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1 8/31/2015: Yoneda Lemma

Let C be a category, and let X be an objet of C. We define the following contravariant functor:

hy: C — Set

T — Home (T, X)
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It is contravariant because a morphism 7 EN T5 induces a morphism Hom¢ (75, X)) — Home (71, X)
given by
(T = X) = (I L1 — X)

Our informal goal is as follows: knowing X is the same as knowing hx. Let f: X — Y be a
morphism in C. Define

hf: hx—>hy

by
hy(T): hx(T) — hy (T)

(T = X)) (T =X Ly).
We claim that h; — hy is a natural transformation of functors. Indeed, the diagram below com-

mutes, for objects S,7T in C and a morphism ¢,

hX(S) < hx(T)

hx (¢)
hy(S) hy(T)
hy (S) W hy (T)

Definition 1. The Yoneda embedding is the functor:
n: C — Hom(C?, Sets)
X — hX

Note that Hom(A, —, ), Hom(—, B) are both covariant functors. Note that we haven’t actually

shown this is an embedding, i.e.

bijection

Hom — C(X,Y) ——— Hom(hx, hy)

f+—>hf.

A key point here: the Yoneda embedding is not essentially surjective. Before proceeding to the

proof, we present the idea of a representable functor.

Definition 2. A functor h: C°? — Sets is called representable if there exists an X € C and a

natural isomorphism h =2 hx.



For example, let C = Sets, and define
h: Sets®? — Sets

T — P(T)

where P(T) is the power set of T', and for f: S — T, we have P(T) — P(S) given by U s f~1(U).
Is h representable? Yes: let X = {0,1}. Then h = hx.

For a non-example, consider C = Grp, h: Grp®? — Sets given by
G— {H <G}
and given a morphism f: G — H, we have
h(f): h(H) = h(G)

{K<H} = {fT(K) <G}

Is h representable? If yes, let R represent it. Then Hom(Z/nZ, R) is in natural bijection with
subgroups of Z/nZ. Get contradiction with n = 3 as follows: |Hom(Z/3Z, R)| = |R[3]| = 2. So
R[3] ={0,0}. So we must either have 20 = ¢ or 20 = 0. In either case, ¢ = 0 a contradiction.

Let X be an object of C, F': C°? — Sets a functor, and a morphism f: U — X. Then we have
a function «

a: Hom(hx, F) — F(X)
(1: hx = F)— 7(X)(idx)

and a function

B: F(X) — Hom(hx, F)

e hx = Foe(U)(f) = F(f)(§)]-

To be explicit about the source and the target for the function g8, (§)(U) = 7¢(U): hx(U) — FU.

The following lemma will give rise to the Yoneda embedding.
Lemma 1. Yoneda Lemma o and B are bijections of sets, with co 8 = idp(x), Boa = idyom(hy,F)-

Proof. We have, for £ € F(X),

(o B)(§) = a(re) = 7(X)(idx) = F(idx)(§) = ¢



So ao f =idp(x). Conversely,

(Boa)(r) = B(r(X)(idx))
= Tr(X){dx)* hx — F

) tax) DU L X) = F(F)((X)(idx))]

We would like to show that F'(f)(7(X)(idx)) = 7(U)(f). Indeed, we have the following commuta-

tive diagram, for f: U — X,

hx(f)

o |

(X
F(U) WF(X)

hx(U) < hx(X)
)

Chasing the element idx € hx(X) both ways around the diagram gives
T(U)(hx (f)(dx)) = F(f)(7(X)(idx))

= F()(r(X)(idx)) = 7(U)(f)

Since the choice of U, f was arbitrary, it follows that 8o a = idyom(ny,F)-

To prove the Yoneda embedding, we apply Yoneda’s lemma.

2 9/2/2015: Universal objects
Lemma 2. The Yoneda Embedding Let X,Y € C. Then
Home(X,Y) — Hom(hx, hy)
(f: X =Y) = (hf: hx = hy,hs(C): hx(C) = hy(C) given by (g: C — X) — (fog: C = X =Y))
s a bijection.
Proof. Just apply Yoneda’s Lemma with F' = hy. ]
The following is a corollary of Yoneda.

Corollary 1.

X2Y <= hx = hy.



Let us consider some examples from scheme theory. Let I': Sch — Set be given by
N(T)=:T(T,Or)

where Or is the structure sheaf.
Is T" representable? Yes. Let X = Spec(Z[t]). Then any morphism of schemes T" — Spec(Z][t])

is determined by the induced map on the global ring of functions:

Z[t] — Op(T)
and

Hom(Z[t] - Or) = Or(T) =T(T, Or)
in the category of rings. Thus,
Homga (T, X) 2% (T, O7).
Another example from scheme theory is the functor

'*: Sch — Set
given by

T~ T(T,0r)"

This I' is again representable, for similar reasons, by X = Spec(Z/(zy —1)).

Recall that an elliptic curve is a proper smooth morphism of schemes 7: E — S whose geometric
fibers are connected curves of genus 1 together with a section o: S — E (reminder: geometric fiber
at a pony p € S is E xg Spec(k(p)), where £(p) is the function field at p).

We now define a functor

M: Sch — Set
S — {Elliptic curves E/S}/ ~

Note that a morphism S; — S2 induces a morphism M(S3) — M(S1), by pullback: E/Sy —

(E xg, S1)/S1 Is M representable by a scheme? The answer will turn out to be no.

Definition 3. Let F': C°? — Set be a functor. A universal object for F'is a pair (X, §), where X is
an object of C, £ € F(X) with the following universal property: For each pair (T',0) where T' is an
object of C and o € F(T'), there is a unique morphism f: T'— X such that (F(f))(§) — o € F(T)



Proposition 1. F': C°? — Set s representable iff there is a universal object for F'.

Proof. (=) Let X represent F. Then there is a natural isomorphism of functors ®: hxy — F. We
claim that (X, ®(z)(idx)) is a universal object. To show this, let (T, o) be any pair, with o € F(T).
Then

®(T): hx(T) — F(T)

is an isomorphism. Let f = (®(T))"'(¢). Then f: T — X, and we have a commuting diagram

from naturality

hx(X) XY ()
)

Lb(m) l‘P(T)
F(s

FX) % per).

Chasing the element idx € hx(X) around this diagram both ways gives

o(T)(f) = F(f)(@(X)(idx)).

Note that

so (X, ®(X)(idx)) is indeed a universal pair, and f was unique because ®(7T') is a bijection.

(<) Let (X,€) be a universal object for F. We claim that X represents F. To see this, define
P hX — F

by
O(T)(T = X) = F(f)(§) € F(T).

For each object T of C, ®(T) is a bijection since (X, &) is universal. It is easy to check that ® is a

natural transformation of functors, since F is a functor. O

3 9/4/2015: Moduli spaces and representability, Elliptic Curves
To recap the course so far - let C be a category. The Yoneda embedding is the functor
C — Hom(C?, Set)

Xb—>hX



Let F': C°? — Set is representable if and only if there exists a universal pair (X,¢), with X an
object of C,{F(X). In fact, { = F(X)(idx).
We define the functor
M Sch — Set

S +— {Elliptic curves E/S}/ ~
Definition 4. Let F': C°’? — Set. Then a fine moduli space for F'is an X that represents F.

Note this automatically comes with a universal pair, and is unique up to unique isomorphism.
If M is representable by a scheme M, then there exists a universal object E“™ /M, which is
an elliptic curve. Every elliptic curve E/s arises from E“"_ i.e. given any E/S, there is a section

S — M and the fibered product:

E=FExyS—— Evw

| |

S—— M

Now, we sketch that M is not representable by a scheme. Since not everyone in the audience
is comfortable with schemes, this argument has been simplified, so is not strictly correct. First, fix
S a scheme, F a fixed elliptic curve. Suppose that in the fibered square below, the bottom map is
the constant map. The bottom map is exactly what determines the elliptic curve F in the fiber.
So the "fibered product is trivial” (sketchy). Now, view S! as [0,1]/ ~. Let E be an elliptic curve
over C with nontrivial automorphism ¢: £ — E. Define {Ex}xco1) by Ex = E, then glue the
endpoints using ¢. Then {E)} — [0, 1] defines

{E)\} Euniv

L]

0,1/ ~— M

But then the bottom map is constant again, and so upper left scheme is trivially fibered, which is
a contradiction.

So, how can we fix this problem for the nonexistence of fine moduli? One approach is to use
stacks, which enlarge the category of schemes so that M is representable. Another way is to use
extra data:

Mp(n): Sch — Set



S — {Elliptic curves E/S, ¢: (Z/nZ)*> — E[N]}
where a morphism (E, @) — (E', ¢’) is the data of a morphism E’ — F such that

(Z/N/2Z)*? —"— E'[N]
K J
E[N]
It is a theorem of Mumford or Serre that for N' > 3, Mr(y is representable.
There is one more way to get moduli space. This is the moduli space we study in this course:
the coarse moduli space. M is a coarse module space of F' if there exists a natural transformation
®: F — hys such that F(Spec(C)) — ha(Spec(C)) is a bijection., and such that for any other

®': F — hyy, the diagram below is universal

FL)hM/
N
3!
ho

Let k£ be an arbitrary field. An elliptic curve is a nonsingular projective algebraic curve of

genus 1 that is geometrically connected with a point e: Spec(k) — E.
Theorem 1. Every elliptic curve in char(k) # 2,3 can be put in the form below:

Theorem 2. Let E/C be an elliptic curve. Then
E = C/A
where A is a full lattice in C, i.e. A = (wy,we), i.e. A is a rank 2 Z-module with A @z R = C.

In Mumford, it is sketched that a curve E is realized as the compact complex Lie group (C/A).
Briefly, C = Tg. Since F is a compact complex Lie group, look at the exponential map exp: C — E
surjects, and kerexp = A.

For the other direction, C/A corresponds to E as follows: Define

o) = 5+ Y (coop o
weA*
where A* = A\{0}. One can show that p(z) converges uniformly on compact sets. Some calculus

gives

Ph(z) = —2 Z (Z_lw)g,

wEA*

8



Then the lattice A is the set of periods for ), (z), so that for all w € A,

pa(z +w) = P (2).

A more nontrivial result is that
pa(z +w) = pa(2)
, and all of this is to say that pj(z) and @\ (z) are elliptic. As such, they define meromorphic
functions on the torus C/A. As it turns out, if we let K be the set of meromorphic functions on
C/A, then
K = C(pa(2), pi(2))-

One can check using some basic elliptic function theory that if we let y = ¢/ (2),z = pa(z),

then
y? =42’ — ga(A)a — g3(A)

where g2, g3 come from normalized Eisenstein series. This in fact gives a complex analytic diffeo-

morphism of complex manifolds
C/A = E={(z,y) € C*: y* = 42° — gs(A)x — g3(A)}

2= (pa(2), P (2))-

4 9/9/2015: Isogenies

Recap: let M be the moduli of elliptic curves. It is not represented by a scheme, but is a stack.
We study instead just the C points of the moduli, and this is represented.

Also, an elliptic curve /C corresponds to C/A, A a lattice.

Proposition 2. Let ¢: C/A — C/A' be a holomorphic map. Then there exist m,b € C with
mA C A and

o(z+A)=mz+b+ A

@ 1is invertible if and only if mA = A,



Proof. ¢ lifts to

c—? ,cC

|

C/A —2— C/N.
because C is a universal cover. For any A € A, consider fy: C — C defined by
Iz) = @(z+A) = &(2).

Push z around the diagram

c—" ,c

| ]

c/A P o/
to get fa(z) € A'. Therefore, f) is constant. Thus,
¢z + ) =¢(2)
meaning ¢'(z) is A-periodic. Thus, ¢'(z) is holomorphic and bounded, and thus constant, so
p=mz+b.

Note that mA C A’ since ¢ reduces to C/A — C/A’.

Conversely, if mA C A’, there exists 2’ € A’ with ZE/ ¢ A. Then
z
o(—+A)=b+A =¢(A)
m
S0 ( is not injective.
If mA = A, then A = m~'A’ induces

C/AN — C/A

z—0b

m

zZ =

the inverse of .

Corollary 2. p: C/A = C/N, p(z+A) =mz+b+ A. Then the following are equivalent:
(1) ¢ is a group homomorphism.
(2) beA.

10



(3) ¢(0) =0

Proof. (1) <= (2): p(z +w+A) =m(z +w)+ b+ A. Then
©0(2) + o(w) = mz +bmw + b+ A’

and these are equal if and only if b+ A =b+b+ A < be A
(2) < (3) is clear O

Corollary 3. A nonzero homomorphism ¢: C/A — C/A' is surjective with finite kernel, often

called an isogeny.
Proof. Write p(z +A) =mz+ A, mA C A’. Now
v #Z0 = ker p is discrete.

Since C/A’ is compact, ker ¢ is finite. C/A is connected and compact, so ¢(C/A) is connected and
compact. Then the Riemann mapping theorem from complex analysis shows that ¢(C/A) is open,

and thus ¢ is surjective.

For example, [n]: C/A — C/A given by
z—=nz+ A

has

C/A[n] :==ker([n]) ={z+ A|nz € A}.

As abstract groups,
(1/n)A/A =2 (1/n)Z?)Z* = (Z/nZ)*

As another example, let C < (C/A)[n], C = Z/nZ. Then identify C with AC C C C. Cisa
lattice. Then
m: C/A— C/C

z+A—2z+C

and we see kerm = C'/A. 7 is called a cyclic quotient.

Proposition 3. Fvery isogeny is the composition of multiplication by N followed by a cyclic quo-

tient.

11



Proof. Let p(z +A) = nz+ A, mA C A'. Set K = kerp = m~'A’/A. Let N = |K|. Then
K C ker([N]) = (Z/NZ)?. By the fundamental theorem for finitely generated abelian groups,
K = (Z/nZ) x (Z/nn'/Z). Viewing K as A C K C C, note that A C nK and mK = A’. We now

claim that ¢ is the composition
c/A ™ o/ T oK Z c/n
where the last map is
z+nK — (m/n)z+ (m/n)nk.
The last map is injective: (m/n)z e mK =N < z/ne€ K < z e nkK.

Since [n|K = nK, we have nK/A = Z/n'Z. Thus, 7 is a cyclic quotient. Tracing the maps
through, we get z — (m/n)(nz) + (m/n)nK = mz+mK =mz+ A'. O

Proposition 4. Isognies define an equivalence relation. That is, if p: C/A — C/A’ is an isogeny,

then there exists a “dual isogeny” ¢: C/N — C/A such that
pop=po¢=]n],
[n] = deg p = | ker].
Proof. Let ¢(z +A) =mz+ A, mA C A'. Write
AN /mA = (Z/mZ) x (Z/n2Z).
Let (w1,ws) be a basis of A, so

(w1,w2) € (Z/nZ) x (Z/n2Z).

a b
Choose € SLy(Z) with
c d

awy + b = (1,0)
cwy + dwg = (0,1).
Then njwi € mA, nows € mA. So
(niwr, naws) C mA C A,

Since #(A'/{njw1, nows)) = #(A /mA) = nang, we get mA =< njwy, nows > So ning A’ C mA,
(ning)/mA’ C A. Define
$: C/A' — C/A.

z+ N — (ning)/m -z + A

12



5 9/11/2015: Constructing a modular curve

In this section, we write I' = SLyo(Z) = T'(1).
Let
Y (1) = {elliptic curves over C} /iso.

Let A = (w1, w2) C C. There is an isomorphism
C/A ~C/(“2 ).
w2

If Im(¢L) <0, replace it with —£L. So we may now assume that 7 = £, that Im(7) > 0 and we,
up to isomorphism,

A= {(r1).

If m € C*, mA = (m7,m), we normalize and get up to isomorphism that (7, 1). So the action

by C* is trivial.

a b a b
For € SLy(Z), A=A and
c d c d

a b T
= (aT + b,cT + d).
c d 1

Normalizing, we see this lattice is
at +b
cr+d’

( 1).

An easy exercise shows that Im(

az Im(z a b
czis) = ‘CZ_‘Edl)Q for J S SLQ(Z).
C

bin

Proposition 5. Y (1) — SLo(Z)\H, where H = {T € C ‘ Im7 > 0}.

Proof. Let A = (w1,wa), A" = (w], wh) with

/
w1 W
=, .
Then we claim
, 1 n\ (w] a b\ [w
A=A\ = =
0 1) \w) ¢ dJ \ws2

One direction is obvious (<«). To prove =, Write

w'2 = awq + bws

13



wh = cwy + dws
wy = d'w] + bW
why = dw + d'wh

with a,b,c,d,d’,V,c,d € Z. Then

a v a b w1 w1
d d c d wo Wy
which means that
a v a b )
=id
d d c d
and so
a b a b
det = det = +1.
d d c d

It must be 1 since
! = awi /wa) + b

Wi/ = c(wy/we) +d
a b w1
c d w9

By the easy exercise mentioned above, the determinant is 1.

Insert picture for fundamental domain of I'(1

Proposition 6. SLy(Z) is generated by

)
IR

Proof. Set
Note that
11 1 n
01 0 1
for all n € Z.
a b
Let € SLy(Z). Note that
c d
a b 1 n a b
c d 0 1 ¢ nc+d

14



so if ¢ # 0, then we can find n so that we may assume |d| < |¢|/2. Now

a b 0 —1 b —a
c d 1 0 d —c
1 n 0 -1
By applying and , we may assume that |¢| < d/2. Do this repeatedly until
0 1 1 0

¢ = 0. So we may assume our matrix is of the form

a b
0 d
2
with ¢ = d = +£1, b arbitrary, with - = id. So we can assume that a = d = 1, and
1 0
1 b
el O
0 1

6 9/13/2015: Congruence subgroups and moduli

A congruence subgroup I' C SLy(Z) is a subgroup of SLy(Z) defined by congruence conditions.
That is, I' is the pre image of some subgroup of SL2(Z/NZ) under the mod N reduction SLy(Z) —
SLy(Z/NZ). We define I'(N) to be the kernel of SLa(Z) — SLo(Z/NZ).

Definition 5. The smallest N such that I'(N) C T is called the level of T'.

Other key examples are

a b
To(N) ={ ¢c=0 mod N}
c d
a b
I'(N)={ ; c=0,a=d=1 mod N}.
c

We can form

I'N)\H - T'1(N)\H — I'o(N)\H

Note that one can form a directed system I'(p™*1)\H — T'(p™)\H to get a limit fm I'(p™)\H.
This is sort of realized as one of Scholze’s perfectoid spaces.

We have surjections

I'y(N) = Z/NZ

15



and

Therefore,

I''(N)/T(N)=Z/NZ
[o(N)/T1(N) = (Z/NZ)*
‘We now define the moduli

Definition 6. Define the set
So(N) ={(E,C) | E is an elliptic curve/C,C C E[N]is a cyclic subgroup of order N}/ ~ .

A morphism (E,C) — (E’,C") is the data of a homomorphism ¢: E — E’ of elliptic curves such
that ¢: E — E’ and such that ¢(C) C C".

S1(N) ={(F,Q) | E is an elliptic curve/C,Q € E[N] is of order N}/ ~
and morphisms are given by
(£,Q) —~ (F,Q)
as the data of a homomorphism of elliptic curves E — E’ and ¢(Q) = Q’.
We need to discuss the Weil pairing. Let £ = C/A, A = (w1,ws), wi/wz2 € H. Then
w1 w2
E[N={—=+A —= 4+ A}
V)= {2 44} x {22 4 4)
Define
en: E[N] x E[N] — un = N-th roots of unity
as follows. Choose a matrix M € Ms(Z) such that
P M wl/N
Q wa /N

16



2nidet M

Then ey (P,Q) =¢ ~
We claim that ey is independent of the choice of wy,ws, as long as % € H. Let w},w) be some

other basis for A with w]/wh € H. Then
wy = aw] + bwy
wo = cw] + dwh

a b
with € SLy(Z). Then

c d
P oy aw) + bw)
Q cwy + dw)
ol b wi /N
c d wh/N

which gives

a b
det M = det(M ).
c d

Note that ex(P, Q)Y = 1, and that ex(P,Q) is a primitive N-th root of unity if and only if
(P, Q) = E[N].
Definition 7.

S(N)={(E,P,Q) ‘ E elliptic curve/C, P,Q € E[N] such thatey (P, Q) = ¢>™/N}/ ~

with morphisms

(E,P,Q) — (E, P, Q")
given by the data as expected, i.e. ¢: E— E',p(P) =P ,p(Q)=Q’.

Here is an alternate description of S(/N) which works more generally. Choosing an N-th prim-

itive root of unity is the same as giving
Z / NZ — puy

1!—>CN.

Then
S(N) ={(E,«) ‘ E elliptic curve /C,a: (Z/NZ)?> = E[N]}

17



where

(Z/NZ)? x (Z/NZ)> —— Z/NZ

[ f

E[N] x EI[N] —— uy

The following theorem is the key to constructing our moduli, will be one of the centerpieces of

the course:

Theorem 3. Let N € Z~y.
(a)
So(N) ={(C/A+, (1/N + A7)) [T € H}/ ~

where (C/A;, (1/N +Az)) ~ (C/A, (1/N + A)) if and only if To(N)T = Lo(N)7'.

(b)
S1(N) = {(C/A+,1/N + A,) | r € H}/ ~

where (C/A+,1/N + A;) ~ (C/Ap,1/N + Ap) if and only if T1(N)7 =T (N)7'.

(c)
S(N) = {(C/A;,1/N + Ar,7/N + A,) | 7 € H}/ ~

where (C/Ar,1/N + Ar,7/N + A;) ~ (C/Ap, 1/N + Ay, /N + A,) if and only if T(N)7 =
T'(N)7'.
We will see bijections
So(N) = Yo(N) =To(N)\H
S1(N) = Yi(N) =T1(N)\H
S(N) = Y(N) =T(N)\H

and furthermore, each of Yy(IV),Y1(N),Y(N) will be given the structure of a complex manifold.

Eventually, we will compactify these manifolds.

7 9/16/2015: Modular curves as parametrizing spaces

We wish to prove Theorem 3. We prove only (c), as it is similar to (a), and (b) is in the book.

18



Proof. (Theorem 3 (c)): We want to show

{(C/A+,1/N + Ay, 7/N +A,) | 7 € HY/ ~ = S(N)

a b
is well defined. Let 7/ € I'(N) - 7, say 7/ = 7. We need to construct an isomorphism

c d

C/A. — C/A,

sending

/N + Ay — 7/N + A,
1/N = A — 1/N+ A,
Set m = cr + d. We claim:
[m]: C/A; — C/{aT + b,er +d) = C/A;

is an isomorphism. Note:

, a b
mt = (cT +d) T=ar+b
c d
m-l=cr+d
Now
b
ml(r /N + Ay = TEY a
(/N + A = TEL A

Sincea=d=1 mod Nandb=c=0 mod N,

b
aT]\Jfr + A =7/N+A,
cT +d
A =1/N+A;
N /N +

which proves well-definedness.

Now to prove injectivity, suppose (C/A,,7/N+A-,1/N+A;) = (C/Ap, 7' /N+ Ay, 1/N+A).
a

a b b
We'll show that 7 = 7. for € I'(N). There exists m € C* inducing [m|: C/A; —
c d c d

C/A,/, sending
m(t/N +A;)=7"/N+ Ay

m(1/N +A;) = 1/N + Ay

19



where mA, = A.

Now
mT a b i
ml c d 1
a b
for € SLy(Z). Since
c d
/ /
m7/N = aTN+b =~ mod A
,a=1 mod N,b=0 mod N. Similarly,
"+d 1
m-1/N = CT; =N mod A/,
a b
soc=0 mod N,d=1 mod N. Thus, e I'(N).
c d

From m7 = a7’ +b, m-1=cr’ +d, we got

at’' +b  [a b
et +d

/
T.

c d

T=m7/m =

Finally, we prove surjectivity. Given (E, P, Q) with ex (P, Q) = ¢*™/N | set E = C/A,,. Then
P ' /N
M
Q 1/n

for some M € My(Z/NZ). Since en(P,Q) = e2>™/N | we must have

6271'1 det M/N __ 627rz/N

= det M = 1.
Thus, M € SLy(Z/N/Z). Now SLy(Z) — SL2(Z/NZ) is surjective. So choose a lift for M to
a
SLy(Z), say M =

. Set 7 = M71', m = ¢’ + d. Note that
c d

mr =mM7t' = ar’ +b.
Thus,

[m]: C/A; = C/(at’' +b,cr’ +d) = C/A
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sends

!
T/N—FAT'—)(ZT +b

—|—AT/:P

/
1/N—|—A7—l—>CT +d

+A7—’ = Q

O

Let us now give our modular curves structure as Riemann surfaces. Let I' C SLo(Z) be a
congruence subgroup.
Y()={'r|r € H} =T'\H}.
Our goals are to give Y (I') a complex structure as a manifold and to compactify to make it a
Riemann surface.

First, we need to give Y(I') a topology, which we choose to be the quotient topology:
7: H— T\H.

We declare that V C Y(T') is open <= =*(V) is open in H.

7 is an open mapping. To see this, let U C H be open. Then 7 !(7(U)) = UyeryU. Since
U C H is open, we have yU C H open. Thus, m(7~*(7(U))) = n(U) is open.

Another property: 7(Uy) N7w(Uz) =0 <= T'-U;NUz = 0. The proof is easy. 7(Uy) N7w(Us) #
) < there exists a € Uy, 3 € Us,y € I such that ya = 8 < (T'Uy) N Us # 0.

8 9/18/2015: Topology of the modular curve

Today we will show that I'\H is Hausdorff.

Definition 8. A continuous action of a group G on a topological space X is properly discontinuous
if, for each =,y € X, there exists neighborhoods U, U, such that there are only finitely many g € G
with g(Uz) N Uy # 0.

Proposition 7. Let 7,72 € H. Then there exists neighborhoods U; of 7; such that for all v € T,
if y(U1) NUy # 0, the v(11) = 12 (note 71 = 15 is allowed).

Proof. Let U] be any open neighborhood of 7; with compact closure. Our goal is to show: for al
but finitely many v € SLa(Z), v(Uy) N UL = 0. An exercise from the book is: For all but finitely
many (c,d) € Z? with ged(c,d) = 1, we have

x ok
sup{Im(y(7))| v € SLa(Z),~ ,7 €U} <inf{Im(7) | T € Uj}.
d
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Let us prove this inequality. Set
y1 = inf{Im(7) |7 € U}

V) = sup{Im(7) | 7 € U{}
yo = inf{Im(7) | 7 € Uj}.

Using
Im7

Im(y(7)) = m

for 7 € U], we have

Im7 < Im7 < Y
ler +d|? = (cRer +d)? + 2(Im7)?2 ~— (cRer + d)?

and
Imr Imr 1

< < .
ler +d|? ~ (cRet +d)? 4+ 2(Im7)? — 2y

Thus,
Y1 1
(cRet +d)?’" c?y;

Im(y7) < min(

).
So Im(y7) < inf{Im7 | 7 € Uj} = ys for all but finitely many values of ¢ (remember that ys is fixed

here). For each such value of ¢ in this exceptional set, there are only finitely many d that violate

the desired inequality, since
Y

I <
m(y7) < cRer + d2

This completes the exercise.
k%
So we now know that for all but finitely many (c,d) € Z? with ged(c,d) = 1, and all €

c d
SLy(Z),

(Ur) NUy = 0.

a b
But for any (¢, d) with ged(c,d) = 1, we can write any € SLy(Z) in the form
d

a-+kc b+ kd 1 k a b a b
c d 0 1 c d c d
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a b
Thus, v(U7) NUS = ( Uj + k) N US. Sicne there are finitely many (a,b) € Z? needed to
c d

* %
write evey matrix € SLy(Z) as

* % 1 k a b
= ke Z.
c d 0 1 c d

There are only finitely many v € SLy(Z) such that
y(U) N U3 # 0.

Thus,
F:={y€ SLy(Z) |v(Uy)) NUS # 0 and v(11) # 72}

is finite. For each v € F, let U, and Us, be disjoint open neighborhoods of v(71), 72 respectively.
Set

Uy =Uin ()7 ' (Uir)
yeF

Uy =U50 ([ Uap)-
~yeF

Recall we want that if yUy; N Us # 0, then vy = 7. Suppose YU; N Us # (). We need to
show that v # F. Suppose v € F. Then v(U;) C Ui and Uy C Us . Thus, v(U;) N Uy = 0.
Contradicton. Therefore v # F. O

Corollary 4. Y (TI') is Hausdorff.

Proof. Take 71,72 € H such that m(71) # 7(m2) (distinct points in the quotient). Take Uy, Uz as in
the proposition, so

’Y(U1) NUs 75 0 = ’7(7'1) = T2.

Since m(71) # 7(72), Y71 # T2 for all v € T. Therefore, v(Uy) N Us = (). Thus, 7(Uy) Nw(Usz) =
0. O

9 Fundamental domain of Y (I')

Let G be a group acting on a set X. Then the isotropy subgroup of z € X isG, = {g € G| gz €

x}. Gy is also known as the stabilizer.
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We wish to endow I'\H with a complex structure. First, let’s prove that
1
D ={r € H| |Rer| §§,’7’|:1}

Definition 9. Let I' C SLy(Z) be a congruence subgroup. Then 7 € H is called an elliptic point
if {+id} C T,

Our goal today is to prove the following proposition.
Proposition 8. T'; C T' #s cyclic.
First we’ll prove the result for I' = SLs(Z). We need a series of lemmata and propositions

Lemma 3. The map D — I'\H is surjective.

1 +1
Proof. Given 7 € H, we show (SL2(Z)-7) N D # (). By applying to 7, we may assume
0 1
|Rer| < 3. If 7 ¢ D, then |7] < 1. So
() = tm( ) = Tm(, 7) > Tn(7)
m(—)=Im(—5) = Im(— m(7).
7))
Note that = %1 So we can repeatedly replace 7 with —1/7, making the imaginary

1 0
part larger. Repeating these two steps, we claim the process terminates after finitely many steps.

To see this, it suffices to show that there are finitely many elements of SLy(Z) - 7 with larger

imaginary part. For this, Im(y7) = JHT:”Q, and there are finitely many (c,d) € Z2 such that
ler+d| <1
as A; = (7,1) is a lattice. O
We need one more lemma.
Lemma 4. Let 7 # 19 in D. such that 7o = y11 for some v € SLy(Z). Then either

(1) Re(m) = :t%,TQ =7n =1, or

=1
Ty

(2) |11l =1 and m» =
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a b
Proof. Without loss of generality, |m2| > |71|. Set v = . So
d

Imny
Im(TQ) = m 2 Im(ﬁ)

= ‘CTl—i-d’ <1.

Since 7 € D, Im(m) > @ Thus,
3
\cl\g < lelIm71 = [Im(ery + d)| < |erp +d| < 1
= [e[ € {0, 1}

1 b
First case: ¢ = 0: Here, v = + . Thus, Rer — 2 = Re(71) + b. So |b| =1, giving 1.
0 1

Second case: ¢ = £1: Since |c1; +d| < 1, we have |7y £d| < 1. Thus,

1
(Rery +d)2 < 1—Im(n)2 <1-— Z =1

giving |d| < 1.
Subcase 1: ¢ = *1,|d| = 1: We have [Reri| < 1, and |[Rer; £d| < 3, so

1
Rer = +5,d = F1.

Thus, Im7m = g, giving both (1) and (2).

Subcase 2: d = 0: Since |cry +d| <1, || <1 = |r| = 1. Thus,

a 1
Ty = i 71 = +a— (77)

+1 0
= (+a — Re(71)) + ilm7y.

So |a| <1, and if |a| = 1, then Rery = £Rery = 1, giving (1). If a = 0, this is (2).

Proposition 9. If 7 is an elliptic point y7 = T with vy # +id, then |y| = 3,4 or 6.

Proof. As = ?ZIZ, we have ¢r2 + dr = at + b. Therefore,

+/(d — a)? + 4bc

iIm(7) = 5
c
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We claim that |a + d| < 2. Indeed, taking 7 € H, we have
(d—a)®+4bc<0

— (d—a)?+4(ad—1) <0

Thus, d? + 2ad + a®> — 4 < 0, proving our claim.
Note that

2
b +d) -1 bla+d b
a _ ala ) (a ) (0t d) a 4
c d cla+d) da+d) —1 c d
Thus,

720 — (a+d)y) +id =0

Algebra shows that, given the possibilities a + d € {—1,0,1}, then the possibilities are y* = 1,
7% =1, 4% = 1. Thus |y| = 2,3,4,6. But if |y| = —id. Indeed, in this case, b(a +d) = c(a+d) = 0,
and a +d # 0. Thus b+ c = 0. Also, a(a+d) =d(a+d) =2, and ad = 1. So a®? = d? = 1.

10 9/23/2015: Elliptic points

To summarize last time, for 7 € H, we have the subgroup I'; = {y € 7 | y7 = 7}. 7 is called
elliptic with respect to I' if I'; is nontrivial, i.e. if {+id} C {£id}I';. We showed last time that if

~T = 7, then v has order 1, 2, 3, 4, or 6.

Proposition 10. Let v € SLy(Z).

+
0 1
(a) If |v] = 3, v is conjugate in SLa(Z) to
-1 1
+
0 -1
(b) If |v| =4, v is conjugate in SLa(Z) to
10
+
-1
(d) If |v| = 6, v is conjugate in SLa(Z) to
1 1
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Proof. (c) Let Z? be the lattice of integral column vectors, a Z[ug] -module via
(a+bug) -v=(aid+by) - v

Now Z[ug] is a PID (cyclotomic rings of integers have class number 1), and L is a finitely generated
Z[pugl-module. The structure theorem for finitely generated modules over a PID gives that L ~
D, Zpe)/Ix, Iy C Z]ue) are ideals. Z[ug] has rank 2 as an abelian group generated by {1, u6}.
If I C Z[ug] is a nonzero ideal, then rank(I) > 2 since for 0 # « € I, {«a, uga} are Z-linearly
independent. Thus, Z[us]/I is torsion.

With L torsion-free, I, = 0 for each k. By comparing ranks, ¢: L — Z[ug]. Set u = ¢~ (1),
v =@ 1 (ug). Let [u,v] denote the 2 x 2 matrix with these columns. Since L = Zu® Zv, det[u,v] =
+1.

Computing, we get

Yu = pep(1) = ¢(ue) =

v = Hed(pe) = d(k5) —o(1) =—u+tv
0 -1
Thus, y[u,v] = [v, —u+v] = [u, V] , S0 7y = [u, v ( ~1. Note that [u, v] need
1 1
0 —1
not be in SLy(Z), but then [v,u] € SLy(Z) and v = ( [v,u]_l.
1 1
(b) Similar to (c), using Z[y] = Z[i] is a PID.
+1
0 -1
(a) |y|] = 3, so | —~v| = 6, so —v is conjugate to ( . Thus, ~ is conjugate to
1 1
0 1
O
-1 -1

Corollary 5. The elliptic points for SLo(Z) are SLo(Z)i and SLa(Z)us. Thus, Y (1) has two

elliptic points, and each of

0 -1
SLy(Z)i = ( )

1 0

0 -1
SLa(Z)ps = (

1 1

is finite cyclic.
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Note that if 7 is an elliptic point with respect to I', then ~; is as well with I'; and I',, being
conjugates: Let a € I'. Then

aT €T < afy_lw' =T
= (yay (1) =77

- F7' = ’Yr'y’r’y_l

a b
Proof. Recall that if 7 is a fixed point of , then a7 4+ b = ¢72 + dr. There are three cases

c d
0 1 , .
(1) 72474+ 1=0 = 7 =¢2™/3 or *™/3, throwout the second.
-1 -1
01
(2) 24+l = 7=4i
10
0 -1 . ,
(3) s 72— 741 = 7=2¢"/3 or 7 = e*™/3 throwout the first since it gets identified
1 1

with the second.

Calculating isotropy subgroups,

a b 9 9
i=1 = a=d,b=—c,a”"+b"=1

c d

+1 0 0 =1
— or
0 =1 +1 0
and the other gives

a b

627rz/3 — e27rz/3
c d

@23y — ceti/3 g g2mif3

Set the real and imaginary parts equal to each other:
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Solving these gives

and so

d? —cd + % = 1(x)
(d—¢)? + cd = 1(*%).

There are three cases. (1) c=0,s0d==1. (2) d=0,s0c==£1. (3) ¢ # 0 and d # 0. (*)
implies that ¢ and d have the same sign, while (**) implies that if ¢ # d, then ¢ and d have opposite
signs. Thus, c =d = ¢ =d = +1. This gives

1 0 F1 F1 +0 Tl

)

0 +1/ \+1 20/ \+1 41

and these are all generated by ;
1 1

O]

Corollary 6. Let v C SLa(Z) be a congruence subgroup. The modular curve Y (T') has finitely

many elliptic points. Moreover, each isotropy subgroup is cyclic.

Proof. T' C SLy(Z) is of finite index, so SLy(Z) = U?Zl I'y; where v; € SLy(Z). If 7 is an elliptic
point, there exists v € I' such that v # +id, y7 = 7. Thus, 7 € SLy(Z) or SLQ(Z)eQM/?’. Thus,
the elliptic points of T are in {T'y; - 4, Ty; - €2™/3 | 1 < j < d} and thus are finite. Each isotropy
group is a subgroup of SLo(Z), and hence finite cyclic. O
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