark 5.9. Here is a heuristic explanation of Theorem 5.3. Let X : CAlgsm → S be a formal moduli
problem. Since every k-algebra A comes equipped with a canonical map k → A, we get an induced map
∗ ' X(k)→ X(A): in other words, each of the spaces X(A) comes equipped with a natural base point. We
can then define a new functor ΩX : CAlgsm → S by the formula (ΩX)(A) = ΩX(A) (here Ω denotes the loop
space functor from the∞-category of pointed spaces to itself). Then ΩX is another formal moduli problem,
and an elementary calculation gives TΩX ' TX [−1]. However, ΩX is equipped with additional structure:
composition of loops gives a multiplication on ΩX (which is associative up to coherent homotopy), so we
can think of ΩX as a group object in the ∞-category of formal moduli problems.

In classical algebraic geometry, the tangent space to an algebraic group G at the origin admits a Lie algebra
structure. In characteristic zero, this Lie algebra structure permits us to reconstruct the formal completion
of G (via the Campbell-Hausdorff formula). Theorem 5.3 can be regarded as an analogous statement in the
context of formal moduli problems: the group structure on ΩX determines a Lie algebra structure on its
tangent complex TΩX ' TX [−1]. Since we are working in a formal neighborhood of a fixed point, allows us
to reconstruct the group ΩX (and, with a bit more effort, the original formal moduli problem X).

Example 5.10. Let X : CAlg(Sp) → S be the formal moduli problem of Example 3.7, which assigns to
every E∞-ring A the ∞-groupoid F (A) of projective A-modules of rank n. Giving a point x = (k, η) of X
is equivalent to giving a field k together with a vector space V0 of dimension n over k. In this case, the
functor Xx : CAlgsm → S can be described as follows: to every small k-algebra A, the functor Xx assigns
the ∞-category of pairs (V, α), where V is a projective A-module of rank n and α : k ∧A V → V0 is an
isomorphism of k-vector spaces. It is not difficult to show that Xx is a formal moduli problem in the sense
of Definition 4.6. We will denote its tangent complex TX,x.

Unwinding the definitions, we see that TX,x(0) = Xx(k[ε]/(ε2)) can be identified with a classifying space
for the groupoid of projective k[ε]/(ε2)-modules V which deform V0. This groupoid has only one object up
to isomorphism, given by the tensor product k[ε]/(ε2) ⊗k V0. It follows that TX,x(0) can be identified with
the classifying space BG for the group G of automorphisms of k[ε]/(ε2) ⊗k V0 which reduce to the identity
moduli ε. Such an automorphism can be written as 1 + εM , where M ∈ End(V0). Consequently, TX,x(0)
is homotopy equivalent to the classifying space for the k-vector space Endk(V0), regarded as a group under
addition.

Amplifying this argument, we obtain an equivalence of k-module spectra TX,x ' Endk(V0)[1]. The shifted
tangent complex TX,x[−1] ' Endk(V0) has the structure of a Lie algebra over k (and therefore of a differential
graded Lie algebra over k, with trivial grading and differential), given by the usual commutator bracket of
endomorphisms.

6. Noncommutative Geometry

Our goal in this paper is to describe an analogue of Theorem 5.3 in the setting of noncommutative
geometry. We begin by describing a noncommutative analogue of the theory of E∞-rings.

Definition 6.1. Let C be a symmetric monoidal ∞-category. We can associate to C a new ∞-category
Alg(C) of associative algebra objects of C. The ∞-category Alg(C) inherits the structure of a symmetric
monoidal ∞-category. We can therefore define a sequence of ∞-categories Alg(n)(C) by induction on n:

(a) If n = 1, we let Alg(n)(C) = Alg(C).
(b) If n > 1, we let Alg(n)(C) = Alg(Alg(n−1)(C)).
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We will refer to Alg(n)(C) as the ∞-category of En-algebras in C.

Remark 6.2. We can summarize Definition 6.1 informally as follows: an En-algebra object of a symmetric
monoidal∞-category C is an object A ∈ C which is equipped with n multiplication operations {mi : A⊗A→
A}1≤i≤n; these multiplications are required to be associative and unital (up to coherent homotopy) and to
be compatible with one another in a suitable sense.

Example 6.3. Let C = S be the ∞-category of spaces, endowed with the symmetric monoidal structure
given by Cartesian products of spaces. For every pointed space X, the loop space ΩX has the structure of
an algebra object of S: the multiplication on ΩX is given by concatenation of loops. In fact, we can say a bit
more: the algebra object ΩX ∈ Alg(S) is grouplike, in the sense that the multiplication on Ω(X) determines
a group structure on the set π0Ω(X) ' π1X. This construction determines an equivalence from the ∞-
category of connected pointed spaces to the full subcategory of Alg(C) spanned by the grouplike associative
algebras.

More generally, the construction X 7→ ΩnX establishes an equivalence between the∞-category of (n−1)-
connected pointed spaces and the full subcategory of grouplike En-algebras of S. See [25] for further details.

Example 6.4. Fix an E∞-ring k, and let Modk = Modk(Sp) denote the ∞-category of k-module spectra.
Then Modk admits a symmetric monoidal structure, given by the relative smash product (M,N) 7→M ∧kN .
We will refer to En-algebra objects of Modk as En-algebras over k. We let Alg(n)

k = Alg(n)(Modk) denote
the∞-category of En-algebras over k. When k is the sphere spectrum S, we will refer to an En-algebra over
k simply as an En-ring.

Remark 6.5. For any symmetric monoidal ∞-category C, there is a forgetful functor Alg(C) → C, which
assigns to an associative algebra its underlying object of C. These forgetful functors determine rise to a
tower of ∞-categories

· · · → Alg(3)(C)→ Alg(2)(C)→ Alg(1)(C).
The inverse limit of this tower can be identified with the∞-category CAlg(C) of commutative algebra objects
of C.

Remark 6.6. There is a non-inductive description of the ∞-category Alg(n)(C) of En-algebra objects in
C: it can be obtained as the ∞-category of representations in C of the little n-cubes operad introduced by
Boardman and Vogt; see [2].

Remark 6.7. It is convenient to extend Definition 6.1 to the case n = 0: an E0-algebra object of C is an
object A ∈ C which is equipped with a distinguished map 1→ A, where 1 denotes the unit with respect to
the tensor product on C.

Remark 6.8. When C is an ordinary category, Definition 6.1 is somewhat degenerate: the categories
Alg(n)(C) coincide with CAlg(C) for n ≥ 2. This is a consequence of the classical Eckmann-Hilton argument:
if A ∈ C is equipped with two commuting unital multiplication operations m1 and m2, then m1 and m2 are
commutative and coincide with one another. If C is the category of sets, the proof can be given as follows.
Since the unit map 1→ A for the multipication m1 is a homomorphism with multiplication m2, we see that
the unit elements of A for the multiplications m1 and m2 coincide with a single element u ∈ A. Then

m1(a, b) = m1(m2(a, u),m2(u, b)) = m2(m1(a, u),m1(u, b)) = m2(a, b).

A similar calculation gives m1(a, b) = m2(b, a), so that m1 = m2 is commutative.

Remark 6.9. Let k be a field, and let Chaink be the ordinary category of chain complexes over k. The
functor Chaink → Modk of Remark 3.2 is symmetric monoidal: in other words, the relative smash product
∧k is compatible with the usual tensor product of chain complexes. In particular, we get a functor θ :
Alg(Chaink) → Alg(Modk) = Alg(1)

k . The category Alg(Chaink) can be identified with the category of
differential graded algebras over k. We say that a map of differential graded algebras f : A• → B• is a quasi-
isomorphism if it induces a quasi-isomorphism between the underlying chain complexes of A• and B•; in this
case, the morphism θ(f) is an equivalence in Alg(1)

k . Let W be the collection of quasi-isomorphisms between
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differential graded algebras. One can show that θ induces an equivalence Alg(Chaink)[W−1]→ Alg(1)
k : that

is, E1-algebras over a field k (of any characteristic) can be identified with differential graded algebras over
k.

Remark 6.10. Let k be a field and let A be an En-algebra over k. If n ≥ 1, then A has an underlying
associative multiplication. This multiplication endows π∗A with the structure of a graded algebra over k. In
particular, π0A is an associative k-algebra.

Definition 6.11. Let k be a field and let A be an En-algebra over k, where n ≥ 1. We will say that A is
small if the following conditions are satisfied:

(1) The algebra A is small when regarded as a k-module spectrum: that is, the homotopy groups πiA
are finite dimensional, and vanish if i < 0 or i� 0.

(2) Let p be the radical of the (finite-dimensional) associative k-algebra π0A. Then the composite map
k → π0A→ π0A/p is an isomorphism.

We let Alg(n)
sm denote the full subcategory of Alg(n)

k spanned by the small En-algebras over k.

Remark 6.12. Let A be an En-algebra over a field k. An augmentation on A is a map of En-algebras
A→ k. The collection of augmented En-algebras over k can be organized into an ∞-category, which we will
denote by Alg(n)

aug. If n ≥ 1 and A is a small En-algebra over k, then A admits a unique augmentation A→ k

(up to a contractible space of choices). Consequently, we can view Alg(n)
sm as a full subcategory of Alg(n)

aug.
If η : A → k is an augmented En-algebra over k, we let mA denote the fiber of the map η. We will refer

to mA as the augmentation ideal of A.

Remark 6.13. If n = 0, then an augmentation on an E0-algebra A ∈ Alg(0)
k is a map of k-module spectra

η : A→ k which is left inverse to the unit map k → A. The construction (η : A→ k) 7→ mA determines an
equivalence of ∞-categories Alg(0)

aug ' Modk.
It is convenient to extend Definition 6.11 to the case n = 0. We say that an augmented E0-algebra A is

small if A (or, equivalently, the augmentation ideal mA) is small when regarded as a k-module spectrum.
We let Alg(0)

sm ⊆ Alg(0)
aug ' Modk denote the full subcategory spanned by the small E0-algebras over k.

The following elementary observation will be used several times in this paper:

Claim 6.14. Let f : A→ B be a map of small En-algebras over k which induces a surjection π0A→ π0B.
Then there exists a sequence of maps

A = A(0)→ A(1)→ · · · → A(m) = B

with the following property: for each integer 0 ≤ i < m, there is a pullback diagram of small En-algebras

A(i) //

��

A(i+ 1)

��
k // k ⊕ k[j]

for some j > 0 (in other words, A(i) can be identified with the fiber of some map A(i+ 1)→ k ⊕ k[j]).

Remark 6.15. Claim 6.14 is most useful in the case where f is the augmentation map A → k. We will
refer to a sequence of maps

A = A(0)→ A(1)→ · · · → A(m) ' k
satisfying the requirements of Claim 6.14 as a composition series for A.

Definition 6.16. Let k be a field and let n ≥ 0 be an integer. A formal En moduli problem over k is a
functor X : Alg(n)

sm → S with the following properties:
(1) The space X(k) is contractible.



16

(2) Suppose we are given a pullback diagram of small En-algebras

A′ //

��

A

��
B′ // B

such that the maps π0A→ π0B and π0B
′ → π0B are surjective. Then the diagram

X(A′) //

��

X(A)

��
X(B′) // X(B)

is a pullback diagram in S.

Remark 6.17. Every formal En moduli problem X : Alg(n)
sm → S determines a formal moduli problem X ′

in the sense of Definition 4.6, where X ′ is given by the composition

Algsm → Alg(n)
sm

X→ S .

We define the tangent complex of X to be the tangent complex of X ′, as defined in §5. We will denote the
tangent complex of X by TX ∈ Modk.

Remark 6.18. Let X be as in Definition 6.16. By virtue of Claim 6.14, it suffices to check condition (2) in
the special case where A = k and B = k ⊕ k[j], for some j > 0. In other words, condition (2) is equivalent
to the requirement that for every map B′ → k ⊕ k[j], we have a fiber sequence

X(B ×k⊕k[j] k)→ X(B)→ X(k ⊕ k[j]).

The final term in this sequence can be identified with TX(j) = Ω∞(TX [j]).

Remark 6.19. The argument of Remark 6.18 shows that condition (2) of Definition 6.16 is equivalent to
the following apparently stronger condition:

(2′) Suppose we are given a pullback diagram of small En-algebras

A′ //

��

A

��
B′ // B

such that the maps π0A→ π0B is surjective. Then the diagram

X(A′) //

��

X(A)

��
X(B′) // X(B)

is a pullback diagram in S.

Let V0 be a finite dimensional vector space over k, and let Xx : CAlgsm → S be the formal moduli
problem of Example 5.10, so that Xx assigns to every small E∞-algebra A over k the ∞-groupoid of pairs
(V, α), where V is an A-module and α : k ∧A V ' V0 is an equivalence. The definition of Xx does not
make any use of the commutativity of A. Consequently, Xx extends naturally to a functor X̂x : Alg(1),

sm → S,
By definition, the shifted tangent complex of X̂x[−1] is given by the Lie algebra TXx [−1] ' End(V0). If k
is of characteristic zero, then Theorem 5.3 implies that the formal moduli problem Xx can be canonically
reconstructed from the vector space End(V0) together with its Lie algebra structure. However, the formal
E1 moduli problem X̂x is additional data, since we can evaluate X̂x on algebras which are not necessarily
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commutative. Consequently, it is natural to expect the existence of X̂x to be reflected in some additional
structure on the Lie algebra End(V0). We observe that End(V0) is not merely a Lie algebra: there is an
associative product (given by composition) whose commutator gives the Lie bracket on End(V0). In fact,
this is a general phenomenon:

Theorem 6.20. Let k be a field, let n ≥ 0, and let Modulin be the full subcategory of Fun(Alg(n)
sm , S) spanned

by the formal En moduli problems. Then there exists an equivalence of ∞-categories Φ : Modulin → Alg(n)
aug.

Moreover, if U : Alg(n)
aug → Modk denotes the forgetful functor A 7→ mA which assigns to each augmented

En-algebra its augmentation ideal, then the composition U ◦Φ can be identified with the functor X 7→ TX [−n].

In other words, if X is a formal En-module problem, then the shifted tangent complex TX [−n] can be
identified with the augmentation ideal in an augmented En-algebra A: that is, TX [−n] admits a nonunital
En-algebra structure. Moreover, this structure determines the formal En moduli problem up to equivalence.

Example 6.21. Suppose that n = 0. The construction V 7→ k ⊕ V determines an equivalence Modsm '
Alg(0)

sm . Under this equivalence, we can identify the ∞-category Moduli0 of formal E0 moduli problems with
the full subcategory of Fun(Modsm, S) spanned by the excisive functors (see Remark 5.1). In this case,
Theorem 6.20 reduces to the claim of Remark 5.1: every excisive functor U : Modsm → S has the form
V 7→ Homk(V ∨,W ) ' Ω∞(V ∧k W ) for some object W ∈ Modk, which is determined up to equivalence.
Note that we can identify W with the tangent complex to the formal E0 moduli problem A 7→ U(mA).

Remark 6.22. Unlike Theorem 5.3, Theorem 6.20 does not require any assumption on the characteristic
of the ground field k.

We conclude this section by observing that Remark 5.2 holds in the noncommutative context:

Proposition 6.23. Let α : X → X ′ be a map of formal En moduli problems, and suppose that the induced
map TX → TX′ is an equivalence of k-module spectra. Then α is an equivalence.

Proof. Let A be a small En-algebra over k; we wish to prove that α induces a homotopy equivalence
X(A)→ X ′(A). Using Claim 6.14, we can choose a composition series

A = A(0)→ A(1)→ · · · → A(m) = k

for A. We will prove that α induces a homotopy equivalence θi : X(A(i)) → X ′(A(i)) using descending
induction on i. The case i = m is trivial. Assume that 0 ≤ i < m and that θi+1 is a homotopy equivalence;
we will prove that θi is a homotopy equivalence. By definition, we have a fiber sequence of small Em-algebras

A(i)→ A(i+ 1)→ k ⊕ k[j]

for some j > 0. This gives rise to a map of fiber sequences

X(A(i))

θi

��

// X(A(i+ 1))

θi+1

��

// TX(j)

θ′

��
X ′(A(i)) // X ′(A(i+ 1)) // TX′(j).

The inductive hypothesis implies that θi+1 is a homotopy equivalence, and our assumption implies that θ′

is a homotopy equivalence; it follows that θi is a homotopy equivalence as well. �

7. Koszul Duality

Fix a field k and an integer n ≥ 0. Theorem 6.20 asserts the existence of an equivalence of ∞-categories

Alg(n)
aug

Φ−1

' Modulin ⊆ Fun(Alg(n)
sm , S).

The appearance of the theory of En-algebras on both sides of this equivalence is somewhat striking: it is a
reflection of the Koszul self-duality of the little n-cubes operad (see [11]). In this section, we give a quick
overview of Koszul duality, collecting the ideas which are needed to prove Theorem 6.20.
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Definition 7.1. Let A be an En-algebra over a field k. We let Aug(A) = Hom
Alg

(n)
k

(A, k) ∈ S denote
the space of augmentations on A. Suppose that A and B are En-algebras equipped with augmentations
ε : A → k and ε′ : B → k. We let Pair(A,B) ∈ S denote the homotopy fiber of the map of spaces
Aug(A ∧k B, k) → Aug(A, k) × Aug(B, k). More informally: Pair(A,B) is the space of augmentations
φ : A ∧k B → k which are compatible with ε and ε′.

Example 7.2. Suppose that n = 0. Then the construction V 7→ k ⊕ V defines an equivalence from the
∞-category Modk of k-module spectra to the ∞-category Alg(n)

aug. If V and W are k-module spectra, then a
pairing of k ⊕ V with k ⊕W is a k-linear map

φ : (k ⊕ V ) ∧k (k ⊕W ) ' k ⊕ V ⊕W ⊕ (V ∧k W )→ k

such that φ|k = id and φ|V = φ|W = 0. In other words, we can think of a pairing between k⊕V and k⊕W
as a k-linear map V ∧k W → k.

Example 7.3. Suppose that n = 1. If A is an E1-algebra over k, then we can think of an augmentation
on A as a map of associative k-algebras A → k ' Endk(k): that is, as a left action of A on k. If we are
given a pair of augmented E1-algebras ε : A → k, ε′ : B → k, then k can be regarded as a left A-module
(via ε) and a right Bop-module (via ε′). To give a pairing of A with B is equivalent to promoting k to a left
A ∧k B-module: in other words, it is the data which allows us to commute the left A-action on k with the
right Bop-action on k, and thereby identify k with an A-Bop bimodule.

Claim 7.4. Let A be an augmented En-algebra over a field k. Then the construction

(B ∈ Alg(n)
aug) 7→ (Pair(A,B) ∈ S)

is a representable functor. In other words, there exists an augmented En-algebra D(A) and a pairing φ ∈
Pair(A,D(A)) with the following universal property: for every augmented En-algebra B over k, composition
with φ induces a homotopy equivalence

Hom
Alg

(n)
aug

(B,D(A)) ' Pair(A,B).

We will refer to D(A) as the Koszul dual to A.

Remark 7.5. By the adjoint functor theorem, Claim 7.4 is equivalent to the assertion that the functor
B 7→ Pair(A,B) carries colimits in Alg(n)

aug to limits of spaces.

Remark 7.6. The construction A,B 7→ Pair(A,B) is symmetric in A and B. Consequently, for any pair of
augmented En-algebras A and B, we have homotopy equivalences

Hom
Alg

(n)
aug

(A,D(B)) ' Pair(A,B) ' Pair(B,A) ' Hom
Alg

(n)
aug

(B,D(A)).

Example 7.7. Let V ∈ Modk be a k-module spectrum, so that we can view k ⊕ V as an augmented
E0-algebra over k. It follows from Example 7.2 that the Koszul dual D(k ⊕ V ) can be identified with the
augmented E0-algebra k ⊕ V ∨, where V ∨ denotes the k-linear dual of V ; the homotopy groups of V ∨ are
given by πiV ∨ ' Homk(π−iV, k).

Example 7.8. Let A be an augmented E1-algebra over k, so that we can view k as a left A-module. It
follows from Example 7.3 that the Koszul dual D(A) can be identified with the E1-algebra EndA(k) of
A-linear endomorphisms of k: note that EndA(k) is universal among E1-algebras with a left action on k
commuting with our given left action of A on k.

Remark 7.9. Let A be an augmented En-algebra over k. The canonical pairing φ : A ⊗ D(A) → k is
classified by a map f : A→ D2(A). We will refer to f as the double duality map of A. When n = 0, Example
7.7 implies that f is an equivalence if and only if each of the vector spaces πiA is finite-dimensional over k.
More generally, it is natural to expect f to be an equivalence when the augmented En-algebra A satisfies
some finiteness conditions, such as the smallness condition of Definition 6.11 (though weaker conditions will
also suffice).
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Notation 7.10. Fix a field k and an integer n ≥ 0. We let Free : Modk → Alg(n)
k be a left adjoint to

the forgetful functor: that is, Free assigns to each k-module spectrum V the free En-algebra Free(V ) on V .
Note that zero map V → k determines an augmentation on Free(V ): we will view Free(V ) as an augmented
En-algebra.

To prove Theorem 6.20, we will need the following facts about the Koszul duality functor D (which we
assert here without proof):

(K1) Let V and W be k-module spectra. Then every map V ∧k W → k induces a pairing of augmented
En-algebras

(k ⊕ V ) ∧k Free(W [−n])→ k.

(K2) Let V = k[m], W = k[−m], and let α : V ∧k W ' k be the canonical equivalence. If m ≥ 0, then
the induced pairing

(k ⊕ V ) ∧k Free(W [−n])→ k

is perfect: it induces equivalences

k ⊕ k[m] ' D Free(k[−m− n]) Free(k[−m− n]) ' D(k ⊕ k[m]).

(K3) Suppose we are given a pullback diagram

A′ //

��

A

��
B′ // B

of small En-algebras over k, where the maps π0A→ π0B and π0B
′ → π0B are surjective. Then the

induced diagram of En-algebras
DA′ DAoo

DB′

OO

DBoo

OO

is a pushout square.

Remark 7.11. As in Remark 6.18, the general case of (K3) can be deduced from the special case where
A = k and B = k ⊕ k[m] for some m > 0.

Remark 7.12. For every k-module spectrum W , the pairing of (K1) gives an identification of the Koszul
dual D Free(W [−n]) with k⊕W∨. This can be deduced from (K2) by resolving W as a colimit of k-module
spectra of the form k[−m] where m ≥ 0. However, the adjoint map

Free(W [−n])→ D2 Free(W [−n]) ' D(k ⊕W∨)

is generally not an equivalence without some additional restrictions on W .

Remark 7.13. Let A be an augmented E1-algebra. According to Example 7.8, the Koszul dual of A can
be identified with

EndA(k) = HomA(k, k) = Homk(k ∧A k, k).
That is, D(A) can be identified with the k-linear dual of the bar construction BA = k ∧A k. The algebra
structure on D(A) is determined by an associative coalgebra structure on k ∧A k, given by

BA = (k ∧A k) ' k ∧A A ∧A k → k ∧A k ∧A k ' BA ∧k BA.
The construction A 7→ BA is a symmetric monoidal functor from augmented algebras in Modk to aug-

mented coalgebras in Modk. Suppose now that A is an augmented En-algebra over k. Then we can view
A as an En−1-algebra in the ∞-category of augmented algebras over k, so that BA is an En−1-algebra in
the ∞-category of augmented coalgebras over k. If n > 1, then we can use the residual algebra structure on
BA to perform the bar construction again. One can show that the Koszul dual D(A) is the k-linear dual of
the iterated bar construction BnA (the En-algebra structure on D(A) is dual to the n commuting coalgebra
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structures on BnA resulting from the bar construction). Using this mechanism, one can reduce the proofs
of many statements about Koszul duality to the case where n = 1. For example, one can prove assertions
(K1) through (K3) using this method.

8. The Proof of Theorem 6.20

Let k be a field and n ≥ 0 an integer, fixed throughout this section. Our goal is to prove Theorem 6.20,
which asserts the existence of an equivalence of∞-categories Φ : Modulin → Alg(n)

aug. We begin by describing
the inverse to the functor Φ.

Construction 8.1. We let Ψ : Alg(n)
aug → Fun(Alg(n)

sm , S) be the functor determined by the formula

Ψ(A)(B) = Hom
Alg

(n)
aug

(DB,A).

Here D : (Alg(n)
aug)op → Alg(n)

aug is the Koszul duality functor of §7.

Suppose we are given a pullback diagram

A′ //

��

A

��
B′ // B

of small En-algebras over k, with π0A→ π0B and π0B
′ → π0B surjective. Using (K3), we deduce that for

every augmented En-algebra C over k, we have a pullback square

Hom
Alg

(n)
aug

(DA′, C) //

��

Hom
Alg

(n)
aug

(DA,C)

��
Hom

Alg
(n)
aug

(DB′, C) // Hom
Alg

(n)
aug

(DB,C).

in the ∞-category S. In other words, the functor Ψ(C) : Alg(n)
sm → S is a formal En moduli problem over k,

in the sense of Definition 4.6 (note that Ψ(C)(k) ' Hom
Alg

(n)
aug

(D(k), C) ' Hom
Alg

(n)
aug

(k,C) is contractible).

We may therefore view Ψ as a functor from Alg(n)
aug to the ∞-category Modulin.

Proposition 8.2. Let A be an augmented En-algebra over k. Then there is an equivalence of k-module
spectra mA[n] ' TΨ(A), which depends functorially on A.

Proof. According to Remark 5.1, it will suffice to construct an equivalence between the excisive functors
U,U ′ : Modsm → S given by the formulas

U(V ) = Homk(V ∨,mA[n]) U ′(V ) = Homk(V ∨, TΨ(A)).

Let V be a small k-module spectrum. The pairing (k ⊕ V ) ∧k Free(V ∨[−n]) of (K1) gives rise to a map
θV : Free(V ∨[−n])→ D(k ⊕ V ). We obtain maps

U ′(A) = Homk(V ∨, TΨ(A))
' Ψ(A)(k ⊕ V )
' Hom

Alg
(n)
aug

(D(k ⊕ V ), A)

θV→ Hom
Alg

(n)
aug

(Free(V ∨[−n]), A)

' Homk(V ∨[−n],mA)
' Homk(V ∨,mA[n])
= U(A).

To complete the proof, it will suffice to show that θV is an equivalence. Note that if V ' V ′×V ′′, then (K3)
allows us to identify D(k ⊕ V ) with the product of the augmented En-algebras D(k ⊕ V ′) and D(k ⊕ V ′′),
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so that θV is a coproduct of the maps θV ′ and θV ′′ . Using this observation repeatedly, we can reduce to
proving that θV is an equivalence when V is a k-module spectrum of the form k[m] for m ≥ 0, which follows
from (K2). �

To complete the proof of Theorem 6.20, it will suffice to construct a functor Φ : Modulin → Alg(n)
aug which

is homotopy inverse to Ψ. We will begin by constructing Φ as a left adjoint to Ψ, and later show that this
left adjoint is actually an inverse.

Definition 8.3. Let X ∈ Modulin be a formal En moduli problem over k, and let A be an augmented En-
algebra over A. We will say that a natural transformation α : X → Ψ(A) reflects X if, for every augmented
En-algebra B over k, composition with α induces a homotopy equivalence

Hom
Alg

(n)
aug

(A,B)→ HomModulin(X,Ψ(B)).

We let Modulion denote the full subcategory of Modulin spanned by those formal En-module problems X for
which there exists a map α : X → Ψ(A) which reflects F . In this case, the map α : X → Ψ(A) is well-defined
up to canonical equivalence; in particular, we can regard the construction X 7→ A as defining a functor

Φ : Modulion → Alg(n)
aug .

The functor Φ is left adjoint to Ψ, in the sense that for every X ∈ Modulion and every B ∈ Alg(n)
aug, we have

a canonical homotopy equivalence

HomModulin(X,Ψ(B)) ' Hom
Alg

(n)
aug

(Φ(X), B).

Remark 8.4. Since the functor Ψ : Alg(n)
aug → Modulin preserves small limits, one can deduce the existence

of a left adjoint to Ψ using the adjoint functor theorem. In other words, it follows formally that Modulion =
Modulin. However, we will establish this equality by a more direct argument, which will help us to compute
with the functor Φ.

We begin by describing the behavior of the functor Φ on very simple types of formal moduli problems.

Example 8.5. Let A be an small En-algebra over k. We let SpecA ∈ Modulin denote the representable
functor Alg(n)

sm → S given by the formula (SpecA)(B) = Hom
Alg

(n)
sm

(A,B). Let A be a small En-algebra over
k. Then SpecA ∈ Modulion, and Φ(SpecA) ' D(A). More precisely, the canonical map

Spec(A)(B) = Hom
Alg

(n)
aug

(A,B)→ Hom
Alg

(n)
aug

(D(B),D(A)) = Ψ(DA)(B)

reflects Spec(A).

Definition 8.6. If C is any ∞-category, we let Pro(C) denote the ∞-category of pro-objects of C. The
objects of Pro(C) can be identified with formal filtered limits lim←−Cα of objects C ∈ C, and the morphisms
in Pro(C) are computed by the formula

HomPro(C)(lim←−Cα, lim←−Dβ) = lim←−
β

lim−→
α

HomC(Cα, Dβ).

Remark 8.7. There is a parallel theory of Ind-objects of ∞-categories: if C is an ∞-category, then one can
define a new ∞-category Ind(C) by the formula Ind(C)op = Pro(Cop).

Definition 8.8. If A ' lim←−Aα is a pro-object of Alg(n)
sm , we let Spf(A) : Alg(n)

sm → S denote the functor given
by the formula

B 7→ Hom
Pro(Alg

(n)
sm )

(A,B) ' lim−→Hom
Alg

(n)
sm

(Aα, B).

Remark 8.9. If A ' lim←−Aα is a pro-object of Alg(n)
sm , then Spf A ' lim−→ SpecAα; it follows immediately that

Spf A ∈ Modulin. It follows from Example 8.5 that Spf A ∈ Modulion, and that Φ(Spf A) can be identified
with the direct limit

lim−→Φ(SpecAα) ' lim−→D(Aα).
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Remark 8.10. The∞-category Alg(n)
sm has a final object (namely, the algebra k) and admits fiber products.

It follows by general nonsense that the construction A 7→ Spf A determines a fully faithful embedding of
Pro(Alg(n)

sm ) into Fun(Alg(n)
sm , S), whose essential image is the collection of left exact functors X : Alg(n)

sm → S:
that is, functors X such that X(k) is contractible and X carries fiber products in Alg(n)

sm to fiber products
in S. Any left-exact functor is obviously a formal En moduli problem.

Not every formal En-moduli problem is of the form Spf A. For example, it is not difficult to see that
if A ∈ Pro(Alg(n)

sm ) then the space (Spf A)(k[ε]/(ε2)) is homotopy discrete: that is, the homotopy groups
πi Spf(A)(k[ε]/(ε2)) ' πiTSpf A vanish for i > 0. However, we can resolve every formal En-moduli problem
X by formal En moduli problems of the form Spf A.

Lemma 8.11. Let α : X → X ′ be a map of formal En moduli problems over k. The following conditions
are equivalent:

(1) The induced map of vector spaces πiTX → πiTX′ is surjective for i = 0 and bijective for i < 0.
(2) Let A→ B be a map of small En-algebras over k which induces a surjection π0A→ π0B. Then the

induced map π0X(A)→ π0(X(B)×X′(B) X
′(A)) is surjective.

Definition 8.12. We say that a map α : X → X ′ is smooth if it satisfies the equivalent conditions of Lemma
8.11. We say that a formal moduli problem X is smooth if the projection X → ∗ is smooth: that is, if the
homotopy groups πiTX vanish for i < 0.

Proof of Lemma 8.11. Let f : A→ B be a map of small En-algebras which induces a surjection π0A→ π0B.
Claim 6.14 implies that f factors as a composition

A = A(0)→ A(1)→ · · · → A(m) = B,

where each A(i)→ A(i+ 1) fits into a pullback diagram

A(i) //

��

A(i+ 1)

��
k // k ⊕ k[j + 1]

for some j ≥≥ 0. Consequently, to prove (2), it suffices to treat the case where A = k and B = k ⊕ k[j +
1]. In this case, the space π0F (A) is contractible, so condition (2) is equivalent to the requirement that
X(B)×X′(B) X(A) is connected. We have a long exact sequence

π−jTX → π−jTX′ → π0(X(B)×X′(B) X(A))→ π−j−1TX → π−j−1TX′ ,

so that X(B)×X′(B) X(A) is connected if and only if the map π−jTX → π−jTX′ is surjective and the map
π−j−1TX → π−j−1TX′ is injective. These conditions hold for all j ≥ 0 if and only if α satisfies (1). �

Remark 8.13. Taking B = k in part (2) of Lemma 8.11, we deduce that every smooth map α : X → X ′ of
formal moduli problems induces a surjection π0X(A)→ π0X

′(A), for every small En-algebra A.

Lemma 8.14. Let A ∈ Pro(Alg(n)
aug) and let γ : Spf A → X be a map of formal En moduli problems. Then

γ can be written as a composition

Spf A→ Spf B
β→ F

where β is smooth.

Proof. We follow the formal skeleton of Schlessinger’s construction (see [27]). We define a tower of pro-objects

· · · → A(2)→ A(1)→ A(0)
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and a compatible sequence of maps Spf A(i)
γi→ X, where A(0) = A and γ0 = γ. Assume that A(i) has been

constructed, and let S denote the collection of all isomorphism classes of diagrams

SpecBα //

��

SpecAα

θα

��
Spf A(i) // X

such that the map π0Aα → π0Bα is surjective. We now define A(i + 1) = A(i) ×Q
α Bα

∏
αAα; here the

products and fiber products are formed in the ∞-category Pro(Alg(n)
sm ). One shows that the maps γi and θα

amalgamate to define a map γi+1 : A(i+ 1)→ X. Passing to the limit we get a map β : Spf B → X, which
is easily shown to be smooth. �

To proceed further, we need a bit of simplicial technology. Let ∆+ denote the category whose objects are
finite sets [m] = {0, 1, . . . ,m} for m ≥ −1, and whose morphisms are nondecreasing maps [m] → [m′]. We
let ∆ denote the full subcategory spanned by the objects [n] for n ≥ 0. If C is any ∞-category, an simplicial
object of C is a functor X• : ∆op → C. If X• is a simplicial object of C, we will denote the image of [n] ∈∆op

by Xn, and the colimit of the diagram X• by |X•| (if such a colimit exists); we refer to |X•| as the geometric
realization of X•.

Remark 8.15. The formation of geometric realizations of simplicial objects is an example of a sifted colimit.
As such, the formation of geometric realizations tends to be compatible with algebraic structures. For exam-
ple, the forgetful functor Alg(n)

k → Modk commutes with geometric realizations. Similarly, the augmentation
ideal functor Alg(n)

aug → Modk, given by A 7→ mA, commutes with geometric realizations.

An augmented simplicial object is a functor X• : ∆op
+ → C. In this case, we will denote the underlying

simplicial object X•|∆op by X•. Note that since [−1] = ∅ is an initial object of ∆+, giving an augmented
simplicial object X• of C is equivalent to giving the underlying simplicial object X•, together with another
object X = X−1 equipped with a compatible family of maps {Xn → X}[n]∈∆. If C admits small colimits,
then we can identify this family of maps with a single map |X•| → X.

Let X• be an augmented simplicial object of an∞-category C which admits finite limits. For every integer
m ≥ 0, the mth matching object Mm(X•) is defined to be the limit lim←−Xm′ , where the limit is taken over all
proper inclusions [m′] ↪→ [m] (equivalently, the limit is taken over all proper subsets of {0, 1, . . . ,m}). For
each m ≥ 0, there is a canonical map Xm →Mm(X•).

We will need the following fact from simplicial homotopy:

Proposition 8.16. Let X• : ∆op
+ → S be an augmented simplicial space. Suppose that, for each m ≥ 0,

the map π0Xm → π0Mm(X•) is surjective. Then the augmentation map |X•| → X = X−1 is a homotopy
equivalence.

Definition 8.17. Let F • be an augmented simplicial object of Modulin. We will say that F• is a smooth
hypercovering if, for each m ≥ 0, the map of formal En moduli problems Fm →Mm(F •) is smooth. In this
case, we will say that the underlying simplicial object F• is a smooth hypercovering of the formal En moduli
problem F−1.

Remark 8.18. Combining Lemma 8.13 with Proposition 8.16, we deduce that if F• is a a smooth hyper-
covering of F ∈ Modulin, then the induced map |F•(A)| → F (A) is a homotopy equivalence for every small
En-algebra A. In particular, we conclude that the augmentation map |F•| → F is an equivalence of formal
En moduli problems over k. Similarly, the augmentation map |TF• | → TF is an equivalence of k-module
spectra.

By repeatedly applying Lemma 8.14, we obtain the following:

Proposition 8.19. Let X be a formal En moduli problem. Then there exists a smooth hypercovering X• of
X, such that each Xm has the form Spf Am for some pro-object Am ∈ Pro(Alg(n)

sm ).
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Corollary 8.20. Every formal En moduli problem X belongs to Modulion. Moreover, we can write Φ(X) '
|Φ(Spf A•)|, where A• is as in Proposition 8.19.

This completes the construction of the functor Φ : Modulin → Alg(n)
aug appearing in Theorem 6.20. By

construction, we have an adjunction

Modulin
Φ // Alg(n)

aug .
Ψ
oo

We wish to prove that the functors Φ and Ψ are mutually inverse equivalences of ∞-categories. Our next
step is to prove the following:

Proposition 8.21. The functor Φ : Modulin → Alg(n)
aug is fully faithful.

Proof. We must show that the unit transformation u : idModulin → Ψ ◦ Φ is an equivalence of functors. In
other words, we claim that for every formal En moduli problem X, the unit map uF : X → (Ψ ◦ Φ)(X) is
an equivalence of formal moduli problems. Proposition 8.2 implies that the tangent complex T(Ψ◦Φ)(X) can
be identified with the shifted augmentation ideal mΦ(X)[n] of the augmented En-algebra Φ(X). Passing to
tangent complexes, uF gives a map of k-module spectra γX : TX → mΦ(X)[n]. By Proposition 6.23, it will
suffice to prove that γX is an equivalence. We consider several cases:

(1) Suppose first that X = SpecA for some small En-algebra A. Then Φ(F ) = D(A) (Example 8.5).
We wish to prove that the canonical map γSpecA : TSpecA → mDA[n] is an equivalence of k-module
spectra. As in Remark 5.1, it suffices to show that for every small k-module spectrum V , the induced
map γV : Homk(V ∨, TSpecA) → Homk(V ∨,mD(A)[n]) is a homotopy equivalence. It now suffices to
observe that γV is given by the composition

Homk(V ∨, TSpecA) ' (SpecA)(k ⊕ V )
' Hom

Alg
(n)
aug

(A, k ⊕ V )

' Hom
Alg

(n)
aug

(A,D Free(V ∨[−n]))

' Hom
Alg

(n)
aug

(Free(V ∨[−n]),DA)

' Homk(V ∨[−n],mDA)
' Homk(V ∨,mDA[n]).

(2) Now suppose that X = Spf A for some pro-object A = lim←−Aα ∈ Pro(Alg(n)
sm ). We wish to prove that

the canonical map γSpf A : TSpf A → mΦ(Spf A) is an equivalence. This follows immediately from (1),
since γSpf A is a filtered colimit of the maps γSpecAα .

(3) Let X : Alg(n)
sm → S be an arbitrary formal En moduli problem. By Proposition 8.19, we can choose

a smooth hypercovering X• of X, where each Xm ' Spf Am for some pro-object Am ∈ Pro(Alg(n)
sm ).

We have a commutative diagram

|TX• |
γ′ //

α

��

|mΦX• [n]|

β

��
TX

γF // mΦX [n].

Remark 8.18 implies that α is an equivalence, and Remark 8.15 implies that β is an equivalence.
Since γ′ is an equivalence by case (2), we deduce that γX is an equivalence as desired.

�

We are now ready to prove our main result.

Proof of Theorem 6.20. We have already constructed a fully faithful embedding Φ : Modulin → Alg(n)
aug

which admits a right adjoint Ψ, such that the augmentation ideal functor U : Alg(n)
aug → Modk is given by

A 7→ TΨ(A)[n] (Proposition 8.2). To complete the proof, it will suffice to show that Φ is essentially surjective.
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This is equivalent to the assertion that Ψ is conservative: that is, that a map α : A → B of augmented
En-algebras is an equivalence if and only if Ψ(α) : Ψ(A)→ Ψ(B) is an equivalence. This is clear: if Ψ(α) is
an equivalence, then we deduce from Proposition 8.2 that α induces an equivalence of augmentation ideals
mA → mB and is therefore itself an equivalence. �

Remark 8.22. It is possible to prove Theorem 5.3 using the same method outlined in this section. The
arguments are essentially the same, and make use of the fact that when k is a field of characteristic zero,
there exists a Koszul duality functor D : (CAlgsm)op → Liedg

k satisfying analogues of conditions (K1), (K2),
and (K3).

9. Examples: Deformation of Objects and Categories

In this section, we will illustrate Theorem 6.20 by considering examples of formal moduli problems drawn
from deformation theory.

Definition 9.1. Let C be an∞-category which admits small colimits. We say that C is stable if the following
conditions are satisfied:

(i) The ∞-category C contains an object 0 which is both initial and final.
(ii) The suspension functor X 7→ Σ(X) = 0

∐
X 0 is an equivalence of ∞-categories from C to itself.

We let SCat denote the ∞-category whose objects are stable ∞-categories which admit small colimits,
and whose morphisms are functors which preserve small colimits.

Remark 9.2. If C is a stable∞-category, then one can show that the homotopy category hC is triangulated.
In particular, for every pair of objects C,C ′ ∈ C, one can define Ext-groups ExtnC(C,C ′) = π0 HomC(C,ΣnC ′).

Example 9.3. Let R ∈ Alg(1)(Sp) be an E1-ring. Then the ∞-category ModR = ModR(Sp) is stable, and
can be regarded as an object of SCat.

Remark 9.4. The ∞-category SCat admits a symmetric monoidal structure. Roughly speaking, if C,D ∈
SCat, then the tensor product C⊗D is characterized by the following universal property: for every object
E ∈ SCat, giving a colimit-preserving functor C⊗D → E is equivalent to giving a bifunctor F : C×D → E

which preserves colimits separately in each variable.

Remark 9.5. The construction R 7→ ModR(Sp) of Example 9.3 is symmetric monoidal: that is, we have
ModR(Sp)⊗ModR′(Sp) ' ModR∧R′(Sp). Consequently, it defines a functor

Alg(n)(Sp) ' Alg(n−1)(Alg(1)(Sp))→ Alg(n−1)(SCat).

In particular, if R is an E2-ring, then the ∞-category ModR(Sp) can be regarded as an associative algebra
in the ∞-category SCat: that is, ModR(Sp) is an example of a monoidal ∞-category.

Definition 9.6. Let R ∈ Alg(2)(Sp) be an E2-ring. An R-linear ∞-category is a ModR(Sp)-module object
of SCat: that is, a stable ∞-category C which admits small colimits and is equipped with a coherently
associative action

ModR(Sp)× C→ C

which preserves small colimits separately in each variable. The collection of all R-linear∞-categories is itself
organized into an ∞-category, which we will denote by SCatR.

In order to guarantee that an R-linear ∞-category is well-behaved, it is useful to introduce a finiteness
assumption.

Definition 9.7. Let C be an ∞-category which admits small colimits. We say that an object C ∈ C is
compact if the functor D 7→ HomC(C,D) commutes with filtered colimits. We say that C is compactly
generated if there exists a set S of compact objects in C such that every object of C can be obtained as a
filtered colimit of objects belonging to S.

Notation 9.8. Let R be an E2-ring. We let SCatcg
R denote the full subcategory of SCatR spanned by those

R-linear ∞-categories which are compactly generated.
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Remark 9.9. Let f : R → R′ be a map of E2-rings. Then f induces a functor SCatR → SCatR′ , given
by C 7→ CR′ = SCatR′ ⊗SCatR C. Concretely, we can identify CR′ with the ∞-category of R′-module objects
of C: that is, objects M ∈ C equipped with an action R′ ⊗M → M (which is associative up to coherent
homotopy).

If C is compactly generated, then the ∞-category CR′ is also compactly generated: it has compact gener-
ators of the form R′ ⊗RM , where M ranges over a set of compact generators for C.

Remark 9.10. Let k be a field, regarded as a discrete E2-ring. Then giving a compactly generated k-linear
∞-category is equivalent to giving a small differential graded category of k, which is well-defined up to Morita
equivalence. We refer the reader to [29] for an exposition of the theory of differential graded categories.

We are now ready to introduce a deformation problem:

Definition 9.11. Let k be a field and let C be a k-linear ∞-category. For every object C ∈ C, we define
a functor Def(C) : Alg(1)

sm → S as follows. For every small E1-algebra R, we let Def(C)(R) denote the fiber
(over the object C) of the functor

ModR(Sp)⊗Modk(Sp) C = ModR(C)→ Modk(C) ' C .

That is, Def(C)(R) is the∞-groupoid of pairs (C̃, η), where C̃ is an R-module object of C and η : k⊗R C̃ ' C
is an equivalence.

Remark 9.12. Efimov, Lunts, and Orlov have made an extensive study of a variant of the deformation
functor Def(C) of Definition 9.11. We refer the reader to [5], [6], and [7] for details. The global structure of
moduli spaces of objects of (well-behaved) differential graded categories is treated in [30].

For a general object C ∈ C, the functor Def(C) : Alg(1),
sm → S need not be a formal E1 moduli problem in

the sense of Definitino 6.16. However, some mild assumptions on C and C will guarantee that this is indeed
the case:

Proposition 9.13. Let k be a field, let C be a compactly generated k-linear ∞-category, and let C ∈ C be
an object. Suppose that the following condition is satisfied:

(∗) For every compact object X ∈ C, the groups ExtnC(X,C) vanish for n� 0.
Then Def(C) is a formal E1 moduli problem over k.

Remark 9.14. Under the hypotheses of Proposition 9.13, Theorem 6.20 asserts the formal E1-moduli prob-
lem Def(C) is “controlled” by an augmented E1-algebra A = Φ(Def(C)), or equivalently by the augmentation
ideal mA (viewed as a nonunital E1-algebra over k). One can show that mA is equivalent to the endomor-
phism algebra EndC(C); in particular, the tangent complex to Def(C) can be described by the formula
πnTDef(C) ' Ext1−n

C (C,C).

We now discuss a categorification of the previous moduli problem: rather than deforming a single object
C ∈ C while keeping the ∞-category C fixed, we deform the entire ∞-category C.

Definition 9.15. Let k be a field, and let C be a compactly generated k-linear ∞-category. We define
a functor Def(C) : Alg(2)

sm → S as follows: to every small E2-algebra R over k, we let Def(C) denote the
fiber product SCatcg

R ×SCatcgk
{C}. In other words, Def(C)(R) is the ∞-groupoid whose objects are pairs

(C̃, α), where C̃ is a compactly generated R-linear ∞-category and α : C ' C̃k is an equivalence of k-linear
∞-categories.

Remark 9.16. For a more extensive discussion of the deformation theory of differential graded categories,
we refer the reader to [16].

As in the previous discussion, we need some hypotheses to guarantee that Def(C) is a formal moduli
problem in the sense of Definition 6.16. The following criterion will be sufficient for the application that we
describe in §10:
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Proposition 9.17. Let k be a field and let C be a compactly generated k-linear ∞-category. Assume that
there exists a set of compact objects {Cα}α∈A for C with the following properties:

(1) The objects Cα generate C in the following sense: if C ∈ C0 is such that the abelian groups
ExtnC(Cα, C) vanish for all α ∈ A and all integers n, then C ' 0.

(2) For each α ∈ A, the groups ExtnC(Cα, Cα) vanish for n ≥ 2.
(3) For every pair α, β ∈ A, the groups ExtnC(Cα, Cβ) vanish for n� 0.

Then the functor Def(C) : Alg(2)
sm → S of Definition 9.15 is a formal E2 moduli problem over k.

Remark 9.18. According to Proposition 9.13, condition (3) of Proposition 9.17 implies that each of the
objects Cα ∈ C defines a formal E1-module problem Def(Cα). In view of Remark 9.14, conditions (2) is
equivalent to the requirement that the formal moduli problems Def(Cα) are smooth (Definition 8.12). This
can be used to show that each Cα can be lifted to a compact object in any (compactly generated) deformation
of the k-linear ∞-category C.

Remark 9.19. Let C be as in Proposition 9.17. According to Theorem 6.20, the formal E2 moduli problem
Def(C) is determined up to equivalence by the augmented E2-algebra A = Φ Def(C); equivalently, Def(C) is
determined by the nonunital E2-algebra mA. One can show that mA can be identified with the endomorphism
ring EndD(idC, idC), where D is the stable ∞-category of k-linear functors from C to itself. In particular,
we conclude that the tangent complex of Def(C) is described by the formula

πnTDef(C) ' H2−n(C),

where Hm(C) ' ExtmD(idC, idC) denotes the mth Hochschild cohomology group of C.

Variation 9.20. Let k be a field and let C ∈ SCatcg
k be a compactly generated k-linear∞-category. Suppose

that C has the structure of an En-algebra object of SCatcg
k : that is, C is equipped with n coherently associative

tensor product operations {⊗i : C×C → C}1≤i≤n which commute with one another and preserve colimits
separately in each variable. We can the define a deformation problem Def(n)(C) : Alg(n+2),

sm → S, where
for every small En+2-algebra R over k, we let Def(n)(C)(R) denote the fiber of the map Alg(n)(SCatcg

R ) →
Alg(n)(SCatcg

k ) over the object C. That is, Def(n)(C) assigns to R the ∞-groupoid of deformations of C over
R, as an En-monoidal ∞-category. (The assumption that R is an En+2-algebra is needed to guarantee that
SCatcg

R itself inherits an En-monoidal structure).
Suppose moreover that C satisfies the hypotheses of Proposition 9.17, together with the following additional

condition:
(∗) The unit object 1 ∈ C is compact, and the collection of compact objects of C is stable under tensor

products.

Then one can show that Def(n)(C) is a formal En+2-moduli problem over k. It follows from Theorem 6.20
that Def(n)(C) is determined by an augmented En+2-algebra A = Φ(Def(n)(C)), whose augmentation ideal
mA can be described as the fiber of the a map EndZ(C)(1) → EndC(1), where Z(C) denotes a generalized
Drinfeld center of C.

Example 9.21. Let k be a field and C be a compactly generated k-linear ∞-category satisfying the hy-
potheses of Proposition 9.17. Fix a compact object C ∈ C; we can then regard C as an E0-algebra object of
SCatcg

k , whose unit object 1 is given by C. The analysis of Variation 9.20 (in the case n = 0) defines a formal
E2 moduli problem Def(0)(C) : Alg(2),

sm → S, whose tangent complex TDef(0)(C) fits into a fiber sequence

TDef(0)(C)[−2]→ EndFunk(C,C)(idC, idC)→ EndC(C,C).

In particular, we have a long exact sequence

· · · → Ext1−n
C (C,C)→ πnTDef(0)(C) → Ext2−n

Funk(C,C)(idC, idC)→ Ext2−n
C (C,C)→ · · ·

which arises from a fiber sequence of moduli problems Def(C)→ Def(0)(C)→ Def(C); see Remarks 9.14 and
9.19. For a related discussion, we refer the reader to [19] and [20].
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Remark 9.22. For a discussion of the deformation theory of monoidal categories over discrete commutative
k-algebras, we refer the reader to [3]. The deformation theory of braided monoidal categories is discussed in
[34]. See also [8].

10. Deformations of Representation Categories

Our goal in this section is to give a terse sketch how some of the ideas introduced in §9 play out for the
deformation theory of the representation category of a reductive algebraic group G. This is the subject of
ongoing joint work with Dennis Gaitsgory.

Fix a field k and let G be a reductive algebraic group over k. Let C denote the ordinary category whose
objects are bounded chain complexes of finite-dimensional representations of G, and let W be the collection
of all morphisms w : V• → W• in C which induce isomorphisms H∗(V ) → H∗(W ) on homology. We let
Rep(G) denote the ∞-category Ind(C[W−1]) (see Remark 8.7). We will refer to Rep(G) as the ∞-category
of algebraic representations of G.

Remark 10.1. If the field k has characteristic zero, then the representation theory of G is semisimple
and Rep(G) admits a simpler description: it can be identified with the ∞-category obtained from the
category of unbounded chain complexes of possibly infinite-dimensional representations of G by inverting
quasi-isomorphisms.

The ∞-category Rep(G) is k-linear (in the sense of Definition 9.6) and compactly generated. In fact,
the irreducible representations of G constitute a collection of compact generators for Rep(G) which satisfy
the hypotheses of Proposition 9.17. Moreover, the formation of tensor products of representations endows
Rep(G) with a symmetric monoidal structure. Consequently, for any n ≥ 0, we can apply Variation 9.20 to
obtain a formal En+2 moduli problem Def(n)(Rep(G)).

Example 10.2. The vector space π0TDef(2)(Rep(G)) can be identified with the set of isomorphism classes of
braided monoidal deformations of the (ordinary) category of representations of G over the ring k[ε]/(ε2). Such
deformations were classified by Drinfeld: if G is simple and k is of characteristic zero, then π0TDef(2)(Rep(G))

is a one-dimensional vector space over k, generated by a class corresponding to the quantum deformation of
G.

Remark 10.3. The algebraic group G over k admits a canonical split form GZ over the commutative ring
Z. Replacing k by Z in the above discussion, we obtain a Z-linear ∞-category Rep(G)Z In §3, we raised
the question of whether or not it is possible to do better: for example, can one define a form of G over
the sphere spectrum S? As a first step, one can ask if there exists an S-linear ∞-category C such that
ModZ(C) ' Rep(G)Z. Since the sphere spectrum S can be realized as the limit of a tower of “square-zero”
extensions of E∞-rings

· · · → τ≤2S → τ≤1S → τ≤0S ' Z,

questions regarding the existence and uniqueness of C can be attacked using methods of deformation theory.
This highlights the importance of understanding formal moduli problems of the form Def(n)(Rep(G)).

Over a field of characteristic zero, it is not difficult to explicitly describe the deformation problem
Def(n)(Rep(G)) for any n (for example, by computing its tangent complex as a nonunital En+2-algebra,
using methods similar to those described in [8]). However, we will specialize to the case n = 2 and adopt
a different approach, using ideas from geometric representation theory. Let k be the field C of complex
numbers and let G∨ denote the Langlands dual group of G, regarded as a reductive algebraic group over C.
The quotient G∨(C((t)))/G∨(C[[t]]) is called the affine Grassmannian for the group G∨. Following ideas
introduced in [10], one can define an ∞-category Whit(GrG∨) of Whittaker sheaves on GrG∨ . The following
result is essentially proven in [10]:

Theorem 10.4 (Frenkel-Gaitsgory-Vilonen). There is an equivalence of C-linear ∞-categories Rep(G) '
Whit(GrG∨).
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Remark 10.5. Let BG∨ denote the classifying space of the topological group G∨(C). Then the quotient
GrG∨ is homotopy equivalent to the two-fold loop space Ω2BG∨, and therefore has the structure of an E2-
algebra in the ∞-category S. This structure is reflected algebraically in the existence of a fusion product
on the ∞-category of Whittaker sheaves Whit(GrG∨), which endows Whit(GrG∨) with the structure of
an E2-algebra in SCatC. The equivalence Rep(G) ' Whit(GrG∨) can be promoted to an equivalence of
E2-algebras: that is, the braided monoidal structure on Whit(GrG∨) given by the fusion product can be
identified with the braided monoidal structure on Rep(G), given by tensor products of representations.

One can use Theorem 10.4 to produce deformations of the ∞-category Rep(G). To explain this, we need
to embark on a bit of a digression.

Let R be an En-ring for n > 0. Then the 0th space Ω∞R of R is an En-algebra in the ∞-category of
spaces: in particular, the set of connected components π0Ω∞R ' π0R has the structure of a monoid. We
let R× ⊆ Ω∞R denote the union of those connected components corresponding to invertible elements of the
monoid π0R. Then R× is a grouplike En-algebra, so Example 6.3 supplies a pointed (n−1)-connected space
Z such that R× ' ΩnZ. We will denote the space Z by Ω−nR×.

Definition 10.6. Let R be an En-ring for n ≥ 2 and let X be a topological space. An R-gerbe on X is a
map of topological spaces X → Ω−2R×.

Remark 10.7. When R is a discrete commutative ring, an R-gerbe on X can be identified with a map
from X into an Eilenberg-MacLane space K(R×, 2). Homotopy classes of R-gerbes are classified by the
cohomology group H2(X;R×).

If η : X → Ω−2R× is an R-gerbe on a topological space X, then there is an associated theory of η-twisted
sheaves of R-module spectra on X. In the particular case X = GrG∨ and R is a small E2-algebra over C,
one can associate to η an ∞-category Whitη(GrG∨) of η-twisted Whittaker sheaves on GrG∨ . However, this
∞-category will not admit a monoidal structure in general. To guarantee that Whitη(GrG∨) is an E2-algebra
in SCatR, we must assume that the gerbe η is multiplicative: that is, that the map GrG∨ → Ω−2R× is itself
a map of double loop spaces S. This motivates the following:

Definition 10.8. Let R be an E4-ring. A multiplicative R-gerbe on GrG∨ is a map of pointed topological
spaces BG∨ → Ω−4R× (equivalently, we can define a multiplicative R-gerbe to be a map of E2-algebras in S

from GrG∨ to Ω−2R×). The collection of multiplicative R-gerbes on GrG∨ is parametrized by a space which
we will denote by Gerbe(R).

Remark 10.9. If R is a small E4-algebra over a field k, we let Gerbe0(R) denote the fiber of the map
Gerbe(R) → Gerbe(k). The construction R 7→ Gerbe0(R) defines a formal E4-moduli problem over k.
According to Theorem 6.20, the Gerbe0(R) is determined by an augmented E4-algebra, which in this case
can be identified with the cochain algebra C∗(BG∨; k) (with augmentation given by the base point on the
classifying space BG∨).

If R is a small E4-algebra over C and η ∈ Gerbe0(R), then η determines a multiplicative gerbe over
GrG∨ which can be used to construct an ∞-category of twisted Whittaker sheaves Whitη(GrG∨). Using the
geometry of the affine Grassmannian GrG∨ , one can prove the following:

Theorem 10.10. Let G be a reductive algebraic group over the field C of complex numbers. Then the
construction η 7→Whitη(GrG∨) defines an equivalence of formal E4 moduli problems

Gerbe0 → Def(2)(Rep(G)).

In particular, the tangent complex TDef(2)(Rep(G)) is described by the formula

πnTDef(2)(Rep(G)) ' H4−n
red (BG∨; C).

Remark 10.11. When n = 0, the isomorphism π0TDef(2)(Rep(G)) ' H4(BG∨; C) recovers Example 10.2, and
suggests that the representation theory of the quantum deformation of G can be described as a category of
twisted Whittaker sheaves. We refer the reader to [13] for a proof of this assertion.
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Remark 10.12. We expect that an analogue of Theorem 10.10 should continue to hold when the ground
field C is replaced by an arbitrary Z[q, q−1]-algebra and the algebraic group G is replaced by Lusztig’s
quantum group. We will return to this problem elsewhere.
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[30] Toën, B., and M. Vaquié. Moduli of objects in dg-categories. Ann. Sci. cole Norm. Sup. (4) 40 (2007), no. 3, 387–444.
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