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1 8/31/2015: Yoneda Lemma

Let C be a category, and let X be an objet of C. We define the following contravariant functor:

hx : C → Set

T 7→ HomC(T,X)
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It is contravariant because a morphism T1
f−→ T2 induces a morphism HomC(T2, X)→ HomC(T1, X)

given by

(T2 → X) 7→ (T1
f−→ T2 → X)

Our informal goal is as follows: knowing X is the same as knowing hX . Let f : X → Y be a

morphism in C. Define

hf : hX → hY

by

hf (T ) : hX(T )→ hY (T )

(T → X) 7→ (T → X
f−→ Y ).

We claim that hx → hy is a natural transformation of functors. Indeed, the diagram below com-

mutes, for objects S, T in C and a morphism ϕ,

hX(S) hX(T )

hY (S) hY (T )

hf (S)

hX(ϕ)

hf (T )

hY (ϕ)

Definition 1. The Yoneda embedding is the functor:

η : C → Hom(Cop,Sets)

X 7→ hX

Note that Hom(A,−, ), Hom(−, B) are both covariant functors. Note that we haven’t actually

shown this is an embedding, i.e.

Hom− C(X,Y )
bijection−−−−−→ Hom(hX , hy)

f 7→ hf .

A key point here: the Yoneda embedding is not essentially surjective. Before proceeding to the

proof, we present the idea of a representable functor.

Definition 2. A functor h : Cop → Sets is called representable if there exists an X ∈ C and a

natural isomorphism h ∼= hX .
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For example, let C = Sets, and define

h : Setsop → Sets

T 7→ P(T )

where P(T ) is the power set of T , and for f : S → T , we have P(T )→ P(S) given by U 7→ f−1(U).

Is h representable? Yes: let X = {0, 1}. Then h ∼= hX .

For a non-example, consider C = Grp, h : Grpop → Sets given by

G 7→ {H ≤ G}

and given a morphism f : G→ H, we have

h(f) : h(H)→ h(G)

{K ≤ H} 7→ {f−1(K) ≤ G}

Is h representable? If yes, let R represent it. Then Hom(Z/nZ, R) is in natural bijection with

subgroups of Z/nZ. Get contradiction with n = 3 as follows: |Hom(Z/3Z, R)| = |R[3]| = 2. So

R[3] = {0, σ}. So we must either have 2σ = σ or 2σ = 0. In either case, σ = 0 a contradiction.

Let X be an object of C, F : Cop → Sets a functor, and a morphism f : U → X. Then we have

a function α

α : Hom(hX , F )→ F (X)

(τ : hX → F ) 7→ τ(X)(idX)

and a function

β : F (X)→ Hom(hX , F )

ξ 7→ [τξ : hX → F, τξ(U)(f) = F (f)(ξ)].

To be explicit about the source and the target for the function β, β(ξ)(U) = τξ(U) : hX(U)→ FU .

The following lemma will give rise to the Yoneda embedding.

Lemma 1. Yoneda Lemma α and β are bijections of sets, with α◦β = idF (X), β ◦α = idHom(hX ,F ).

Proof. We have, for ξ ∈ F (X),

(α ◦ β)(ξ) = α(τξ) = τξ(X)(idX) = F (idX)(ξ) = ξ
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So α ◦ β = idF (X). Conversely,

(β ◦ α)(τ) = β(τ(X)(idX))

= ττ(X)(idX) : hX → F

[ττ(X)(idX)(U)(U
f−→ X) = F (f)(τ(X)(idX))]

We would like to show that F (f)(τ(X)(idX)) = τ(U)(f). Indeed, we have the following commuta-

tive diagram, for f : U → X,

hX(U) hX(X)

F (U) F (X)

τ(U)

hX(f)

τ(X)

F (f)

Chasing the element idX ∈ hX(X) both ways around the diagram gives

τ(U)(hX(f)(idX)) = F (f)(τ(X)(idX))

=⇒ F (f)(τ(X)(idX)) = τ(U)(f)

Since the choice of U, f was arbitrary, it follows that β ◦ α = idHom(hX ,F ).

To prove the Yoneda embedding, we apply Yoneda’s lemma.

2 9/2/2015: Universal objects

Lemma 2. The Yoneda Embedding Let X,Y ∈ C. Then

HomC(X,Y )→ Hom(hX , hY )

(f : X → Y ) 7→ (hf : hX → hY , hf (C) : hX(C)→ hY (C) given by (g : C → X) 7→ (f◦g : C → X → Y ))

is a bijection.

Proof. Just apply Yoneda’s Lemma with F = hY .

The following is a corollary of Yoneda.

Corollary 1.

X ∼= Y ⇐⇒ hX ∼= hY .
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Let us consider some examples from scheme theory. Let Γ: Sch→ Set be given by

Γ(T ) =: Γ(T,OT )

where OT is the structure sheaf.

Is Γ representable? Yes. Let X = Spec(Z[t]). Then any morphism of schemes T → Spec(Z[t])

is determined by the induced map on the global ring of functions:

Z[t]→ OT (T )

and

Hom(Z[t]→ OT ) ∼= OT (T ) = Γ(T,OT )

in the category of rings. Thus,

HomSch(T,X)
bij−→ Γ(T,OT ).

Another example from scheme theory is the functor

Γ× : Sch→ Set

given by

T 7→ Γ(T,OT )×

This Γ× is again representable, for similar reasons, by X = Spec(Z/(xy − 1)).

Recall that an elliptic curve is a proper smooth morphism of schemes π : E → S whose geometric

fibers are connected curves of genus 1 together with a section σ : S → E (reminder: geometric fiber

at a pony p ∈ S is E ×S Spec(κ(p)), where κ(p) is the function field at p).

We now define a functor

M : Sch→ Set

S 7→ {Elliptic curves E/S}/ ∼

Note that a morphism S1 → S2 induces a morphism M(S2) →M(S1), by pullback: E/S2 →

(E ×S2 S1)/S1 Is M representable by a scheme? The answer will turn out to be no.

Definition 3. Let F : Cop → Set be a functor. A universal object for F is a pair (X, ξ), where X is

an object of C, ξ ∈ F (X) with the following universal property: For each pair (T, σ) where T is an

object of C and σ ∈ F (T ), there is a unique morphism f : T → X such that (F (f))(ξ)→ σ ∈ F (T )
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Proposition 1. F : Cop → Set is representable iff there is a universal object for F .

Proof. (⇒) Let X represent F . Then there is a natural isomorphism of functors Φ: hX → F . We

claim that (X,Φ(x)(idX)) is a universal object. To show this, let (T, σ) be any pair, with σ ∈ F (T ).

Then

Φ(T ) : hX(T )→ F (T )

is an isomorphism. Let f = (Φ(T ))−1(σ). Then f : T → X, and we have a commuting diagram

from naturality

hX(X) hX(T )

F (X) F (T ).

hX(f)

Φ(x) Φ(T )

F (f)

Chasing the element idX ∈ hX(X) around this diagram both ways gives

Φ(T )(f) = F (f)(Φ(X)(idX)).

Note that

Φ(T )(f) = Φ(T )((Φ(T ))−1(σ)) = σ

so (X,Φ(X)(idX)) is indeed a universal pair, and f was unique because Φ(T ) is a bijection.

(⇐) Let (X, ξ) be a universal object for F . We claim that X represents F . To see this, define

Φ: hX → F

by

Φ(T )(T
f−→ X) = F (f)(ξ) ∈ F (T ).

For each object T of C, Φ(T ) is a bijection since (X, ξ) is universal. It is easy to check that Φ is a

natural transformation of functors, since F is a functor.

3 9/4/2015: Moduli spaces and representability, Elliptic Curves

To recap the course so far - let C be a category. The Yoneda embedding is the functor

C → Hom(Cop, Set)

X 7→ hX
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Let F : Cop → Set is representable if and only if there exists a universal pair (X, ξ), with X an

object of C, ξF (X). In fact, ξ = F (X)(idX).

We define the functor

M : Sch→ Set

S 7→ {Elliptic curves E/S}/ ∼

Definition 4. Let F : Cop → Set. Then a fine moduli space for F is an X that represents F .

Note this automatically comes with a universal pair, and is unique up to unique isomorphism.

If M is representable by a scheme M , then there exists a universal object Euniv/M , which is

an elliptic curve. Every elliptic curve E/s arises from Euniv, i.e. given any E/S, there is a section

S →M and the fibered product:

E = E ×M S Euniv

S M

.

Now, we sketch that M is not representable by a scheme. Since not everyone in the audience

is comfortable with schemes, this argument has been simplified, so is not strictly correct. First, fix

S a scheme, E a fixed elliptic curve. Suppose that in the fibered square below, the bottom map is

the constant map. The bottom map is exactly what determines the elliptic curve E in the fiber.

So the ”fibered product is trivial” (sketchy). Now, view S1 as [0, 1]/ ∼. Let E be an elliptic curve

over C with nontrivial automorphism ϕ : E → E. Define {Eλ}λ∈[0,1] by Eλ = E, then glue the

endpoints using ϕ. Then {Eλ} → [0, 1] defines

{Eλ} Euniv

[0, 1]/ ∼ M

.

But then the bottom map is constant again, and so upper left scheme is trivially fibered, which is

a contradiction.

So, how can we fix this problem for the nonexistence of fine moduli? One approach is to use

stacks, which enlarge the category of schemes so that M is representable. Another way is to use

extra data:

MΓ(n) : Sch→ Set
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S → {Elliptic curves E/S, ϕ : (Z/nZ)2 → E[N ]}

where a morphism (E,ϕ)→ (E′, ϕ′) is the data of a morphism E′ → E such that

(Z/N/Z)2 E′[N ]

E[N ]

ϕ′

ϕ

It is a theorem of Mumford or Serre that for N ≥ 3, MΓ(N) is representable.

There is one more way to get moduli space. This is the moduli space we study in this course:

the coarse moduli space. M is a coarse module space of F if there exists a natural transformation

Φ: F → hM such that F (Spec(C)) → hM (Spec(C)) is a bijection., and such that for any other

Φ′ : F → hM ′ , the diagram below is universal

F hM ′

hM

Φ′

Φ
∃!

Let k be an arbitrary field. An elliptic curve is a nonsingular projective algebraic curve of

genus 1 that is geometrically connected with a point ε : Spec(k)→ E.

Theorem 1. Every elliptic curve in char(k) 6= 2, 3 can be put in the form below:

Theorem 2. Let E/C be an elliptic curve. Then

E
∼−→ C/Λ

where Λ is a full lattice in C, i.e. Λ = 〈ω1, ω2〉, i.e. Λ is a rank 2 Z-module with Λ⊗Z R = C.

In Mumford, it is sketched that a curve E is realized as the compact complex Lie group (C/Λ).

Briefly, C = TE . Since E is a compact complex Lie group, look at the exponential map exp: C→ E

surjects, and ker exp = Λ.

For the other direction, C/Λ corresponds to E as follows: Define

℘Λ(z) =
1

z2
+

∑
ω∈Λ∗

(
1

(z − ω)2
− 1

ω2
)

where Λ∗ = Λ\{0}. One can show that ℘(z) converges uniformly on compact sets. Some calculus

gives

℘′Λ(z) = −2
∑
ω∈Λ∗

1

(z − ω)3
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Then the lattice Λ is the set of periods for ℘′Λ(z), so that for all ω ∈ Λ,

℘′Λ(z + ω) = ℘′Λ(z).

A more nontrivial result is that

℘Λ(z + ω) = ℘Λ(z)

, and all of this is to say that ℘Λ(z) and ℘′Λ(z) are elliptic. As such, they define meromorphic

functions on the torus C/Λ. As it turns out, if we let K be the set of meromorphic functions on

C/Λ, then

K = C(℘Λ(z), ℘′Λ(z)).

One can check using some basic elliptic function theory that if we let y = ℘′Λ(z), x = ℘Λ(z),

then

y2 = 4x3 − g2(Λ)x− g3(Λ)

where g2, g3 come from normalized Eisenstein series. This in fact gives a complex analytic diffeo-

morphism of complex manifolds

C/Λ→ E = {(x, y) ∈ C2 : y2 = 4x3 − g2(Λ)x− g3(Λ)}

z 7→ (℘Λ(z), ℘′Λ(z)).

4 9/9/2015: Isogenies

Recap: let M be the moduli of elliptic curves. It is not represented by a scheme, but is a stack.

We study instead just the C points of the moduli, and this is represented.

Also, an elliptic curve /C corresponds to C/Λ, Λ a lattice.

Proposition 2. Let ϕ : C/Λ → C/Λ′ be a holomorphic map. Then there exist m, b ∈ C with

mΛ′ ⊆ Λ′ and

ϕ(z + Λ) = mz + b+ Λ′.

ϕ is invertible if and only if mΛ = Λ′.
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Proof. ϕ lifts to

C C

C/Λ C/Λ′.

ϕ̃

ϕ

because C is a universal cover. For any λ ∈ Λ, consider fλ : C→ C defined by

fλ(z) = ϕ̃(z + Λ)− ϕ̃(z).

Push z around the diagram

C C

C/Λ C/Λ′.

fλ

fλ

to get fλ(z) ∈ Λ′. Therefore, fλ is constant. Thus,

ϕ̃′(z + λ) = ϕ̃(z)

meaning ϕ̃′(z) is Λ-periodic. Thus, ϕ̃′(z) is holomorphic and bounded, and thus constant, so

ϕ̃ = mz + b.

Note that mΛ ⊂ Λ′ since ϕ̃ reduces to C/Λ→ C/Λ′.

Conversely, if mΛ ( Λ′, there exists z′ ∈ Λ′ with z′

m /∈ Λ. Then

ϕ(
z

m
+ Λ) = b+ Λ′ = ϕ(Λ)

so ϕ is not injective.

If mΛ = Λ′, then Λ = m−1Λ′ induces

C/Λ′ → C/Λ

z 7→ z − b
m

the inverse of ϕ.

Corollary 2. ϕ : C/Λ→ C/Λ′, ϕ(z + Λ) = mz + b+ Λ′. Then the following are equivalent:

(1) ϕ is a group homomorphism.

(2) b ∈ Λ.
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(3) ϕ(0) = 0

Proof. (1) ⇐⇒ (2): ϕ(z + w + Λ) = m(z + w) + b+ Λ. Then

ϕ(z) + ϕ(w) = mz + bmw + b+ Λ′

and these are equal if and only if b+ Λ′ = b+ b+ Λ′ ⇐⇒ b ∈ Λ′.

(2) ⇐⇒ (3) is clear

Corollary 3. A nonzero homomorphism ϕ : C/Λ → C/Λ′ is surjective with finite kernel, often

called an isogeny.

Proof. Write ϕ(z + Λ) = mz + Λ′, mΛ ⊂ Λ′. Now

ϕ 6≡ 0 =⇒ kerϕ is discrete.

Since C/Λ′ is compact, kerϕ is finite. C/Λ is connected and compact, so ϕ(C/Λ) is connected and

compact. Then the Riemann mapping theorem from complex analysis shows that ϕ(C/Λ) is open,

and thus ϕ is surjective.

For example, [n] : C/Λ→ C/Λ given by

z 7→ nz + Λ

has

C/Λ[n] := ker([n]) = {z + Λ nz ∈ Λ}.

As abstract groups,

(1/n)Λ/Λ ∼= (1/n)Z2/Z2 ∼= (Z/nZ)2

As another example, let C ≤ (C/Λ)[n], C ∼= Z/nZ. Then identify C with Λ ⊂ C ⊂ C. C is a

lattice. Then

π : C/Λ→ C/C

z + Λ 7→ z + C

and we see kerπ = C/Λ. π is called a cyclic quotient.

Proposition 3. Every isogeny is the composition of multiplication by N followed by a cyclic quo-

tient.
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Proof. Let ϕ(z + Λ) = nz + Λ′, mΛ ⊂ Λ′. Set K = kerϕ = m−1Λ′/Λ. Let N = |K|. Then

K ⊂ ker([N ]) ∼= (Z/NZ)2. By the fundamental theorem for finitely generated abelian groups,

K ∼= (Z/nZ)× (Z/nn′/Z). Viewing K as Λ ⊂ K ⊂ C, note that Λ ⊂ nK and mK = Λ′. We now

claim that ϕ is the composition

C/Λ
[n]−→ C/Λ

π−→ C/nK
'−→ C/Λ′

where the last map is

z + nK 7→ (m/n)z + (m/n)nK.

The last map is injective: (m/n)z ∈ mK = Λ′ ⇐⇒ z/n ∈ K ⇐⇒ z ∈ nK.

Since [n]K = nK, we have nK/Λ ∼= Z/n′Z. Thus, π is a cyclic quotient. Tracing the maps

through, we get z 7→ (m/n)(nz) + (m/n)nK = mz +mK = mz + Λ′.

Proposition 4. Isognies define an equivalence relation. That is, if ϕ : C/Λ→ C/Λ′ is an isogeny,

then there exists a “dual isogeny” ϕ̂ : C/Λ′ → C/Λ such that

ϕ ◦ ϕ̂ = ϕ̂ ◦ φ = [n],

[n] = degϕ = | kerϕ|.

Proof. Let ϕ(z + Λ) = mz + Λ′, mΛ ⊂ Λ′. Write

Λ′/mΛ ∼= (Z/n1Z)× (Z/n2Z).

Let 〈ω1, ω2〉 be a basis of Λ′, so

〈ω1, ω2〉 ∈ (Z/n1Z)× (Z/n2Z).

Choose

a b

c d

 ∈ SL2(Z) with

aω1 + bω2 = (1, 0)

cω1 + dω2 = (0, 1).

Then n1ω1 ∈ mΛ, n2ω2 ∈ mΛ. So

〈n1ω1, n2ω2〉 ⊂ mΛ ⊂ Λ′.

Since #(Λ′/〈n1ω1, n2ω2〉) = #(Λ′/mΛ) = n2n2, we get mΛ =< n1ω1, n2ω2 > So n1n2Λ′ ⊂ mΛ,

(n1n2)/mΛ′ ⊂ Λ. Define

ϕ̂ : C/Λ′ → C/Λ.

z + Λ′ 7→ (n1n2)/m · z + Λ
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5 9/11/2015: Constructing a modular curve

In this section, we write Γ = SL2(Z) = Γ(1).

Let

Y (1) = {elliptic curves over C}/iso.

Let Λ = 〈ω1, ω2〉 ⊂ C. There is an isomorphism

C/Λ ' C/〈ω1

ω2
, 1〉.

If Im(ω1
ω2

) < 0, replace it with −ω1
ω2

. So we may now assume that τ = ω1
ω2

, that Im(τ) > 0 and we,

up to isomorphism,

Λ = 〈τ, 1〉.

If m ∈ C×, mΛ = 〈mτ,m〉, we normalize and get up to isomorphism that 〈τ, 1〉. So the action

by C× is trivial.

For

a b

c d

 ∈ SL2(Z),

a b

c d

Λ = Λ and

a b

c d

τ
1

 = 〈aτ + b, cτ + d〉.

Normalizing, we see this lattice is

〈aτ + b

cτ + d
, 1〉.

An easy exercise shows that Im(az+bcz+d) = Im(z)
|cz+d|2 for

a b

c d

 ∈ SL2(Z).

Proposition 5. Y (1)
bin−−→ SL2(Z)\H, where H = {τ ∈ C Imτ > 0}.

Proof. Let Λ = 〈ω1, ω2〉,Λ′ = 〈ω′1, ω′2〉 with

ω1

ω2
,
ω′1
ω′2
∈ H.

Then we claim

Λ = Λ′ ⇐⇒

1 n

0 1

ω′1
ω′2

 =

a b

c d

ω1

ω2


One direction is obvious (⇐). To prove ⇒,Write

ω′2 = aω1 + bω2
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ω′2 = cω1 + dω2

ω1 = a′ω′1 + b′ω′2

ω′2 = c′ω′1 + d′ω′2

with a, b, c, d, a′, b′, c′, d′ ∈ Z. Thena′ b′

c′ d′

a b

c d

 ·
ω1

ω2

 =

ω1

ω2


which means that a′ b′

c′ d′

a b

c d

 = id

and so

det

a′ b′

c′ d′

 = det

a b

c d

 = ±1.

It must be 1 since

ω′1/ω
′
2 =

aω1/ω2) + b

c(ω1/ω2) + d

=

a b

c d

ω1

ω2

 .

By the easy exercise mentioned above, the determinant is 1.

Insert picture for fundamental domain of Γ(1).

Proposition 6. SL2(Z) is generated by

1 1

0 1

 and

0 −1

1 0

 .

Proof. Set

Γ = 〈

1 1

0 1

 ,

0 −1

1 0

〉.
Note that 1 1

0 1

n

=

1 n

0 1

 ∈ Γ

for all n ∈ Z.

Let

a b

c d

 ∈ SL2(Z). Note that

a b

c d

1 n

0 1

 =

a b

c nc+ d


14



so if c 6= 0, then we can find n so that we may assume |d| ≤ |c|/2. Nowa b

c d

0 −1

1 0

 =

b −a
d −c

 .

By applying

1 n

0 1

 and

0 −1

1 0

, we may assume that |c| ≤ d/2. Do this repeatedly until

c = 0. So we may assume our matrix is of the forma b

0 d



with a = d = ±1, b arbitrary, with

0 −1

1 0

2

= id. So we can assume that a = d = 1, and1 b

0 1

 ∈ Γ.

6 9/13/2015: Congruence subgroups and moduli

A congruence subgroup Γ ⊆ SL2(Z) is a subgroup of SL2(Z) defined by congruence conditions.

That is, Γ is the pre image of some subgroup of SL2(Z/NZ) under the mod N reduction SL2(Z)→

SL2(Z/NZ). We define Γ(N) to be the kernel of SL2(Z)→ SL2(Z/NZ).

Definition 5. The smallest N such that Γ(N) ⊆ Γ is called the level of Γ.

Other key examples are

Γ0(N) = {

a b

c d

 c ≡ 0 mod N}

Γ1(N) = {

a b

c d

 c ≡ 0, a ≡ d ≡ 1 mod N}.

We can form

Γ(N)\H→ Γ1(N)\H→ Γ0(N)\H

Note that one can form a directed system Γ(pm+1)\H → Γ(pm)\H to get a limit lim←−m Γ(pn)\H.

This is sort of realized as one of Scholze’s perfectoid spaces.

We have surjections

Γ1(N)→ Z/NZ
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a b

c d

 7→ b

ker = Γ(N)

and

Γ0(N)→ (Z/NZ)×a b

c d

 7→ d

ker = Γ1(N)

Therefore,

Γ1(N)/Γ(N) ∼= Z/NZ

Γ0(N)/Γ1(N) ∼= (Z/NZ)×

We now define the moduli

Definition 6. Define the set

S0(N) = {(E,C) E is an elliptic curve/C, C ⊂ E[N ]is a cyclic subgroup of order N}/ ∼ .

A morphism (E,C) → (E′, C ′) is the data of a homomorphism ϕ : E → E′ of elliptic curves such

that ϕ : E → E′ and such that ϕ(C) ⊆ C ′.

S1(N) = {(E,Q) E is an elliptic curve/C, Q ∈ E[N ] is of order N}/ ∼

and morphisms are given by

(E,Q)→ (E′, Q′)

as the data of a homomorphism of elliptic curves E → E′ and ϕ(Q) = Q′.

We need to discuss the Weil pairing. Let E = C/Λ,Λ = 〈ω1, ω2〉, ω1/ω2 ∈ H. Then

E[N ] = {ω1

N
+ Λ} × {ω2

N
+ Λ}.

Define

eN : E[N ]× E[N ]→ µN = N -th roots of unity

as follows. Choose a matrix M ∈M2(Z) such thatP
Q

 = M

ω1/N

ω2/N

 .
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Then eN (P,Q) = e
2πi detM

N .

We claim that eN is independent of the choice of ω1, ω2, as long as ω1
ω2
∈ H. Let ω′1, ω

′
2 be some

other basis for Λ with ω′1/ω
′
2 ∈ H. Then

ω1 = aω′1 + bω′2

ω2 = cω′1 + dω′2

with

a b

c d

 ∈ SL2(Z). Then

P

Q

 = M

aω′1 + bω′2

cω′1 + dω′2



= M

a b

c d

ω′1/N
ω′2/N


which gives

detM = det(M

a b

c d

).

Note that eN (P,Q)N = 1, and that eN (P,Q) is a primitive N -th root of unity if and only if

〈P,Q〉 = E[N ].

Definition 7.

S(N) = {(E,P,Q) E elliptic curve/C, P,Q ∈ E[N ] such thateN (P,Q) = e2πi/N}/ ∼

with morphisms

(E,P,Q)→ (E,P ′, Q′)

given by the data as expected, i.e. ϕ : E → E′, ϕ(P ) = P ′, ϕ(Q) = Q′.

Here is an alternate description of S(N) which works more generally. Choosing an N -th prim-

itive root of unity is the same as giving

Z/NZ→ µN

1 7→ ζN .

Then

S(N) = {(E,α) E elliptic curve /C, α : (Z/NZ)2 '−→ E[N ]}
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where

(Z/NZ)2 × (Z/NZ)2 Z/NZ

E[N ]× E[N ] µN

α×α '

The following theorem is the key to constructing our moduli, will be one of the centerpieces of

the course:

Theorem 3. Let N ∈ Z>0.

(a)

S0(N) = {(C/Λτ , 〈1/N + Λτ 〉) τ ∈ H}/ ∼

where (C/Λτ , 〈1/N + Λτ 〉) ∼ (C/Λτ ′ , 〈1/N + Λτ ′〉) if and only if Γ0(N)τ = Γ0(N)τ ′.

(b)

S1(N) = {(C/Λτ , 1/N + Λτ ) τ ∈ H}/ ∼

where (C/Λτ , 1/N + Λτ ) ∼ (C/Λτ ′ , 1/N + Λτ ′) if and only if Γ1(N)τ = Γ1(N)τ ′.

(c)

S(N) = {(C/Λτ , 1/N + Λτ , τ/N + Λτ ) τ ∈ H}/ ∼

where (C/Λτ , 1/N + Λτ , τ/N + Λτ ) ∼ (C/Λτ ′ , 1/N + Λτ , τ/N + Λτ ) if and only if Γ(N)τ =

Γ(N)τ ′.

We will see bijections

S0(N)→ Y0(N) = Γ0(N)\H

S1(N)→ Y1(N) = Γ1(N)\H

S(N)→ Y (N) = Γ(N)\H

and furthermore, each of Y0(N), Y1(N), Y (N) will be given the structure of a complex manifold.

Eventually, we will compactify these manifolds.

7 9/16/2015: Modular curves as parametrizing spaces

We wish to prove Theorem 3. We prove only (c), as it is similar to (a), and (b) is in the book.
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Proof. (Theorem 3 (c)): We want to show

{(C/Λτ , 1/N + Λτ , τ/N + Λτ ) τ ∈ H}/ ∼ → S(N)

is well defined. Let τ ′ ∈ Γ(N) · τ , say τ ′ =

a b

c d

 τ . We need to construct an isomorphism

C/Λτ ′ → C/Λτ

sending

τ ′/N + Λτ ′ → τ/N + Λτ

1/N → Λτ ′ → 1/N + Λτ

Set m = cτ + d. We claim:

[m] : C/Λτ ′ → C/〈aτ + b, cτ + d〉 = C/Λτ

is an isomorphism. Note:

mτ ′ = (cτ + d)

a b

c d

 τ = aτ + b

m · 1 = cτ + d

Now

[m](τ ′/N + Λτ ′) =
aτ + b

N
+ Λτ

[m](1/N + Λτ ′) =
cτ + d

N
+ Λτ .

Since a ≡ d ≡ 1 mod N and b ≡ c ≡ 0 mod N ,

aτ + b

N
+ Λτ = τ/N + Λτ

cτ + d

N
+ Λτ = 1/N + Λτ

which proves well-definedness.

Now to prove injectivity, suppose (C/Λτ , τ/N+Λτ , 1/N+Λτ )
∼−→ (C/Λτ ′ , τ

′/N+Λτ ′ , 1/N+Λτ ′).

We’ll show that τ =

a b

c d

 τ ′. for

a b

c d

 ∈ Γ(N). There exists m ∈ C× inducing [m] : C/Λτ →

C/Λτ ′ , sending

m(τ/N + Λτ ) = τ ′/N + Λτ ′

m(1/N + Λτ ) = 1/N + Λτ ′
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where mΛτ = Λτ ′ .

Now mτ
m1

 =

a b

c d

τ ′
1


for

a b

c d

 ∈ SL2(Z). Since

mτ/N =
aτ ′ + b

N
=
τ ′

N
mod Λτ ′

, a ≡ 1 mod N, b ≡ 0 mod N . Similarly,

m · 1/N =
cτ ′ + d

N
=

1

N
mod Λτ ′ ,

so c ≡ 0 mod N, d ≡ 1 mod N . Thus,

a b

c d

 ∈ Γ(N).

From mτ = aτ ′ + b, m · 1 = cτ ′ + d, we got

τ = mτ/m =
aτ ′ + b

cτ ′ + d
=

a b

c d

 τ ′.

Finally, we prove surjectivity. Given (E,P,Q) with eN (P,Q) = e2πi/N , set E ∼= C/Λτ ′ . ThenP
Q

 = M

τ ′/N
1/n


for some M ∈M2(Z/NZ). Since eN (P,Q) = e2πi/N , we must have

e2πidetM/N = e2πi/N

=⇒ detM = 1.

Thus, M ∈ SL2(Z/N/Z). Now SL2(Z) → SL2(Z/NZ) is surjective. So choose a lift for M to

SL2(Z), say M =

a b

c d

. Set τ = Mτ ′, m = cτ ′ + d. Note that

mτ = mMτ ′ = aτ ′ + b.

Thus,

[m] : C/Λτ
∼−→ C/〈aτ ′ + b, cτ ′ + d〉 = C/Λτ ′
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sends

τ/N + Λτ 7→
aτ ′ + b

N
+ Λτ ′ = P

1/N + Λτ 7→
cτ ′ + d

N
+ Λτ ′ = Q.

Let us now give our modular curves structure as Riemann surfaces. Let Γ ⊂ SL2(Z) be a

congruence subgroup.

Y (Γ) = {Γτ τ ∈ H} = Γ\H}.

Our goals are to give Y (Γ) a complex structure as a manifold and to compactify to make it a

Riemann surface.

First, we need to give Y (Γ) a topology, which we choose to be the quotient topology:

π : H→ Γ\H.

We declare that V ⊆ Y (Γ) is open ⇐⇒ π1(V ) is open in H.

π is an open mapping. To see this, let U ⊆ H be open. Then π−1(π(U)) = ∪γ∈ΓγU . Since

U ⊆ H is open, we have γU ⊆ H open. Thus, π(π−1(π(U))) = π(U) is open.

Another property: π(U1)∩π(U2) = ∅ ⇐⇒ Γ ·U1 ∩U2 = ∅. The proof is easy. π(U1)∩π(U2) 6=

∅ ⇐⇒ there exists α ∈ U1, β ∈ U2, γ ∈ Γ such that γα = β ⇐⇒ (ΓU1) ∩ U2 6= ∅.

8 9/18/2015: Topology of the modular curve

Today we will show that Γ\H is Hausdorff.

Definition 8. A continuous action of a group G on a topological space X is properly discontinuous

if, for each x, y ∈ X, there exists neighborhoods Ux, Uy such that there are only finitely many g ∈ G

with g(Ux) ∩ Uy 6= ∅.

Proposition 7. Let τ1, τ2 ∈ H. Then there exists neighborhoods Ui of τi such that for all γ ∈ Γ,

if γ(U1) ∩ U2 6= ∅, the γ(τ1) = τ2 (note τ1 = τ2 is allowed).

Proof. Let U ′i be any open neighborhood of τi with compact closure. Our goal is to show: for al

but finitely many γ ∈ SL2(Z), γ(U ′1) ∩ U ′2 = ∅. An exercise from the book is: For all but finitely

many (c, d) ∈ Z2 with gcd(c, d) = 1, we have

sup{Im(γ(τ))| γ ∈ SL2(Z), γ

∗ ∗
c d

 , τ ∈ U ′1} < inf{Im(τ) | τ ∈ U ′2}.
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Let us prove this inequality. Set

y1 = inf{Im(τ) τ ∈ U ′1}

Y1 = sup{Im(τ) τ ∈ U ′1}

y2 = inf{Im(τ) τ ∈ U ′2}.

Using

Im(γ(τ)) =
Imτ

|cτ + d|2

for τ ∈ U ′1, we have

Imτ

|cτ + d|2
≤ Imτ

(cReτ + d)2 + c2(Imτ)2
≤ Y1

(cReτ + d)2

and
Imτ

|cτ + d|2
≤ Imτ

(cReτ + d)2 + c2(Imτ)2
≤ 1

c2y1
.

Thus,

Im(γτ) ≤ min(
Y1

(cReτ + d)2
,

1

c2y1
).

So Im(γτ) < inf{Imτ τ ∈ U ′2} = y2 for all but finitely many values of c (remember that y2 is fixed

here). For each such value of c in this exceptional set, there are only finitely many d that violate

the desired inequality, since

Im(γτ) ≤ Y1

cReτ + d2
.

This completes the exercise.

So we now know that for all but finitely many (c, d) ∈ Z2 with gcd(c, d) = 1, and all

∗ ∗
c d

 ∈
SL2(Z),

γ(U1) ∩ U2 = ∅.

But for any (c, d) with gcd(c, d) = 1, we can write any

a b

c d

 ∈ SL2(Z) in the form

a+ kc b+ kd

c d

 =

1 k

0 1

a b

c d

 ,

a b

c d

 ∈ SL2(Z).
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Thus, γ(U ′1) ∩ U ′2 = (

a b

c d

U ′1 + k) ∩ U ′2. Sicne there are finitely many (a, b) ∈ Z2 needed to

write evey matrix

∗ ∗
c d

 ∈ SL2(Z) as

∗ ∗
c d

 =

1 k

0 1

a b

c d

 , k ∈ Z.

There are only finitely many γ ∈ SL2(Z) such that

γ(U ′1) ∩ U ′2 6= ∅.

Thus,

F := {γ ∈ SL2(Z) γ(U ′1) ∩ U ′2 6= ∅ and γ(τ1) 6= τ2}

is finite. For each γ ∈ F , let U1,r and U2,r be disjoint open neighborhoods of γ(τ1), τ2 respectively.

Set

U1 = U ′1 ∩ (
⋂
γ∈F

γ−1(U1,γ))

U1 = U ′2 ∩ (
⋂
γ∈F

U2,γ).

Recall we want that if γU1 ∩ U2 6= ∅, then γτ1 = τ2. Suppose γU1 ∩ U2 6= ∅. We need to

show that γ 6= F . Suppose γ ∈ F . Then γ(U1) ⊆ U1,γ and U2 ⊆ U2,γ . Thus, γ(U1) ∩ U2 = ∅.

Contradicton. Therefore γ 6= F .

Corollary 4. Y (Γ) is Hausdorff.

Proof. Take τ1, τ2 ∈ H such that π(τ1) 6= π(τ2) (distinct points in the quotient). Take U1, U2 as in

the proposition, so

γ(U1) ∩ U2 6= ∅ =⇒ γ(τ1) = τ2.

Since π(τ1) 6= π(τ2), γτ1 6= τ2 for all γ ∈ Γ. Therefore, γ(U1) ∩ U2 = ∅. Thus, π(U1) ∩ π(U2) =

∅.

9 Fundamental domain of Y (Γ)

Let G be a group acting on a set X. Then the isotropy subgroup of x ∈ X is Gx = {g ∈ G | gx ∈

x}. Gx is also known as the stabilizer.
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We wish to endow Γ\H with a complex structure. First, let’s prove that

D = {τ ∈ H | |Reτ | ≤ 1

2
, |τ | = 1}

Definition 9. Let Γ ⊂ SL2(Z) be a congruence subgroup. Then τ ∈ H is called an elliptic point

if {±id} ( Γτ .

Our goal today is to prove the following proposition.

Proposition 8. Γτ ⊂ Γ is cyclic.

First we’ll prove the result for Γ = SL2(Z). We need a series of lemmata and propositions

Lemma 3. The map D → Γ\H is surjective.

Proof. Given τ ∈ H, we show (SL2(Z) · τ) ∩D 6= ∅. By applying

1 ±1

0 1

 to τ , we may assume

|Reτ | ≤ 1
2 . If τ /∈ D, then |τ | < 1. So

Im(
−1

τ
) = Im(

−τ
|τ |2

) = Im(
τ

|τ |2
) > Im(τ).

Note that

0 −1

1 0

 τ = −1
τ . So we can repeatedly replace τ with −1/τ , making the imaginary

part larger. Repeating these two steps, we claim the process terminates after finitely many steps.

To see this, it suffices to show that there are finitely many elements of SL2(Z) · τ with larger

imaginary part. For this, Im(γτ) = Imτ
|cτ+d|2 , and there are finitely many (c, d) ∈ Z2 such that

|cτ + d| < 1

as Λτ = 〈τ, 1〉 is a lattice.

We need one more lemma.

Lemma 4. Let τ1 6= τ2 in D. such that τ2 = γτ1 for some γ ∈ SL2(Z). Then either

(1) Re(τ1) = ±1
2 , τ2 = τ1 = 1, or

(2) |τ1| = 1 and τ2 = −1
τ1
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Proof. Without loss of generality, |τ2| ≥ |τ1|. Set γ =

a b

c d

. So

Im(τ2) =
Imτ1

|cτ + d|2
≥ Im(τ1)

=⇒ |cτ1 + d| ≤ 1.

Since τ ∈ D, Im(τ1) ≥
√

3
2 . Thus,

|c|
√

3

2
≤ |c|Imτ1 = |Im(cτ1 + d)| ≤ |cτ1 + d| ≤ 1

=⇒ |c| ∈ {0, 1}

First case: c = 0: Here, γ = ±

1 b

0 1

. Thus, Reτ − 2 = Re(τ1) + b. So |b| = 1, giving 1.

Second case: c = ±1: Since |cτ1 + d| ≤ 1, we have |τ1 ± d| ≤ 1. Thus,

(Reτ1 + d)2 ≤ 1− Im(τ1)2 ≤ 1− 3

4
=

1

4

giving |d| ≤ 1.

Subcase 1: c = ±1, |d| = 1: We have |Reτ1| ≤ 1
2 , and |Reτ1 ± d| ≤ 1

2 , so

Reτ1 = ±1

2
, d = ∓1.

Thus, Imτ1 =
√

3
2 , giving both (1) and (2).

Subcase 2: d = 0: Since |cτ1 + d| ≤ 1, |τ1| ≤ 1 =⇒ |τ1| = 1. Thus,

τ2 =

 a ∓1

±1 0

 τ1 = ±a− (τ1)

= (±a− Re(τ1)) + iImτ1.

So |a| ≤ 1, and if |a| = 1, then Reτ2 = ±Reτ1 = ±1
2 , giving (1). If a = 0, this is (2).

Proposition 9. If τ is an elliptic point γτ = τ with γ 6= ±id, then |γ| = 3, 4 or 6.

Proof. As τ = aτ+b
cτ+d , we have cτ2 + dτ = aτ + b. Therefore,

iIm(τ) =
±
√

(d− a)2 + 4bc

2c
.
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We claim that |a+ d| < 2. Indeed, taking τ ∈ H, we have

(d− a)2 + 4bc < 0

=⇒ (d− a)2 + 4(ad− 1) < 0

Thus, d2 + 2ad+ a2 − 4 < 0, proving our claim.

Note that a b

c d

2

=

a(a+ d)− 1 b(a+ d)

c(a+ d) d(a+ d)− 1

 = (a+ d)

a b

c d

− id

Thus,

γ20− (a+ d)γ) + id = 0

Algebra shows that, given the possibilities a+ d ∈ {−1, 0, 1}, then the possibilities are γ4 = 1,

γ6 = 1, γ3 = 1. Thus |γ| = 2, 3, 4, 6. But if |γ| = −id. Indeed, in this case, b(a+ d) = c(a+ d) = 0,

and a+ d 6= 0. Thus b+ c = 0. Also, a(a+ d) = d(a+ d) = 2, and ad = 1. So a2 = d2 = 1.

10 9/23/2015: Elliptic points

To summarize last time, for τ ∈ H, we have the subgroup Γτ = {γ ∈ τ | γτ = τ}. τ is called

elliptic with respect to Γ if Γτ is nontrivial, i.e. if {±id} ( {±id}Γτ . We showed last time that if

γτ = γ, then γ has order 1, 2, 3, 4, or 6.

Proposition 10. Let γ ∈ SL2(Z).

(a) If |γ| = 3, γ is conjugate in SL2(Z) to

 0 1

−1 1

±.

(b) If |γ| = 4, γ is conjugate in SL2(Z) to

0 −1

1 0

±.

(d) If |γ| = 6, γ is conjugate in SL2(Z) to

0 −1

1 1

±.
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Proof. (c) Let Z2 be the lattice of integral column vectors, a Z[µ6] -module via

(a+ bµ6) · v = (aid + bγ) · v.

Now Z[µ6] is a PID (cyclotomic rings of integers have class number 1), and L is a finitely generated

Z[µ6]-module. The structure theorem for finitely generated modules over a PID gives that L '⊕
k Z[µ6]/Ik, Ik ⊆ Z[µ6] are ideals. Z[µ6] has rank 2 as an abelian group generated by {1, µ6}.

If I ⊂ Z[µ6] is a nonzero ideal, then rank(I) ≥ 2 since for 0 6= α ∈ I, {α, µ6α} are Z-linearly

independent. Thus, Z[µ6]/I is torsion.

With L torsion-free, Ik = 0 for each k. By comparing ranks, ϕ : L
'−→ Z[µ6]. Set u = ϕ−1(1),

v = ϕ−1(µ6). Let [u, v] denote the 2×2 matrix with these columns. Since L = Zu⊕Zv, det[u, v] =

±1.

Computing, we get

γu = µ6φ(1) = φ(µ6) = v

γv = µ6φ(µ6) = φ(µ2
6) = φ(µ2

6)− φ(1) = −u+ v

Thus, γ[u, v] = [v,−u+ v] = [u, v]

0 −1

1 1

., so γ = [u, v]

0 −1

1 1

 [u, v]−1. Note that [u, v] need

not be in SL2(Z), but then [v, u] ∈ SL2(Z) and γ = [v, u]

0 −1

1 1

−1

[v, u]−1.

(b) Similar to (c), using Z[γ] ∼= Z[i] is a PID.

(a) |γ| = 3, so | − γ| = 6, so −γ is conjugate to

0 −1

1 1

±1

. Thus, γ is conjugate to 0 1

−1 −1

.

Corollary 5. The elliptic points for SL2(Z) are SL2(Z)i and SL2(Z)µ3. Thus, Y (1) has two

elliptic points, and each of

SL2(Z)i = 〈

0 −1

1 0

〉
SL2(Z)µ3 = 〈

0 −1

1 1

〉
is finite cyclic.
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Note that if τ is an elliptic point with respect to Γ, then γτ is as well with Γτ and Γγτ being

conjugates: Let α ∈ Γ. Then

ατ ∈ τ ⇐⇒ αγ−1γτ = τ

⇐⇒ (γαγ−1)(γτ) = γτ

=⇒ Γτ = γΓγτγ
−1

Proof. Recall that if τ is a fixed point of

a b

c d

, then aτ + b = cτ2 + dτ . There are three cases

(1)

 0 1

−1 −1

: τ2 + τ + 1 = 0 =⇒ τ = e2πi/3 or e4πi/3, throwout the second.

(2)

0 1

1 0

: τ2 + 1 =⇒ τ = ±i

(3)

0 −1

1 1

: τ2 − τ + 1 =⇒ τ = eπi/3 or τ = e2πi/3, throwout the first since it gets identified

with the second.

Calculating isotropy subgroups,a b

c d

 i = i =⇒ a = d, b = −c, a2 + b2 = 1

=⇒

±1 0

0 ±1

 or

 0 ±1

±1 0


and the other gives a b

c d

 e2πi/3 = e2πi/3

=⇒ ae2πi/3 + b = ce4πi/3 + de2πi/3

Set the real and imaginary parts equal to each other:

−1

2
a+ b =

1

2
c− 1

2
d

√
3

2
a = −

√
3

2
+

√
3

2
d.
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Solving these gives

a = −c+ d

b = −c

and so

d2 − cd+ c2 = 1(∗)

(d− c)2 + cd = 1(∗∗).

There are three cases. (1) c = 0, so d = ±1. (2) d = 0, so c = ±1. (3) c 6= 0 and d 6= 0. (*)

implies that c and d have the same sign, while (**) implies that if c 6= d, then c and d have opposite

signs. Thus, c = d =⇒ c = d = ±1. This gives±1 0

0 ±1

 ,

∓1 ∓1

±1 ±0

 ,

±0 ∓1

±1 ±1



and these are all generated by

0 −1

1 1

.

Corollary 6. Let γ ⊆ SL2(Z) be a congruence subgroup. The modular curve Y (Γ) has finitely

many elliptic points. Moreover, each isotropy subgroup is cyclic.

Proof. Γ ⊆ SL2(Z) is of finite index, so SL2(Z) =
⋃d
j=1 Γγj where γj ∈ SL2(Z). If τ is an elliptic

point, there exists γ ∈ Γ such that γ 6= ±id, γτ = τ . Thus, τ ∈ SL2(Z) or SL2(Z)e2πi/3. Thus,

the elliptic points of Γ are in {Γγj · i,Γγj · e2πi/3 | 1 ≤ j ≤ d} and thus are finite. Each isotropy

group is a subgroup of SL2(Z)τ and hence finite cyclic.

29


