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1 Lectures 1 and 2. Introduction and motivations

1.1

Relative algebraic geometry

By definition, a scheme is obtained by gluing together affine schemes. As affine schemes are themselves
in one-to-one correspondence with rings', a scheme is also obtained by gluing rings together. This
observation has lead to the following idea of relative algebraic geometry.

Main idea of relative algebraic geometry: (Grothendieck, Hakim, Deligne ...) One can
extend the notion of schemes by formally replacing rings with any kind of “ring-like object”..

Here, a “ring-like object” is by definition a commutative monoid in a symmetric monoidal category
(C,®). In other words, it consists of an object A in C, and morphisms 1 : A ® A — A (multipli-
cation), e : 1o — A (unit), satisfying the usual identities. Here are some examples of context of

!The expression ring will always mean commutative ring with unit.



relative algebraic geometry.

1. C =7Z/2—Vect, the category of Z /2-graded vector spaces (say over C), equiped with the graded
tensor product. Ring-like objects are then Z/2-graded C-algebras (commutative in the graded
sense), and they correspond to affine super-schemes. By gluing them together one gets the
general notion of super-schemes.

2. Let G be a linear algebraic group (say over C), and C = Rep(G) be the category of linear
representations of G (maybe of infinite dimension), endowed with the tensor products of repre-
sentations. Ring-like objects are G-equivariant C-algebras, which correspond to affine G-schemes
(i.e. affine schemes with an action of G). By gluing one gets the notion of G-schemes. This
example is a particular case of algebraic geometry over Tannakian categories used by Deligne.

3. Let (S,0%") be a complex analytic space, and C' = QCoh(S), the category of quasi-coherent
sheaves of O¢"-modules on S. Ring-like objects are sheaves of quasi-coherent O%"-algebras,
and one thinks of them as “analytic families of affine schemes parametrized by S”. By gluing,
one obtains a notion of “analytic families of schemes parametrized by S”, which were called by
Hakim relative schemes over S.

4. According to Smirnoff, Kapranov, Soulé ...there should exist a useful notion of “schemes over
the field with one element F;”. The object F; is of course undefined, but the category of F;-
vector spaces have been declared to be the category Set, of pointed sets. This is a symmetric
monoidal category for the smash product (i.e. the categorical product in Set,). Commutative
monoids in Set, are thought as “affine schemes over F;”, and one could try to glue them to get
a (useful 7) notion of “schemes over F;”.

5. A bit out of our context, one can try to glue associative (exceptionaly non commutative) rings
together, in order to define a notion of “non commutative schemes”. This approach has already
been used by Kontsevich, Rosenberg and Orlov.

Remark 1.1.1 In all of these examples, we did not describe the “way of gluing”, or equivalentely the
“topology” which is used. It is in general a non trivial problem to find intersting topologies (e.g. in
the example (4)).

1.2 Homotopical algebraic geometry

Main idea of homotopical algebraic geometry (“HAG?” for short): One can extend further-
more the notion of schemes by formally replacing rings with any kind of “homotopy-ring-like object”..

Here, a “homotopy-ring-like object” is a commutative monoid in a symmetric monoidal category
endow with a notion of equivalences. This notion of equivalences is the new input of HAG, and some
times “monoids” in this context will have to be understood as “up-to-homotopy monoid” (e.g. as
E-rings).

Standard examples:

1. cdga:=commutative differential graded algebras (over a field of carateristic 0). These are com-
mutative monoids in the category of complexes (non positive, non negative or unbounded). The
equivalences in this context are the quasi-isomorphisms.



2. FE-algebras. They are the correct generalization of the notion of cdga when the base field is
not of caracteristic 0. Again, the equivalences are the quasi-isomorphisms.

3. E-ring spectra. They are the commutative monoids in the category of spectra for the smash
product. The equivalences are the stable weak equivalence.

4. Symmetric monoidal categories. They are the commutative monoids in the category of categories.
The equivalences are the equivalences of categories.

We will now present one of the motivations for our interest in HAG. It is concerned with “derived
algebraic geometry”. As far as we know these ideas were introduced by Deligne, Drinfeld, Kontsevich
and Kapranov.

Let C be a smooth projective curve (say over C), and let us consider the moduli stack Vect,(C)
of rank n vector bundles on C' (here Vect, (C) classifies all vector bundles on C, not only the semi-
stable or stable ones). The stack Vect, (C) is known to be an algebraic stack (in the sense of Artin).
Furthermore, if £ € Vect,(C)(C) is a vector bundle on C, one can easily compute the stacky tangent
space of Vect, (C) at the point E. This stacky tangent space is actually a complex of C-vector
spaces concentrated in degrees [—1,0], which is easily seen to be quasi-isomorphic to the complex
C*(Czar, End(E))[1] of Zariski cohomology of C' with coefficient in the vector bundle End(FE) =
E ® E*. Symbolically, one writes

TyVect(C) ~ H'(C, End(E)) — H°(C, End(E)).

This implies in particular that the dimension of TgVect(C') is independent of the point E, and is equal
to n?(g — 1), where g is the genus of C. The conlcusion is then that the stack Vect, (C) is smooth of
dimension n?(g — 1).

Let now S be a smooth projective surface, and Vect,, (S) the moduli stack of vector bundles on S.
Once again, Vect, (S) is an algebraic stack, and the stacky tangent space at a point F € Vect, (S)(C)
is easily seen to be given by the same formula

TpVect,(S) ~ H'(S, End(E)) — H%(S, End(E)).

Now, as H2(S, End(F)) might jump when specializing E, the dimension of TV ect(S), which h'(S, End(FE))—
hO(S, End(E)), is not locally constant and therefore the stack Vect,(S) is not smooth anymore.

The main idea of derived algebraic geometry is that Vect, (S) is only the truncation of a richer
object RV ect,(S), called the derived moduli stack of vector bundles on S. This derived moduli

stack, whatever it may be, should be such that its ftangent space at a point E is the whole com-
plex C*(S, End(FE))[1], or in other words,

TpRV ect,,(S) ~ —H?(S, End(E)) + H' (S, End(E)) — H’(S, End(E)).

The dimension of its tangent space at E is then expected to be —x (S, End(F)), and therefore locally
constant. Hence, the object RV ect,, (S) is expected to be smooth.

Remark 1.2.1 Another, very similar but probably more striking example is given by the moduli stack
of stable maps. A consequence of the expected existence of the derived moduli stack of stable maps is
the presence of a virtual structure sheaf giving rise to a virtual fundamental class. The importance of
such constructions in the context of Gromov-Witten theory shows that the extra information contained
in derived moduli spaces is very interesting and definitely geometrically meaningful.



In the above example of the stack of vector bundles, the tangent space of RV ect,,(S) is expected
to be a complex concentrated in degree [—1,1]. More generally, one can get convinced that tangent
spaces of derived moduli (1-)stacks should be complexes concentrated in degree [—1, oo].

The important conclusion is that “tangent spaces of derived moduli spaces” should be complexes.
Now, a smooth variety X locally at a point z € X looks like Spec(Sym(T ,)), where T is the dual
to the tangent space of X at z. Following the same principle, locally derived moduli spaces should
look like Spec(Sym(C)), but now C' is a complex of vector spaces. As Sym(C) is a cdga we obtain
the following expectation.

Expectation: Local rings of derived moduli spaces are expected to be cdga’s.

This gives an hint that derived algebraic geometry might be understood as algebraic geometry
over cdga’s, and is therefore part of HAG.
1.3 Overview of the construction

In order to motivate our construction we present here a construction of the category of schemes.

Any scheme X (we will assume all schemes to be quasi-separated) defines a functor of points

X(—=): (Rings) — (Sets)
A —  Homgen(Spec A, X).

This defines a functor X — X (—), from the category of schemes to the category Hom(Rings, Sets),
of functors from the category of rings to the category of sets. It is an easy exercice to check that this
functor is fully faithful, and induces a full embedding

Sch — Hom(Rings, Sets).

The image of this full embedding can be reconstructed as follows.

For any ring A € Rings, one has the representable functor

ha: (Rings) — (Sets)
B = Homngs(A,B).

The Yoneda lemma implies that A — h4 induces a full embedding
(Rings)? — Hom/(Rings, Sets).

Objects in the image of the functor A — h4 will simply be called affine schemes (note that Spec A(—) ~

ha).
We make the following definitions.

1. A morphism f : F — G in Hom(Rings, Sets) is representable if for any A € Rings, and any
ha — G, the functor F' X hy4 is an affine scheme.

2. A representable morphism f : F — G in Hom/(Rings, Sets) is furthermore an open immersion
if for any hy — G as above, the projection

FXGhAZhB—>hA

induced a morphism A — B which is a (Zariski) localization (i.e. Spec B — Spec A is an open
immersion).



3. A functor F' : Rings — Sets is a sheaf (for the Zariski topology) if for each ring A the restriction
of F on (Spec A) 74, is a sheaf.

Proposition 1.3.1 A functor F : Rings — Sets is a scheme (i.e. is isomorphic to some X (—) for
a scheme X ) if and only if it satisfies the following conditions.

1. F is a sheaf
2. The diagonal morphism F — F X F is representable.

3. There exists rings A;, and a morphism

H SpecA; — F

)

which is an epimorphism of sheaves, and such that any morphism Spec A; — F is an open
1IMMErsion.

Conclusion: The category of schemes only depends on the category of rings together with its
Zariski topology.

This conclusion is the base of relative algebraic geometry, as formally one can then define schemes
for any category of ring-like objects endowed with a topology. It will also be our base for developping
HAG. However, the new feature of dealing with a non trivial notion of equivalences will imply some
complications. We will need in particular to define correctly the Yoneda embedding in this new
context, as well as a new notion of topology.

2 Lecture 3. Categories with equivalences and model categories

The purpose of this lecture is only to give a very brief introduction to the the ory of model categories.
There are many good books and papers on model categories, some of them listed in the bibliography
below, to which we will refer for proofs and details. We will always neglect almost all set-theoretic
problems concerning universes, ...

2.1 Categories with equivalences and their localizations

There are many examples in which, given a category C, there is a distinguished set of morphisms W
in C that one would like to consider as invertible. Examples: C= “category of complexes of modules
over some commutative ring k”, W = “quasi-isomorphisms” ; C = “category of topological spaces”, W
= “weak homotopy equivalences” or Wy = “ maps inducing isomorphisms on some fixed cohomology
theory H”.

It is very well known that there always exists a formal way to invert the morphisms W in C; more
precisely, there exists a category W ~1C together with a functor £ : C — W ~!C sending W to isomor-
phisms and having the following universal property “any functor from C that sends W to isomorphisms
factors through ¢”. So, not only maps in W becomes isomorphisms in W ~'C but this construction is
initial among all functors with the same property. Such a category is called the localization of C with
respect to W.



Example 2.1.1 Let C = Ab (the category of abelian groups) and W be the maps with torsion kernel
and cokernel. Then Homyy-10(A, B) = Homa,(A® Q, B ® Q).

How does one describe the category W~1C ?
First of all, one can assume that W contains all the isomorphisms. Then, consider the category with
the same objects as C and with morphisms from z to y given by equivalence classes of (reduced) strings

X

where consecutive arrows have opposite directions and backwards arrows are in W. Two reduced
strings are equivalent if, after forcing them to the same length (= number of arrows between z and y)
and to the same pattern of arrows, then they can be connected by a commutative diagram like

x 211 212 21m Yy
L .
(II Znil,l zn;1,2 e . . anglym —y
] 1
x Zn,1 Zn,2 e e Zn,m Y

where the vertical arrows are all in W (and commutativity makes sense because all the strings involved
have the same pattern). One can check that definining W 1C to be this category (and £: C — W~!C
the obvious functor), we have universally inverted morphisms in W, i.e. we have built the localization
of C with respect to W (which is uniquely defined up to a unique equivalence of categories).

Exercise 2.1.2 Can you figure out a way to organize all the different commutative diagrams as the
one above (of various sizes) into a simplicial set? If you can, you have almost defined the so called
hammock localization of Dwyer-Kan (in any case, see [D-K2]).

2.2 Model categories. Examples

As one may easily guess, in absence of additional hypothesis on the pair (C, W), working with W ~!C
is in general almost hopeless. Therefore, one has singled out various conditions on the pair (C, W)
that make the corresponding localization more tractable. Among these conditions, there are the well
known calculus of left, right or bilateral fractions conditions, for which we refer to [Ga-Zi] or [Sch]. It
will suffice to recall that if A is an abelian category, K(.A) denotes the category of complexes in A with
morphisms given by homotopy classes of maps and W C K(A) consists of quasi-isomorphisms, then
the pair (W, K(A)) admits a bilateral calculus of fractions; the corresponding localization W 1K (A)
is the derived category D(A) of the abelian category A and it’s known to be (somewhat) tractable.

The axioms of a model structure on a category supply another way to get a tractable localization
(though this is not their only aim). In fact, one consequences of them is to allow a kind of hybrid
left /right calculus of fractions. But before explaining this, let us give the axioms (due to D. Quillen).

Definition 2.2.1 A model category is a complete and cocomplete category M together with the fol-
lowing data

e three distinguished classes of maps in M, (W, Fib, Cof) (weak equivalences, fibrations and cofi-
brations);



e there are two functorial factorizations f — (p,i'), f —— (p',i) (i.e., f =pod and f =p' o,
functorially in f),

subject to the following axioms

1. (2 out of 3) If (f,g) are composeable arrows (i.e. f og exists), then all f, g and fog are in W
if any two of them are;

2. (Lifting) Calling maps in WNFib (resp., in WNCof) trivial fibrations (resp. trivial cofibrations),
i any commutative solid arrows square

8

/ >
=4

xr
s
Yy

_—

i

S=<—

in which p is a fibration and i is a cofibration, o dotted arrow exists if either p is a trivial fibration
or 1 18 a trivial cofibration;

3. (Retracts) Any retract of a weak equivalence (resp. a fibration resp. a cofibration) is a weak
equivalence (resp. a fibration resp. a cofibration);

4. (Factorizations) For the two functorial factorizations f — (p,i'), f —— (p',i) (i-e., f =poi
and f = p' o1, functorially in f), p is a fibration, i’ a trivial cofibration, p' a trivial fibration and
1 a cofibration.

Remark 2.2.2 If one thinks of M = Top then the lifting axiom is just a way to build in the definition
both the covering homotopy theorem and the homotopy extension theorem.

For a model category M, the associated homotopy category is the category Ho(M) :== W~ M.
Since M is complete and cocomplete, there is an initial object () and a final object *; an object x in
M is then called fibrant (resp. cofibrant) if the map z — x (resp. the map () — z) is a fibration (resp.
a cofibration). The full subcategory of fibrant (resp. cofibrant, resp. cofibrant and fibrant) objects in
M, will be denoted by My (resp. M., resp. M.s). The existence of functorial factorizations (applied
to the maps £ — * and ) — z), then gives us functors R and Q : M — M, together with natural
transformations Id — R and (Q — Id which are objectwise weak equivalences. R is called the fibrant
replacement functor and @Q the cofibrant replacement functor, in M.

In general, given a complete and cocomplete category M endowed with a triple (W, Fib, Cof) it is
definitely not an easy task to check whether this gives a model structure on M or not; especially hard
is to check that there is an associated pair of functorial factorizations satisfying (4).

Remark 2.2.3

1. The axioms are redundant in the sense that if M is a model category then Fib (resp. Cof) is
determined by the pair (W, Cof) (by the pair (W, Fib)) via the lifting axiom.

2. The axioms are self-dual in that if M is a model category then the opposite category M is a
model category with the same class of weak equivalences and with cofibrations and fibrations
interchanged.

Example 2.2.4

1. Let R be a (commutative) ring and Chy(R) the category of chain complexes of R-modules in
non-negative degrees (or of cochain complexes in non-positive degrees). Then



e W := quasi-isomorphisms;
e Fib := degreewise surjections in degrees > 1;
e Cof :=degreewise injections with degreewise projective cokernel,

are part of a model structure on Ch, (R) (see [D-S]). The associated homotopy category Ho(M)
is the derived category DT (R).

2. R as above and Ch(R) the category of not necessarily bounded complexes of R-modules. Then,

e W := quasi-isomorphisms;
e Fib := degreewise surjections;
e Cof := maps with the left lifting property with respect to any surjective quasi-isomorphism,

are part of a model structure on Ch(R), called the projective model structure on Ch(R) (see [Ho,
§2.3]). In this model structure:

e if a complex X, is cofibrant, then each X,, is a projective R-module (the converse is true
if X, is bounded below). Therefore, if A is an R-module, any usual projective resolution
P, — A (in the sense of homological algebra) is a cofibrant replacement; therefore cofibrant
replacements generalizes the idea of projective resolutions (hence the name of the model
structure);

e any complex is fibrant;

e cofibrations are degreewise split inclusions, whose cokernel is cofibrant.
There is also a “dual” model structure where

e W := quasi-isomorphisms;
e Cof := degreewise injections;

e Cof := maps with the right lifting property with respect to any injective quasi-isomorphism,
which is called the injective model structure on Ch(R) (see [Ho, §2.3]). In this model structure:

e if a complex X, is fibrant, then each X, is an injective R-module (the converse is true if X,
is bounded above). Therefore, if A is an R-module, any usual injective resolution A — I,
(in the sense of homological algebra) is a fibrant replacement; therefore fibrant replacements
generalizes the idea of injective resolutions (hence the name of the model structure);

e any complex is cofibrant;
e fibrations are degreewise split surjections, whose cokernel is cofibrant.

In both cases, the associated homotopy category Ho(M) is the (unbounded) derived category of
R.

3. Let k be a field of characetristic zero and M := (cdga,?o) the category of nonpositively graded,
differential graded-commutative algebras over k (with differential of degree +1). Then

e W := quasi-isomorphisms;
e I'ib := degreewise surjections in degrees < 0;

e Cof := maps with the left lifting property with respect to any surjective quasi-isomorphism,

are part of a model structure on M. In this model structure:



e if a cdga A® is quasi-free (i.e. there exists a free non-positively graded k-module V'* and
an isomorphism of graded k-algebras A®* ~ F(V*), where F(—) denotes the free graded
commutative k-algebra functor) then it is cofibrant. The basic example is given by Koszul
complezes. Let f := (f1,..., fn) be elements in some commutative noetherian k-algebra R.
The associated Koszul complex gives a map K ( f) — R/(f) (where K(f) is quasi-free)
which is a cofibrant replacement iff f is a regular sequence;

e as a partial converse to the above, any cofibrant A® admits a trivial fibration p : F'* — A®
from a quasi-free cdga F'* (in particular, then, p has a section).

4. Let M := Top be the category of topological spaces. Then,

e W := weak homotopy equivalences (i.e. maps inducing isomorphisms on all the =;’s, for
any choice of base point);

e Cof := injections;
e Fib := maps with the right lifting property with respect to any injective weak homotopy
equivalence,

are part of a model structure on Top. Fibrations here are exactly Serre fibrations i.e. maps
p: X — Y for which the classical covering homotopy theorem holds: for any n > 0, a dotted
arrow in the following commutative diagram exists

D’I’L

7
-
-
-

D" x I ——=Y

5. Let M := SSet be the category of simplicial sets (i.e. the category of functors A’ — Set,

where A denotes the standard simplicial category). There is a pair of adjoint functors

|-

SSet Top

Sing
where the left adjoint |—| is the geometric realization functor (that takes the representable A[n]
to the standard n-simplex A™ in R” and is then extended by requiring preservation of colimits)
and the right adjoint Sing is the singular complex functor. Then,

e W := weak homotopy equivalences (i.e. maps f such that |f]| is a wek homotopy quivalence
in Top);
e Cof := monomorphisms;

e Fib := maps with the right lifting property with respect to any monic weak homotopy
equivalence,

are part of a model structure on SSet. Fibrations here are exactly Kan fibrations i.e. maps
p: X — Y which “lift on horns”. More precisely, for n > 0 and any 0 < r < n, let the r-th
horn A”[n] be the sub-simplicial set of A[n] whose geometric realization is obtained from A" by
omitting the interior of A™ and the interior of the (n — 1)-dimensional face opposed to the vertex
r; then a Kan fibration is a map p such that for any n > 0 and any 0 < r < n, a dotted arrow
in the following commutative diagram exists



By a result of Quillen, the geometric realization functor preserves fibrations (and, by definition,
weak equivalences).

2.3 The homotopy category of a model category

Let us see how the axioms of a model structure on M give an “easy” description of the homotopy
category Ho(M) = W~ M.
If x € M, a cylinder for z is a factorization

z]]= x
Cyl(X)

of the canonical map z[[# — = into a cofibration ig ][4 followed by a weak equivalence u. The
typical example is obviously M = Top and Cyl(X) = X x I. A cylinder for z in the opposite model
category M°P is called a cocylinder or path-object, and denoted by Cocyl(z). The factorization axiom
ensures the existence of at least one (canonical) cylinder and cocylinder object for any x € M.

As expected, (co)cylinders are designed to speak about homotopies between maps in M. If f,g: x —
y are maps in M a left homotopy is a map h : Cyl(x) — y such that the following diagram commutes

x
. l !
io
Cyl(x) h Zy
ilT f
x

If there exists a left homotopy between f and g, we write f ~' g. Dually, a right homotopy between f
anf g is a left homotopy in the opposite model category; in this case, we write f ~" g. We write f ~ ¢
and say that f and g are homotopic if they are both left and right homotopic. A map f:z — yis a
homotopy equivalence if there exists a map f':y — «, such that ff' ~ id, and f'f ~ id,.

We list here the basic properties of left /right homotopies:

e If z is cofibrant, then ~!

is an equivalence relation in Hom(x,y), for any y € M;
e If y is fibrant, then ~" is an equivalence relation in Hom(z,y), for any z € M;

e If z is cofibrant, y is fibrant and f,g: x — v, then f ~t g iff f ~" ¢ iff f ~ ¢ therefore, ~ is
an equivalence relation in Hom(z,y);

e Composition in M.; is compatible with ~. Hence there exists a quotient category nM.; :=
M.;/ ~ (whose isomorphisms are homotopy equivalences);

e If we consider the loclaization functor Ho : M.y — Ho(M,yf) := WC}IMcf, then f ~ g implies
Ho(f) = Ho(g); therefore, there exists a factorization

M.y —2 Ho(M,y)

N

wM.p

11



e a map in M.y is weak equivalence iff it is a homotopy equivalence; therefore there exists an
induced functor 8 : Ho(M.¢) — 7M,y;

e the functor a: 7M.y — Ho(M.s) and 3 : Ho(M,.;) — 7M.y are mutually quasi-inverse;

The basic theorem that describes the homotopy category Ho(M) is the following

Theorem 2.3.1 If M is a model category, then the natural inclusion M.y — M induces an equiva-
lence of categories Ho(M.s) ~ Ho(M) (whose quasi-inverse is induced by RQ)). Therefore

Ho(M) ~ wM,;.
This gives a nice description of maps in the homotopy category Ho(M) as homotopy classes of

maps in M:
[]77 y] = HomHO(M) (IE, y) = [RQIL‘, RQy] = HOTTLM(RQI, RQy)/ ~-

Remark 2.3.2

e The functors R : M — My and @ : M — M, induce equivalence of categories Ho(My) ~
Ho(M) ~ Ho(M,).

e We can represent any morphism in Ho(M) from z to y as an equivalence class of strings in M
of length 3

T~y ——y <Y

where v and v are in W.

Exercise 2.3.3 Define 7'M, := M./ ~'and W, c 7'M, tyhe image of W N M,; analogous definition
for 7" M and n'W;. Prove that the pair (7! M., 7'W,) (resp. (7" My, 7"W;)) has a calculus of left
fractions (resp. of right fractions) and that the corresponding localization is Ho(M.) (resp., Ho(My)).
So, Ho(M) ~ Ho(M,) ~ Ho(My) can be computed using left or right fractions from (7'M, 7'W;) or
(n" My, "W).

2.4 Higher homotopical structures: homotopy limits, homotopy colimits and map-
ping spaces

So far we have seen that a model structure on a category induces a good description of its localization
with respect to weak equivalences. However, the axioms imply a lot more higher homotopical structure.
Before giving the full structure, let us have a quick look at the first stage. Let M be a model category,
z €M y€Mpand f,g:x — y. If h,h' : f ~ g are left homotopies, there is a similar notion of left
homotopy between h and h': if h: Cyl(z) — y and b’ : Cyl(z)" — vy, define a double cylinder as a
factorization

hIIAR

Cyl(@) 1, 110 Colla) 2y
u
Cyla(x)

where u is a weak equivalence and proceed analogously. Similar constructions hold when replacing
left homotopies with right homotopies. These constructions give equivalence relations in the set of
left /right homotopies between f and g: the corresponding quotients are denoted by 7rll(ac, y; f,9) and
77 (z,y; f,g) and one can check that (since z is cofibrant and y is fibrant 7! (z, y; f,9) ~ 7} (2, y; £, 9);
therefore, we will denote any of this two sets simply as 71 (z,y; f,g). For fi, fo, f3 € Homps(x,y), and
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homotopies h : fi ~ fa, b’ : fo ~ f3, have a natural composition (mimick the known construction for
topological spaces!) h * h' which is a homotopy between f; and f3. This composition of homotopies
is compatible with the equivalence realtion above, therefore we get an induced composition

i (w,y; f1, f2) X (2, y; f2, f3) — mi(w,y; f1, f3)-

Consider the category II;(x,y) whose objects are Homps(z,y) and whose morphisms are given by
Homy, (zy)(f,9) == mi(x,y; f,9), with the above composition. The upshot is that II,(z,y) is a
groupoid, appropriately functorial in the pair (z,y) (see [Qui2], for details).

This is only the first step (actaully the 1-truncation) of a higher structure built “on” the Hom-sets
of a model category: one can in fact define, for any z,y € M, a simplicial set (whose homotopy type is
well deined, i.e. the simplicial set is well defined in Ho(SSet) up to isomorphism) Mapy(z,y), called
the mapping space between x and y, such that

b 7TO(‘Z\IGJPM(‘II"ay)) = [$,y] = HOTTLHO(M)(IE,y) and
o m(Mapn(z,y); f) = Auty, (py)(f), if @ is cofibrant and y is fibrant.

Let us follow a path to mapping spaces which is slightly different from the usual one (it might be
called a “Derivateurs”-approach, see [He, Gr2, Mal]).

As we introduced them, model structures are tools to study pairs (C,W) of a category plus a distin-
guished set of arrows in it. Actually, the structure we are interested in is the triple (C, W; W ~'C),
meaning that we study pairs as above with the aim of considering the corrseponding localizations. In
studying such pairs (or triples), we want also to perform constructions on them, in particular consid-
ering diagrams and limits/colimits. If I € Cat is an “index” category, we may associate to any pair
(C, W) the pair (CI, Wr), where C! is the category of functors I — C and W consists of those natural
transformations which are objectwise in W. The constant functor ¢ : C — C! gives an map of pairs
(C,W) — (C',W;) and therefore induces a functor

c:Wlc — witeh.

As usual in category theory, at this point one asks whether this functor ¢ has left /right adjoints. A left
(resp. right) adjoint (when it exists) is called the homotopy colimit along I and denoted by hocolim
(resp. the homotopy limit along I and denoted by holim;.

Remark 2.4.1 Why have we considered W; ' (C’) instead of (W~1C)!), i.e. why have we looked for
new concepts of limits/colimits? There is a conceptual answer to this: from the point of view of
studying the category of pairs (C, W) as above, “diagrams” should give rise again to pairs and with
this diagrams at hand we pass to the corresponding localizations and ask the familiar questions that
usually lead to the concepts of limits/colimits. This is what we have done above.

To see this conceptual answer at work in a concrete example, let us take C := Top with the usual W
(the weak homotopy equivalences). Take I := (® <—— e —— @) (so that usual colimits along I are
pushouts), and consider the following two I-diagrams in C (where the maps are the obvious ones):

pt<—— S ——pi
D" <——S§" —— D",

There is an obvious map of diagrams from the second one to the first one: the identity in the middle
term and the shrinking map on the left and right terms. Note that this map of diagrams is “in” W, i.e.
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each map is a weak homotopy equivalence. So the two diagrams should describe isomorphic elements
in W, L(c!). But if we take the corresponding usual pushouts in Top, we get pt for the first diagram
and S™*! for the second diagram: the results are therefore not isomorphic in Ho(Top). This shows
that usual colimits are invariant under weak equivalences, i.e. are not the right objects to consider
when studying pairs (C, W) with an eye to W~ !C.

Theorem 2.4.2 If a pair (C, W) is part of a model structure, then holim; and hocolim; exist for any
I € Cat.

If, for a given pair (C,W), one has holim; and hocolim;, for any I (e.g. for pairs coming from
model categories) one can look for mapping spaces as follows:

e for a simplicial set K and an object y € C, consider

y® = holima(A — C : [n] — Hy)
Kn

as an object in W~!C; suppose that this gives a functor Ho(SSet) — W™IC : K — 3y (ie.
that K ~ K’ in Ho(SSet) yields yX ~ y&X' in W—1C);

e Then, for z,y € C, we say that the mapping space relative to the pair (C, W) between z and y
exists if the functor

K] = Homy—1¢(z, yK)

Map(C,W)(w,y) : Ho(SSet) — Sets : K — [z,y
is representable. The corresponding representative object in Ho(SSet) will be denoted by
Mapc wy(7,y) and called the mapping space relative to the pair (C, W) between z and y.

Theorem 2.4.3 If a pair (C,W) is part of a model structure, then mapping spaces Mapc w)(T,y)
exist for any x,y € C.

In other words, any model category is naturally enriched over Ho(SSet).

This was the functorial (or “Derivateurs”) approach to mapping spaces of pairs. There is also
a resolution approach to mapping spaces in a model category M (essentially due to Dwyer-Kan, see
[Hi]) where mapping spaces are defined using left/right cosimplicial/simplicial resolutions of objects
in M. The idea is as follows:

e There is a model structure on the category ¢cM of cosimplicial objects in M (i.e. the diagram
category M), called the Reedy model structure ([Hi]), in whch weak equivalences are defined
objectwise. A cosimplicial resolution of an object 2z € M is then a weak equivalence I'(z)* —
c*(z) in ¢M (where ¢*(z) is the constant cosimplicial object at z) with I'(z)* Reedy cofibrant.
dually, one defines simplicial resolutions.

e Functorial choices of cosimplicial/simplicial resolutions alwways exists in a model category (and
their categories are contractible); moreover, if I'(—)* — ¢*(—) and c.(—) — X(—). are,
respectively, functorial cosimplicial and simplicial resolutions in M, we have an isomorphism in

Ho(SSet)
diag(Hompr (T(x)*,2(y)«)) ~ Mapp(z,y)

for any z,y € M. Note also that if z is cofibrant (resp. if y is fibrant), we have Hom s (z, £(y).) ~
Mapns(z,y) (vesp. Homp(T'(2)*,y) =~ Mapy(z,y)).
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A particular nice case where the mapping spaces can be easily computed is when M is a simplicial
model category. This essentially means that

e for any z,y € M there exists a simplicial set Hom,;(z,y) and a composition Hom;(x,y) X
MM(?/? Z) — MM((L" Z);

e there is an isomorphism Hom,;(—, —)o ~ Homps(—, —) satisfying various compatibilities;

e for any K € SSet and any = € M, there are functorially defined objects ¥ and =z ® K in M
such that
Homy(z ® K,y) = Homgg,,(K, Hom(z,y)) =~ Homy(z,y").

e if i: 2z — ' is a cofibration and p : y — 1/ is a fibration in M, then the induced map

MM(xlay) HMM(yaa:) XHomM( )MM(xlayl)

)y’
is a fibration in SSet which is moreover trivial if either ¢ or p are trivial.

For a simplicial model category M, one defines
RHom y;(z,y) := Hom,(Qzx, Ry).

In such an M there is a canonical cosimplicial resolution functor I'(z)* := Qz ® A[n] and, for any
x,y € M, we have isomorphisms in Ho(Sset)

Mapys(z,y) =~ Mapr (Qz, Ry) ~ Homp (Qr®A[+], Ry) ~ Homgse (A[*], Hom (Qx, Ry)) ~ RHom y/(z,y).

Remark 2.4.4 Yet another approach to mapping spaces: the Dwyer-Kan localization ([D-K1, D-K2,
D-K3, D-K4, D-K5]). This is perhaps the most general and conceptual approach to mapping spaces
for pairs (C, W). Let us come back to pairs (C, W): we have seen that the standard localization W ~'C
does not contain all the higher homotopy informations carried by the pair itself. However, Dwyer and
Kan have defined a richer notion of localization, called simplicial or hammock localization L(C;W).
It is a simplicially enriched category with the same objects as C such that

7TU(ML(C;W) (IE, y)) = HomW_IC (I, y)7

in other words the 1-truncation of L(C; W) gives back the usual localization W~ 1C. However, L(C; W)
contains all the higher homotopical informations stored in the pair (C,W): for example, if M is a
model category, then

Mapn (z,y) = Hompc,wy (@, y)-
So one can actually define mapping spaces for an arbitrary pair (C, W) as
Mﬂp(c,w)(—a —) = ML(C;W)(_a -).

We like to think of L(C; W) as the correct oo-localization of C with respect to W: in fact L(C; W)
satisfies a higher categorical version of the universal property satisfied by the usual localization.
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2.5 Morphisms between categories with equivalences and between model cate-
gories

The obvious notion of morphism between pairs (i.e. categories with equivalences) (C, W) — (C', W)
is that of a functor f : C — C’ such that f(W) C W’'; this induces a functor on localizations
Ho(f) : W 1C — W' 1.

However, if (C,W) and (C',W') are parts of model structures, then there are more functors C — C’
entitled to “induce” functors on the associated homotopy categories. This is already a familiar feature
for derived functors between derived (or Waldhausen) categories: as soon as a functor preserves
resolutions of a certain kind (projective/injective/flat/flasque etc.) and quasi-isomorphisms between
them, one can derive it. For model categories one has:

o Left derived functors. If f : M — N is a functor between model categories that sends weak
equivalences between cofibrant objects to weak equivalences, the restriction f. : (M., War,.) —
(N,Wy) is a morphism of pairs as defined above; therefore there ia an induced left derived

functor
Q Ho(ft:)

Lf : Ho(M) —— Ho(M.) —— Ho(N) .
e Right derived functors. If g : M — N is a functor between model categories that sends weak
equivalences between fibrant objects to weak equivalences, the restriction g¢ : (My, War,f) —
(N, Wy) is a morphism of pairs as defined above; therefore there ia an induced right derived

functor

Ry : Ho(M)—%>Ho(M;) Y Ho(N) .

e Mized derived functors. There are similar constructions when a functor M — N sends weak
equivalences between cofibrant and fibrant objects to weak equivalences (one get functors that
may be denoted by RLf and LRf).

Particular kind of functors as above are the so-called left Quillen functors (resp. right Quillen functors)
that are righta adjoint functors preserving cofibrations and trivial cofibrations (resp. left adjoint
functors preserving fibrations and trivial fibrations). In an adjunction (ordered as (left,right) adjoints)
(f,9), f is left Quillen iff g is right Quillen; these adjunctions are often called Quillen pairs or Quillen
adjunctions and deserve to be called morphisms between model categories (but one has to choose one
of the two possible directions for the morphism), see [Ho, §1.4].

What about isomorphisms or better equivalences between model categories? First of all, note that if

foM_ N :g
is a morphism between model categories (i.e. a Quillen pair where,say, f is the left adjoint), then

Lf : Ho(M)_ __ Ho(N) :Rg

-

is again an adjunction, called the derived adjunction of the given morphsim. Then, we say that a
morphism of model categories is a Quillen equivalence if its derived adjunction is an equivalence (i.e.
Rg is quasi inverse to Lf).
Example 2.5.1 The adjunction

|—|: SSet ___Top : Sing

is a Quillen equivalence.
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2.6 Homotopical localization

The reference for this subsection is [Hi].

We have already seen analogs of classical constructions in category theory (limits, colimits, morphisms
between categories,...) for model categories; it turns out that there is also a suitable analog of the
notion of localization.

Given a model category M and a subse S of maps in M, we formulate the following natural homotopy
localization problem:

e Does it exist a universal model category Mg in which the maps in S are weak equivalences? In
other words, can we formally add inverses to S in Ho(Mg) (not in Mg itself: that would be a
usual localization)?

More precisely, like in the case of the usual localization, we want to consider morphisms M — N of
model categories such that... but which morphisms? One has left or right Quillen functors: this will in
fact give rise to a left and a right homotopical localization. Let us take the “left” approach, to fix ideas.
Therefore, we will consider left Quillen functors f : M — N that inverts maps belonging to S in
Ho(NN). This is easily seen to be equivalent to requiring that the left derived functors Lf : Ho(M) —
Ho(N) take (images in Ho(M) of) maps in S to isomorphisms. A left homotopical localization of M
with respect to S will then be a Quillen functor with this property, which is initial.

Let us call an object x € M S-local if it “sees” maps in S as weak equivalences i.e. if it is fibrant and
for any y — ¢/ in S, the induced map Mapy/(y', ) — Mapy(y, z) is an isomorphism in Ho(SSet).
Amap f: 2 — 2’ in M is an S-local equivalence if it is “seen” as an equivalence by any S-local
object, i.e. if for any S-local object y € M, the induced map Mapy(z',y) — Mapp(z,y) is an
isomorphism in Ho(SSet).

Theorem 2.6.1 (Bousfield-Hirschhorn) If M is a “nice” model category (left proper and cellular, for
the experts), then:

1. the following classes of maps in M

e Wg:= S-local equivalences;

e Cofg:= cofibrations in M;

e Fibg:= maps with the right lifting property with respect to S-local equivalences which are
also cofibrations in M,

are part of a model structure on M, denoted by LgM ;

2. The identity functor on M induces a left Quillen functor M — LgM which is a left homotopical
localization of M with respect to S.

The category LgM is most commonly called the left Bousfield localization of M with respect to
S. We conclude by listing, for future reference in the next lectures, the most basic properties of LgM
(we denote by (W, F'ib, Cof) the model structure on M):

o W C Wg;

Trivial fibrations in M coincide with trivial fibrations in LgM,;

Fibg C Fib;

Trivial cofibrations in M are trivial cofibrations in LgM;

Fibrant objects in LgM are exactly S-local objects;
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e The right derived functor RId ; : Ho(LgM) — Ho(M) is fully faithful and its essential image
is the subcategory of Ho(M) consisting of objects € M such that, for any y — ¢’ in S, the
induced map Mapy(y',2) — Mapys(y,z) is an isomorphism in Ho(SSet) (this is half of the
condition for x being S-local: exactly, the only half that is invariant under weak equivalences);

e If M is a simplicial model category, then LgM is a simplicial model category (with the same
tensored /cotensored /enriched structure).

3 Lecture 4. Stacks as simplicial presheaves.

3.1 The model category of simplicial presheaves on a Grothendieck site

For an algebraic geometer, usually, a stack is a category fibered in groupoids over some site of schemes
and satisfying an additional descent, sheaf-like condition. However there are other ways to look at
stacks: as a particular kind of simplicial presheaves (over the same site) or as particular lax 2-functors
from the given site to Cat.

In all our talks, we will be considering stacks as simplicial presheaves on a given (sometimes “non-
classical”) site; so it is worthwile spending some time in explaining the relation between this point
of view and the point of view (often denoted as “classical” in the following) of categories fibered in
groupoids.

We will be somewhat brief and omit most of the proofs, since a full treatment of the subject would
require a full DFG Schwerpunkt on its own. Details about most of the contents of the first two
subsections, can be found in [Jal, Ja2], [Hol] and [DHI]. Of course, our take here is massively influenced
by the work of Carlos Simpson, in particular by [S1, S2, H-S].

3.1.1 The global model structure on simplicial presheaves

Before explaining the relations with the classical point of view, let us first introduce the point of view
of simplicial presheaves on a Grothendieck site.

Let (C,7) be a Grothendieck site (that we will suppose to be small, just to avoid entering in
multiple-universes choices). We will denote by SPr(C) the category of simplicial presheaves on C, i.e.
the category of controvariant functors C? — SSet. We already saw that the category SSet is a model
category; this model structure induces a natural model structure on SPr(C).

Proposition 3.1.1 The category SPr(C) endowed with the set of objectwise fibrations (resp. of ob-
jectwise equivalences) is a model category. This model structure will be called the global projective
model structure on SPr(C) and denoted by SPr(C)glop-

Proof. Exercise (use the small object argument [Ho, Thm. 2.1.14]). O

An immediate remark: the projective model structure obviously does not see the topology on
C. A consequent question: can we modify this model structure so as to take into account, in some
meaningful way, the given topology 7 on C ?
Of course, one possible answer is to replace the category SPr(C) with the category SSh(C, 7) of simpli-
cial sheaves on (C,7) and try to build a model structure in it. This can actually be done ([Jol]), but
here we prefer to keep working with simplicial presheaves: one can show that the two approaches are
equivalent in some sense. It turns out that there is a standard way to “homotopically” invert all the
coverings in the topology, considered as maps in SPr(C). This technique, already briefly discussed in
Lecture 3 and called the left Bousfield localization gives a new model structure whose fibrant objects
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have descent with respect to the topology. We will describe the main properties of this local model
structure in the next subsection.

Let us close this subsection by recalling that SPr(C)g1ob, is actually a simplicial model category([Hi,
§10.1] or Lecture 3) whose simplicial enrichment is given by

Hom(F,G), := Hom(F x A[n],G).
Therefore, for any F,G € SPr(C)gon one has an isomorphism in Ho(SSet), Mapgp,(c),,, (F, G) =~
RHom(F,G), where, as usual, Map,, denotes the mapping spaces in the model category M.

3.1.2 The local model structure on simplicial presheaves. Hyperdescent

We won'’t present the details of the Bousfield localization technique here but only give the most useful
properties of it.

Given a morphism of simplicial presheaves f : FF — G on C, we say that f is a 7-local equivalence
if it induces a weak equivalence of simplicial sets f, : F, — G, on the stalks, for any point z in the
site. Recall ([SGA4-I]) that a point in a site is just a point in the associated topos of sheaves of sets
on the site, i.e. a geometric morphism z from the topos Set of sheaves of sets over a category with one
object and one morphism, to our topos (so that we have an inverse image functor z* : Sh(C, 1) — Set
which is a left adjoint and left exact). The stalk at the point x of a simplicial presheaves F' is then
obtained from the levelwise composition of the sheafication functor followed by x*.

Actually this definition is only correct if the site has enough points, property that we will suppose
to make definitions easier. In the more general case, a local equivalence will be a map inducing an
isomorphism on all the sheaves of homotopy groups of F' and G, for any base point.

For any covering family (U; — X), we may consider the corresponding (Cech) nerve N(U), which
is the simplicial object in C defined by

N(U)n ::HUio XXUz'l XX---XXUz'n-

Note that there is a natural augmentation N(U), — X. This is only a special case of a more general
kind of simplicial object in C augmented over X, called T-hypercover of X. An hypercover is essentially
a Cech nerve in which we allow ourselves to refine each stage by taking some further covering in the
given topology. We won'’t need the general definition of hypercovering, at least at this point.

Definition 3.1.2 We say that a simplicial presheaf F' has T-hyperdescent if for any object X € C
and any T-hypercovering Uy — X the canonical map in Ho(SSet)

F(X) — holimF(U,)

(where on the r.h.s. we wrote F(U,) for Hom(Us,, F), following the common Yoneda-abuse)is an
isomorphism.

Note that if F' is the constant simplicial presheaf induced by a presheaf F of sets on (C,7), and
N(U,) = X is the Cech nerve of some covering (U; — X), then F' has hyperdescent with respect to
U, iff F has the usual sheaf property with respect to the covering (U; — X). In fact, for constant
simplicial sets holim = lim and weak equivalences between constant simplicial sets are just set isomor-
phisms. So hyperdescent is really a homotopical generalization of the usual descent or sheaf property.
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For any covering family (U; — X), we view it as a set of maps in SPr(C)gon and pass to the
corresponding Cech nerve N(U), which is now a simplicial object in SPr(C)glon. There is an aug-
mentation N(U)s — X and we consider its homotopy colimit hocolim(N (U).) — X computed in the
global model structure. We can perform the same procedure for any 7-hypercovering U, — X; this
way we get a (huge) set of maps hc(7) in Ho(SPr(C)gion). We denote by HC(7) the set of all maps in
SPr(C)giob Which projects into he(7) via the localization functor.

Theorem 3.1.3 There ezists a model structure SPr;(C)ioec on the category SPr(C), called the local
model structure, in which:

1. the equivalences are exactly the local equivalences;

2. the identity functor SPr(C)gob, — SPr,(C)ioc is a left Quillen functor and its left derived functor
RId : Ho(SPr(C)ioc) — Ho(SPr,(C)giob) s fully faithful with essential image the full subcategory
of simplicial presheaves having hyperdescent with respect to 7.

The proof is in two steps. First one defines SPr;(C)oc as the left Bousfield localization of SPr(C)gio
with respect to the set of maps HC(7)2. By general properties of the Bousfield localization machinery,
this already identifies local fibrant objects as those global fibrant objects that have tau -hyperdescent
and this establishes the second part of Theorem 3.1.3. Then one need a bit of work to proves that the
equivalences in Bousfield localized model structure (which are the so-called HC(7)-local equivalences)
actually coincides with the local equivalences previously defined. For a complete proof, the reader
may wish to consult [DHI].

3.1.3 Hom stacks

The category Ho(SPr;(C)joc) of co-stacks has a very rich structure. First, since it is the homotopy
category of a simplicially enriched model category (where Hom(F,G), := Hom(F x A[n],Q)), it is
enriched over Ho(SSet), by defining RHom (F,G) = Hom(QF, RG). Moreover, it is a cartesian closed
category i.e it has internal Hom-objects (just like the category of sheaves over a topological space):
for any F' and G in Ho(SPr;(C)ioc), one has an object RHom (F,G) in Ho(SPr;(C)ioc) such that

Hom/(F',RHom(F,G)) ~ Hom(F' x F,G).
Of course, this essentially comes from the fact that the category of simplicial presheaves on a site has
itself internal Hom-objects defined as usual
Hom(F,G) : X — Homgpy(c/x)(Fle/x, Gle/x)-
Remark 3.1.4 We are a bit cheating here, since the construction requires a small detour. If C has
fibered products, then one simply define
RHom(F,G) := a(Hom(QF, RG)),

where a = LId : SPr-(C)glob, — SPr;(C)ioc denotes the stackification functor and R (resp. Q) is a
fibrant (resp. cofibrant) replacement in the projective local model structure. Here is an overview of
the construction in the general case (for more details, see [HAG-I]). First consider the injective model
structure on SPr(C) in which equivalences and cofibrations are defined objectwise. Then, for any F
and G in SPr;(C)jo. define the corresponding internal Hom-stack as

RHom(F, Q) := a(Hom(F, Rin;G)),

where a = LId : SPr(C)gior, — SPr;(C)ioc denotes the stackification functor and Rij the fibrant
replacement functor in the injective model structure.

2 Actaully HC(7) is not a set so we need to find a “nice” set in it and to left Bousfield localize with respect to this:
see [DHI] or [HAG-I].

20



3.2 Reinterpreting sheaves and stacks in groupoids as truncated simplicial presheaves

We keep the previous notations: (C,7) is the base site and SPr,(C)joc is the local model structure on
the category SPr(C).

Let us denote by St(C, 7) the category of stacks fibered in groupoids over the site (C,7) ([La-Mo]); its
objects are stacks § — C and the morphisms between & — C and &' — C are the obvious (strictly)
commutative triangles of functors. Note that one may consider St(C,7) also as a 2-category (in the
obvious way, laxifying commutative triangles); it will be denoted by St(C, 7).

3.2.1 Stacks in groupoids as 1-truncated simplicial presheaves

We want to associate to any stack in groupoids over (C,7) a simplicial presheaf on C. If S — C is a
prestack or a stack in groupoids, the rule C' — S¢ is not “exactly” a presheaf of groupoids on C. In
fact any inverse image functor (—)* only satisfy the weak transitivity (f o g)* ~ ¢* o f*, so that the
rule C'— S¢ only defines a priori a lax (or weak or pseudo) presheaf of groupoids. However, one can
always associate to such an § — C a genuine presheaf of groupoids and actually of simplicial sets, on
C through the following strictification (or canonical clivage) construction.

Recall that for groupoids, the nerve functor is often called the classifying space functor and denoted
by B; the reason for this name is that for a groupoid G, the fundamental groupoid IT; (Nerve(G)) is
equivalent to G and Nerve(G) has trivial higher homotopy groups: i.e. it behaves analogously to the
classifying space of a group.

Proposition 3.2.1 (Strictification for prestacks in groupoids.) Let S — C be a prestack in groupoids
over (C,7). The rule
BS . C — BHomFibGrpd/c (C, S)

defines a simplicial presheaf BS on C. Here MGI‘pd/C(_v —) denotes the groupoid of morphisms
between categories fibered in groupoids over C.

Moreover, the rule B : S — BS defines a functor between the category of prestacks in groupoids over
(C,T) and the category of simplicial presheaves over C.

Proof. Long, but safe check. O

Note that if S — C is a stack in groupoids, it satisfies by definition a descent condition on (C, 7), and
this implies that BS also satisfies the hyperdescent condition in SPr(C') and actually is a fibrant object
in SPr;(C)oc (the fact that descent with respect to only nerves of coverings implies full hyperdescent
is due to the observation that B of a stack is a 1-truncated simplicial presheaf while the fact that
not only B of a stack staisfies hyperdescent but is also objectwise, i.e. globally, fibrant follows from
noticing that the classifying simplicial set of a groupoid is always a fibrant simplicial set).

Remark 3.2.2 On the other hand, if ' € SPr(C'), we may first associate to it a presheaf in groupoids
II; F which sends X € C to II1 F'(X); then we may apply the Grothendieck construction (explain?) to
IT, F to get a genuine pre-stack in groupoids [II; F on (C, 7). This is not in general a stack unless one
starts from a simplicial presheaf F' being fibrant in SPr,(C)j (actually it is enough that F' satisfies
restricted hyperdescent, i.e. hyperdescent with respect to nerves of all 7-coverings).

Using the nerve functor on the Hom groupoids, one can view the 2-category St(C, 1) of stacks in
groupoids as a category enriched over SSet; we will denote it by St(C, 7).
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Exercise 3.2.3 Check that one can enhance the functor B to a simplicial functor B : St(C,7) —
SPr-(C).

By composing this enhanced B with a simplicial cofibrant replacement functor @ : SPr;(C) —

SPr,(C),. (it exists by ...) and noticing (again) that B of a stack is always a fibrant object in
SPr,(C)1oc, we get a simplicial functor

QB : St(C,7) — SPr,(C)/

loc*

We are now ready to state the comparison between stacks in groupoids and simplicial presheaves

Theorem 3.2.4 The 2-truncation

(QE)SZ : St(C7 T)<2 — SPrT(C)lcéfC<2

is a fully faithful morphism of 2-categories (i.e. it induces an equivalence of categories between

the Hom-categories) and its essential image is the full 2-subcategory of SPrT(C)Cf

loc < consisting of

1-truncated simplicial presheaves.

Since Iy o Nerve is canonically isomorphic to the identity functor on Grpd, the 2-truncation 2-
category St(C,T) < is canonically equivalent to the 2-category of stacks in groupoids. Therefore,
Theorem 3.2.4 says that one can embed the theory of stacks in groupoids in the theory of simplicial

presheaves on the same site.
Corollary 3.2.5 The 1-truncation of (QB defines a fully faithful functor
(1 —iso) *(St(C, 7)) — Ho(SPr;(C)ioc)
whose essential image is given by the full subcategory of 1-truncated simplicial presheaves.

Remark 3.2.6 Actually Theorem 3.2.4 is equivalent to the following statement: QB induces a fully
faithful morphism between the Dwyer-Kan simplicial localizations

L(St(C,7),1 —is0) — L(SPr(C)ioc, equiv).

The reason for the equivalence of the two statements is that the simplicial category L(St(C,7),1 — iso)
is 2-truncated (i.e. its simplicial Hom’s are 1-truncated) and this follows from the fact that it is a
localization of a model category with an enrichment in groupoids, whose mapping spaces are exactly
computed by the groupoid of morphims ( which are 1-truncated when viewed as simplicial sets).

3.2.2 Sheaves of sets as 0-truncated simplicial presheaves

Let Pr(C) be the category of presheaves of sets on the site (C, 7). The notion of 7-covering induces a
natural notion of 7-local isomorphsim of presheaves: a map of presheaves is a local isomorphism if it
is surjective and injective “up to a covering refinement” (not difficult to figure out a precise definition:
exercise). Then we may localize the category Pr(C) with respect to the set W of local isomorphisms
(i.e., we formally invert them); the category W 'Pr(C) we obtain, comes naturally endowed with a
localization functor loc : Pr(C) — W._ 'Pr(C) which can be checked to be left exact (i.e. commuting
with finite limits) and to have a right adjoint. We will call a localization with these properties a left
ezact localization. The crucial property of this construction is that W, 'Pr(C) is naturally equivalent
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to the category of sheaves of sets on (C,7) and through this equivalence, the localization functor loc
is identified with the sheafication functor.

The properties of the left Bousfield localization (and Theorem 3.1.3) show that if we replace the
category of presheaves with the category of simplicial presheaves, the 7-local isomorphisms by the 7-
local equivalences and the usual localization by the its homotopy analog, the left Bousfield localization,
the identity functor induces a homotopy left ezact localization 1LId : Ho(SPr,(C)gion) — Ho(SPr-(C)ioc),
i.e. LId has a right adjoint and is homotopy left exact (i.e. commutes with homotopy fibred products).
These gives a further analogy (other than the hyperdescent property, Theorem 3.1.3) with the case of
sheaves of sets, and it suggests again that objects in Ho(SPr;(C)joc) can be considered as homotopy
analogs of sheaves on the given site. We will call these objects oco-stacks.

Moreover, one can actually see usual sheaves of sets as oo-stacks, in much the same way as we
have seen stacks in groupoids as oo-stacks in the previous subsection. The idea is the same and
actually, technically simpler here: we may view any (pre)sheaf of sets as a constant simplicial presheaf.
Composing with the localization to the homotopy category, this gives a functor

i : Sh(C,7) = Ho(SPr,(C)ioc)-

Since any constant simplicial set has vanishing homotopy groups in dimensions > 1, it is clear that
the image of ¢ consists of 0-truncated simplicial presheaves.

Proposition 3.2.7 The functor i is fully faithful and its essential image consists of O-truncated sim-
plicial presheaves.

Therefore, also the theory of sheaves of sets on the site (C, 7) is embedded in the theory of co-stacks
over (C, ).

3.3 Geometric stacks. Examples
3.3.1 Geometric stacks

In this section we specialize our base site to some site of schemes; to fix ideas, we will take (C,7) :=
(Aff/R,ét), the big étale affine site over SpecR. The treatment here is strongly influenced by [S2].
For such sites, in wich one has a notion of affine object and of smooth morphism, it makes sense to
single out a special subcategory of co-stacks, called geometric stacks (or algebraic, in the case of usual
stacks in groupoids, [La-Mo, Def. 4.1]). These are the stacks on which one can really hope to do
some geometry (hence the name) in much the same way as one can work on smooth manifolds by
knowing that they admit a smooth atlas. We will say that a stack in groupoids is geometric if it has
a representable affine diagonal and a smooth algebraic space atlas i.e. a smooth surjective map from
an algebraic space; this is slightly stronger than saying that it is algebraic in the sense of [La-Mo,
Def. 4.1], in that in an algebraic stack one only requires a representable diagonal which is moreover
separated and quasi-compact.

Definition 3.3.1 Let F' and G be co-stacks on (Aff/R, ét) (i.e. objects in Ho(SPrg(Aff/R)10e)). We
say that
1. a morphism F — G in Ho(SPrg(Aff/R)ioc) is a covering if it induces an epimorphism on the

sheaves associated to the presheaves X — mo(F(X)) and X — mo(G(X)) of connected components
of F' and G.

2. a morphism F' — G in Ho(SPrg(Aff/R)1oc) is affine (resp., affine smooth) if for any commutative
R-algebra A and any morphism SpecA — G, the corresponding homotopy base-change F x}é
SpecA is isomorphic (in Ho(SPrg(Aff/R)ioc)) to some SpecB, for an R-algebra B (resp., and
the morphism Spec(B) — Spec(A) corresponds to a smooth morphism of affine schemes).
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With these definitions, we may imitate Artin’s definition of an algebraic stack in groupoids and
give the following

Definition 3.3.2 An oo-stack is geometric if it has an affine diagonal and admits a smooth atlas of
affines, i.e. a smooth covering [[; SpecA; — F.

Note that requiring that F' has an affine diagonal is equivalent to requiring that any map SpecA —
F is affine (check as an exercise).

Exercise 3.3.3 Show that with this definition, geometric stack in groupoids (as defined above), when
viewed as an oo-stack is geometric (use that any algebraic space has an étale cover by a disjoint union
of affine schemes).

Actually, also the converse of the previous exercise is true:

Proposition 3.3.4 Any affine morphism of co-stacks induces an isomorphism on each w; sheaf, for
any © > 2 and a monomorphism for ¢ = 1.

Proof. Let FF — G be affine. Pick any SpecA-point in F' and consider its image point in G. Then
take the homotopy fiber in F' at this point and consider the associated long exact sequence of sheaves
of homotopy groups. Recalling that SpecA is O-truncated yields the result. O

Corollary 3.3.5 Any oo-stack with an affine diagonal is 1-truncated. In particular, any geometric
oo-stack is isomorphic to (the image of ) a geometric stack in groupoids.

Proof. It is enough to apply the previous Proposition and to notice that the diagonal map induce
again the diagonal map on sheaves of homotopy groups m;(F') — m;(F) x m;(F) ~ m;(F x F). O

Thererore, as far as geometric co-stacks are concerned we do not really get new objects (other than
those coming from geometric stacks in groupoids). Moreover note that, for example, schemes with
non-affine diagonal are not geometric stacks. However, one can complicate further the “geometricity”
of the stacks (i.e. enlarging the category of geometric stacks) by essentially upgrading geometric stacks
to affines i.e. by replacing in the above definitions, “affine” with “geometric”. Let us only give the
next step. To make the inductive definition more transparent let us change the previous notations as
follows.

e An affine scheme will be called a 0-representable co-stack;
e An affine morphism between oo-stacks will be called a 0-representable morphism;

e a geometric co-stack will be called a 1-geometric oo-stack.

Definition 3.3.6 Let F' and G be co-stacks on (Aff /R, ét). We say that

1. a morphism F — G in Ho(SPrg(Aff/R)1oc) is 1-representable if for any commutative R-algebra
A and any morphism SpecA — G, the corresponding homotopy base-change F X}é SpecA is
1-geometric.

2. a 1-representable morphism F — G is smooth if, for any morphism SpecA — G, the morphism
obtained by composing the base-cange map F' — Spec(A) (where F' is 1-geometric by definition
of 1-representable morphism) with a smooth atlas ||, SpecB; — F' for F', comes from a smooth
map of schemes (i.e. any SpecB; — SpecA is smooth).

Then, obviously
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Definition 3.3.7 An oo-stack F is 2-geometric if its diagonal is 1-representable and it has a smooth
atlas of 1-geometrics i.e. there exist 1-geometric stacks U; and a I-representable morphism [], U; — F
which is a smooth covering.

Note that if F' has a 1-geometric diagonal then any morphism G — F, with G 1-geometric, is
authomatically 1-representable. Moreover, in the definition above, we may assume that the atlas of 1-
geometrics is actually an atlas of affines (i.e. that U is of the form []; SpecA;). We leave to the reader
the exercise of setting up the inductive definition of n-representable morphism and of n-geometric
oo-stack. An oco-stack will be called geometric it it is n-geometric for some n. The following exercise
collects some of their properties, the most relevant of which is the last one that crucially depends
from the fact that objects in our site (affine schemes in this case) are discrete objects (i.e constant
simplicial presheaves) and in particular are O-truncated.

Exercise 3.3.8
1. The (homotopy fiber) product of two n-geometric oo-stacks is n-geometric.

2. For a morphism of oco-stacks, the property of being n-representable is stable under homotopy
base change.

3. If F is an oo-stack and its diagonal is n-representable then any morphism to F' from a n-
representable co-stack is n-representable.

4. Any n-geometric oo-stack is n-truncated (hint: use the long exact sequence of sheaves of homotopy
groups to prove a result analogous to Proposition 3.3.4 and deduce the analog of Corollary 3.3.5).

3.3.2 The oco-stack of perfect complexes

We give here a brief sketch of the construction of the oco-stack of perfect complexes on the site
(Aff/R,ét).

For A € Aff/R, we denote by Perf(A) the category of perfect complexes over SpecA, i.e. of
complexes quasi-isomorphic to bounded complexes of vector bundles. Let us denote by Perf(A)¢ the
full subcategory of Perf(A) consisting of cofibrant complexes in the projective model structure on
Ch(A) (see [Ho, §2.3]) and by qiso(Perf(A)¢) the subcategory of quasi-isomorphisms in it. Since every
object is cofibrant, the pull-back is well defined and we get a lax 2-functor

Perf : (Aff/R)°P — Cat : A — qiso(Perf(A)°).

Let us now apply the Grothendieck construction to Perf to get a category [ Perf fibered in categories

over Aff/R. Recall that objects in fﬁ(\e;f are pairs (A € Aff/R,a* € lsé;f(A)) and a morphism
(A,a®) — (B,b*) is a pair (f,«) where f : A — B is a morphism in Aff/R and « : a®* — (f*(b°%)) is
a morphism in Perf (A) (the composition is defined using the natural transformation Ay, : ¢* o f* —
(f o g)* which is part of the lax 2-functor data).

So we have a category [ Perf fibered in categories over Aff /R. Now we strictify it to a genuine presheaf

P/er\f of categories over Aff/R, by defining

P/er\f A Homcat/(Aﬂ/R)(A,/ﬁé;f).

Finally, we compose P/er\f with the nerve functor Nerve : Cat — SSet, to get a simplicial presheaf
denoted by Perf. One can prove that this is actually a co-stack called the co-stack of perfect complexes
over the site (Aff/R,ét). Moreover this stack is geometric, actually the union of an infinite number of
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finite-geometric stacks, the substacks corresponding to complexes of bounded universal cohomological
amplitude. For example, the substack Perf 001 of complexes of cohomological amplitude 0 is the same
as the stack Vect of vector bundles over the site (Aff/R,ét) and is therefore 1-geometric; the substack
Per[O’H of complexes of cohomological amplitude 1 is a 2-geometric stack, etc. Note that Perf is an
absolute object, in the sense that for any scheme X over SpecR, the oco-stack of perfect complexes
over X is defined to be Perf(X) := Hom(X,Perf), where Hom denotes the internal Hom-object in
Ho(SPre; (Aff/R)joc). Usually, geometricity statements about Perf(X) are harder to establish; for
example, it is probably true that if R = k is a field and X is projective over R, then the substack
Perf®)(X) is again 2-geometric.

4 Lectures 5 and 6. Stacks over a model site

The aim of lectures 5-6 is to extend the theory of stacks (understood in the simplicial-presheaves’
approach, as explained in Lecture 4) to model sites i.e. model categories endowed with a suitable
homotopical modification of a Grothendieck topology.

4.1 Model category of prestacks on a model category

Recall that the first step in the construction of stacks on a Grothendieck site, was the construction of
the model category of prestacks (denoted by SPr(C)glo in Lecture 4):

C ~—=SPr(C) : model category of prestacks on C (projective model structure).

Here C gives no non-trivial homotopical input (in other words it is a model category, a priori, only wit
the trivial model structure).
Now, let (M, W) be a model category. We first perform the same construction, forgetting that M has
a model structure:

M ~~SPr(M) : projective model structure.

Recall that this is a simplicial model category; in particular, it has

e a SSet-tensored structure: for F' € SPr(M) and K € SSet, we define ' ® K € SPr(M) as
(F® K)(x) := F(z) x K, for any x € M,

e a SSet-cotensored structure: for F € SPr(M) and K € SSet, we define FX € SPr(M) as
(FK)(z) := F(z)X = Homg,.,(K, F(z)), for any z € M;

e a SSet-enrichment: Hom(F,G), := Hom(F ® A[n],G), for any n > 0, with the (generalized)

adjunctions
Hom(F ® K,G) ~ Hom(F,GX) ~ Homgs.,(K, Hom(F,Q)).

The model structure on SPr(M) does not “know” that M is a model category: this has the draw-
back that two Quillen-equivalent model categories may have non Quillen-equivalent SPr(—). Another
drawback is that the usual Yoneda embedding h_ : M — Pr(M) — SPr(M) does not preserve
weak equivalences. Therefore we would like to modify the model structure on SPr(M) (keeping the
same underlying category).

Natural idea: make weak equivalences in M weak equivalences in SPr(M).

Therefore, a way to remedy the previous drawbacks is to take the homotopy localization of SPr(M)
with respect to equivalences in M.
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Definition 4.1.1 Let hy := {hy; — hy|(x — y) € W}. The model category of prestacks on M is
the left Bousfield localization of SPr(M) with respect to hyy:

M" = Ly, (SPr(M)).
Here h, € SPr(M) is the value of the usual Yoneda embedding at z € M
he(y) := c(Homa (y, x))

where ¢ : Set — SSet is the constant simplicial set functor.
By the properties of the left homotopical localization (see end of Lecture 3), we immediately deduce:

Cofibrations in M” are exactly the cofibrations in SPr(M).

Fibrant objects in M" are simplicial presheaves F on M such that

1. F is objectwise fibrant;

2. F preserves weak equivalences (Prove this as an exercise! Hint: use the explicit form of
mapping spaces in the simplicial model category SPr(M) and the SSet-enriched Yoneda
lemma).

Id : SPr(M) — M" is left Quillen; Id : M — SPr(M) is right Quillen.
R(Id) : Ho(M”") < Ho(SPr(M)) is fully faithful and its essential image consists of those simplicial
presheaves preserving equivalences.

4.2 Model Yoneda lemma

We would like to see objects in M as simplicial presheaves on M but in a homotopy invariant way.
The first idea is obviously to consider the usual Yoneda embedding

M > Pr(M) —%> SPr(M)

x> hy 1y — c(Homp(y,x))

Problem: This does not preserve equivalences (not even between (co)fibrant objects, hence cannot
even derive it).

But, recall that in the previous section we have built M” exactly by homotopy inverting equivalences
in M i.e. maps hy, — hy where (z — y) € W. Therefore the fully faithful functor

ho: M — M"
preserves equivalences, hence yields a functor
Ho(h) : Ho(M) — Ho(M™).
Question: Is it still fully faithful?

Recalling that in M we have mapping spaces, there is also another natural candidate for our model
Yoneda embedding.
Choose a cosimplicial resolution functor (see Lecture 3) I'(=)* : M — ¢M = M* with a natural
transformation
(=) — (=)
and define
h M — SPr(M)
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z +— Homp (T'(—)", x).

Does this also induce a functor on the associated homotopy categories? Well, in general it does not
preserve equivalences; however

1. it preserves fibrant objects (because ammping spaces are always fibrant simplicial sets);

2. it preserves equivalences between fibrant objects.

So it may be right-derived
Rh_ : Ho(M) — Ho(SPr(M)) : £ — hp(y).

However, since M” is the left Bousfield localization SPr(M) with respect to hy, we easily see that
(1) and (2) above also imply that
h :M— M"

has the same properties (i.e. preserves fibrant objects and weak equivalences between them).

Therefore, we also have
Rh_ : Ho(M) — Ho(M™).

Question: Is this fully faithful?

Theorem 4.2.1 (Model Yoneda lemma)

e The functors Ho(h_),Rh : Ho(M) — Ho(M") are canonically isomorphic, more precisely, the
canonical map h— — hp(_y (induced by the natural transformation I'(=)* — ¢*(—)) is a weak
equivalence in M".

e Ho(h_) and Rh are fully faithful functors Ho(M) — Ho(M").

Sketch of proof. (1) follows from standard properties of mapping spaces (see [Hi]).
For (2), we have
[z,y] = moMapn (2,y) =~ moHomn (I'(x)", Ry).

But
Homp (T'(z)*, Ry) ~ hpy () =~ Hompa(hey hp,),

by the SSet-enriched Yoneda lemma; since hy (vesp., hp,) is cofibrant (resp. fibrant) in M A, we have
moHomyn (he, hgy) =~ Homgoarny(hes hgy),
because M” is a simplicial model category. By (1), hy = hp, is an equivalence in M", therefore

Hompoany (b bgy) =~ Homuo(vny (Bpy, hgy) = Homgoan) (Rh,, Rhy).

Corollary 4.2.2 For any F € SPr(M), x € M we have an isomorphism in Ho(SSet)
RHom(h,,F) ~ F(x)

(where the right derivation in the l.h.s. is done with respect to the model structure M").
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Remark 4.2.3 Since
Ho(M) —2+ Ho(SPr(M))

RId
Rh T

 Ho(M)

is commutative up to a natural isomorphism (the natural transformation A R(-) — R"(h R(_)) is an
isomorphism of functors Ho(M) — Ho(SPr(M)), because hp, is fibrant in M” for any = € M),
we also get that Rh : Ho(M) — Ho(SPr(M)) is fully faithful.

Definition 4.2.4 The functor(s):
Rh ~ Ho(h_) : Ho(M) — Ho(M")

will be called the model Yoneda embedding for M.

4.3 Model topologies
4.3.1 Model (pre-)topologies. Examples

To pass from prestacks to stacks over a model category, we need an appropriate notion of topology on
a model category.
First, let us recall the definition of a Grothendieck (pre-)topology 7 on a category C:

e datum Cov,(x) of a set of families of morphisms to z (called 7-covering families), for any = € C,
subject to the following axioms:
1. if y — z is an isomorphism, then the one element family {y — =} belongs to Cov,(x);
2. if {z; = 2} € Cov,(z) and y — z is a morphism in C, then {z; X, y — y} exists and
belongs to Cov,(y);
3. if {z; —» «} € Cov,(z) and, for any ¢, we have {z;; — (I,‘i}j € Cov(z;), the composite family
{zi — z}; ; belongs to Cov.(z).
Now, if M is a model category, it is easy to modify conditions (1) to (3) above, in order to have
properties that are invariant under weak equivalences: “isomorphisms” should be replaced with “iso-
morophisms in the homotopy category” and “fibered products” with “homotopy fibered products”.

Definition 4.3.1 (Model pre-topology) A model pre-topology 7 on a model category M, consists of
data {Cov, ()}, cpr where Covy(x) consists of T-covering families {x; — x}; of maps in Ho(M) such
that:

1. if y — x is an isomorphism in Ho(M), then the one element family {y — x} belongs to Cov,(z);
2. if {z; & z} € Cov,(z) and y — x is a morphism in C, then {z; x"y — y} belongs to Cov,(y);

3. if {x; = x} € Cov.(z) and, for any i, we have {x;; — :L‘Z'}j € Cov,(z;), the composite family
{zi — z}; ; belongs to Cov,(z).

Note that (1) and (2) together imply that if (3) holds for a choice of a lift of

to M then it holds for any such choice.
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Definition 4.3.2 A pair (M, 7) where M is a model category and T is a model topology on M, will
be called a model site.

Example 4.3.3

o (M =Top, 7y — surj).

Take {X; — X} € Cov,(x) iff [[; moX; — moX is surjective.

e Strong topologies on CDGA’s. Let k be a field of characteristic zero and C’DGA/S/,C0 be the
category of non-positively graded commutative differential algebras. We will define the model
site (M :=D — Affx) = (C’DGA/S]CO)"”, Tp-strong).

Let 79 be any of the usual topologies defined over the category of k-schemes: Zariski, Nis-
nevich,étale, ffpf, ffqc,... Define the 79-strong model topology on M by {B — A;} € Covyy_strong(B)
iff

— {SpecH"(4;) — SpecH’(B)} is a 7g-covering in (Sch);

— for any i € I, H*(A;) ~ H*(B) ®@po(a,) H'(B).
i.e., morally speaking, 1p-strong is the 7y-topology on the zero-truncation or scheme-like “direc-
tion” and everything else is just a pull-back.
In the case 7 := (ét), this topology was first introduced by Kai Behrend. This topology will be
used in the next lectures to describe applications of homotopical algebraic geometry to derived

moduli spaces.
If one wishes to work over an arbitrary ground field or ring R, one has to replace C’DGA/S/,C0 with

the category Fo, — Algr of F-algberas over Ch(R): the same topologies make sense. Note also

that if R =k and k is a field of caharacteristic zero, then Ho(E — Algr) ~ HO(CDGA/SkO).

e Semistrong topologies on CDGA’s. Same set-up as in the previous example but the two
conditions reduce to just

— {SpecH"(4;) — SpecH®(B)} is a Tg-covering in (Schyy).

e Torso-topology on unbounded CDGA’s. Let M = (C’DGA%”)"” be the (opposite) category
of unbounded cdga’s over a field k of characteristic zero; we will define the positive Tor-dimension
model topology Tor>o on M. Let’s stipulate {f; : B — A;} € COVTOTZO(B) iff

— for any ¢ € I, the homotopy base change functor
Lf} = (-) ®% A; : Ho(Modp) — Ho(Mod.,)

preserves the subcategory of cohomologically positive modules (i.e., modules P, such that
H'(P) =0, for any i < 0);
— (Covering condition) the family of derive base change functors

{]sz-* = (—) ®% A; : Ho(Modg) —> Ho(ModAl.)}

is conservative.

This topology is relevant for putting B. Toen’s higher tannakian duality ([To]) in the framework
of algebriac geometry over the category of complezes.

4.3.2 Relation between model topologies on M and Grothendieck topologies on Ho(M)

Let 7 be a model topology on a model category M. Define a sieve R over x in Ho(M) a 7-covering
sieve if it contains a 7-covering family. One easily gets:

Proposition 4.3.4 The T-covering sieves form a Grothendieck topology, denoted by T, on Ho(M).

30



Conversely, given a Grothendieck topology o on Ho(M), define {z; — z} € Covg(x) iff the sieve it
generates is a o-covering sieve.

Proposition 4.3.5 The data {Covg(z)} define a model topology on M, denoted by &.
The two constructions, as usual for pretopologies/topologies, are almost inverse to each other:

Proposition 4.3.6 Let us call a model topology on M saturated if any family of maps containing a
covering family, is again a covering family.
Then, the maps T — 7 and 0 — @ define a bijection

{saturated model pretopologies on M} ~ {Grothendieck topologies on Ho(M)} .

4.4 Model category of stacks on a model site

Let (M, 7) be a model site and M” := Ly, (SPr(M)) be the model category of pre-stacks on M.
The model structure M” does not “see”the model topology 7; so, like we did in the non-model case
(Lecture 4) in passing from SPr(C) to SPr(C)ioc, we homotopically “invert” analogs of 7-hypercovers
(called homotopy T-hypercovers) by means of a further left Bousfield localization®. So we pass from
M”" to M~7, which is called the model category of stacks on the model site (M,T).

Pretty much like in the non-model case (Lecture 4), we have natural notions of sheaves of homotopy
groups (defined as sheaves on the induced Grothendieck site (Ho(M),1)).

Definition 4.4.1 A map F — G of simplicial presheaves on M is called a w.-equivalence if it
induces isomorphisms on all the sheaves of higher homotopy groups (for any choice of “’base point”).

Theorem 4.4.2 (Recognition principle for weak equivalences in M ™)
Weak equivalences in M™T are exactly m.-equivalences.

The standard properties of the left Bousfield localization (see Lecture 3) imply that Ho(M ™) can
be canonically identified with the full subcategory of Ho(SPr(M)) of objects F':

e sending weak equivalences in M to weak equivalences in SSet;

e satisfying the 7-hyperdescent condition
F(X)—holimF (U,),
for any homotopy 7-hypercover Uy — X (in the “small” set mentioned above).
Definition 4.4.3 Objects in Ho(M ™) will be called stacks on the model site (M, 7).

Hom-stacks. Like presheaves or sheaves on a topologicl space have internal Hom’s, the same is
true for stacks on a model site (compare with Lecture 4): Ho(M™7) is a cartesian closed category i.e.,
for any F,G € Ho(M™") there exists a stack Hom(F,G) € Ho(M""T), satisfying the usual adjunction
properties.

Functorialities. For functorialities (direct/inverse images) of the category of stacks with respect
to morphisms of model categorie/sites, we refer to [HAG-I, §4.8].

3technically speaking, we need to find a subset of all the homotopy hypercovers that has a reasonably small size.
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4.5 Analogy with topos theory

Let us reinterprete usaul sheaf theory in a way that will make it transparent the analogy with the
construction of the category of stacks over a model site.

(C,7): Grothendieck site.

Pr(C): category of presheaves (of sets) on C.

Yoneda embedding: h : C — Pr(C)

Y, := 7-local isomorphisms in Pr(C) (by definition, maps which are surjective and injective up

to a T-covering-refinement).
e Localization a := loc : Pr(C) — (X,)~'Pr(C) := Sh(C, 7).

The basic properties are collected in the following:

Theorem A.

1. The category Sh(C, 7) has all limits and colimits;
2. The localization functor a := loc : Pr(C) — Sh(C, 1) is left exact (i.e. commutes with finite
limits) and has a fully-faithful right adjoint j : Sh(C,7) — Pr(C).
3. The category Sh(C, 7) is cartesian closed, i.e. it has internal Hom’s (Hom-sheaves).
Of course the essential image of j consists of usual sheaves, i.e. presheaves having the T-descent

property, and the localization functor a becomes equivalent to the usual associated-sheaf functor. In
a way, the definition above was like “defining the category of sheaves without defining what a sheaf is”.

Let us now turn to the stacks over model sites part of the picture.

(M, 7): model site.

M": category of pre-stacks on M.

Model Yoneda embedding: Rh ~ Ho(h_) : Ho(M) — Ho(M™").
e S, := me-equivalences (or hhc;-local equivalences).

Homotopy localization Id : M — Lg_ (M”") := M™".

The basic properties are collected in

Theorem A-model.
1. The category M~ is a model category, therefore (Lecture 3) it has all homotopy limits and
homotopy colimits;

2. The left derived functor LId : Ho(M") — Ho(M™~7) is homotopy left exact (i.e. commutes with
homotopy fibered products) and has a fully-faithful right adjoint RId : Ho(M~7") — Ho(M™).

3. The category Ho(M™T) is cartesian closed, i.e. it has internal Hom-stacks.

5 Lectures 7 and 8. Derived Moduli Spaces.

The final lectures 7 and 8 are devoted to an application of HAG (Homotopical Algebraic Geometry,
as explained in Lectures 5 and 6) to DAG (Derived Algebraic geometry), especially to the description
of derived moduli spaces.

The following text is [HAGDAG], available as preprint math.AG/0210407 in the arXiv.
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5.1 What’s HAG ?

Homotopical Algebraic Geometry (or HAlgebraic Geometry, or simply HAG) was conceived
as a framework to talk about schemes in a context where affine objects are in one-to-one correspon-
dence with commutative monoid-like objects in a base symmetric monoidal model category.

This general definition might seem somewhat obscure, so we’d rather mention the most important
examples of base symmetric monoidal model category, and the corresponding notion of commutative
monoid-like objects. In each of the following situations, HAG will provide a context in which one
can do algebraic geometry (and in particular, talk about schemes, algebraic spaces, stacks ...), hence
giving rise to various geometries.

1. The model category Ab of abelian groups (with its trivial model structure) and the tensor product
of abelian groups. Commutative monoid objects are commutative rings. The corresponding
geometry is the usual, Grothendieck-style algebraic geometry.

2. The model category Mod(Q) of O-modules over some ringed site (with the trivial model structure)
and the tensor product of O-modules. Commutative monoid objects are sheaves of commutative
O-algebras. The corresponding geometry is called relative algebraic geometry, and was introduced
and studied in [Ha, De].

3. The model category C(k) of complexes over some ring k and the tensor product of complexes (see
[Ho, §2.3]). Commutative monoid-like objects are commutative Fo-algebras over k ([Kr-Mal).
The corresponding geometry is the so-called derived algebraic geometry that we are going to
discuss in details in this paper, and for which one possible avatar is the theory of dg-schemes and
dg-stacks of [Ci-Kal, Ci-Ka2].

4. The model category Sp of symmetric spectra and the smash product (see [Ho-Sh-Sm]), or equiv-
alently the category of S-modules (see [EKMM]). Commutative monoid-like objects are Ey-ring
spectra, or commutative S-algebras. We call the corresponding geometry brave new algebraic ge-
ometry, quoting the expression brave new algebra introduced by F. Waldhausen (for more details
on the subject, see e.g. [Vo]).

5. The model category Cat of categories and the direct product (see, e.g. [Jo-Ti]). Commutative
monoid-like objects are symmetric monoidal categories. The corresponding geometry does not
have yet a precise name, but could be called 2-algebraic geometry, since vector bundles in this
setting will include both the notion of 2-vector spaces (see [Ka-Vo]) and its generalization to
2-vector bundles.

For the general framework, we refer the reader to [HAG-I, HAG-II]. The purpose of the present
note is to present one possible incarnation of HAG through a concrete application to derived algebraic
geometry (or “DAG” for short).

5.2 What’s DAG ?

Of course, the answer we give below is our own limited understanding of the subject.

As far as we know, the foundational ideas of derived algebraic geometry (whose infinitesimal theory
is also referred to as derived deformation theory, or “DTT” for short) were introduced by P. Deligne,
V. Drinfel’d and M. Kontsevich, for the purpose of studying the so-called derived moduli spaces. One
of the main observation was that certain moduli spaces were very singular and not of the expected
dimension, and according to the general philosophy this was considered as somehow unnatural (see
the hidden smoothness philosophy presented in [Kol]). It was therefore expected that these moduli
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spaces are only truncations of some richer geometric objects, called the derived moduli spaces, con-
taining important additional structures making them smooth and of the expected dimension. In order
to illustrate these general ideas, we present here the fundamental example of the moduli stack of
vector bundles (see the introductions of [Ci-Kal, Ci-Ka2, Kal] for more motivating examples as well
as philosophical remarks).

Let C be a smooth projective curve (say over C), and let us consider the moduli stack Vect,(C)
of rank n vector bundles on C (here Vect, (C) classifies all vector bundles on C, not only the semi-
stable or stable ones). The stack Vect, (C) is known to be an algebraic stack (in the sense of Artin).
Furthermore, if F € Vect, (C)(C) is a vector bundle on C, one can easily compute the stacky tangent
space of Vect,(C) at the point E. This stacky tangent space is actually a complex of C-vector
spaces concentrated in degrees [—1,0], which is easily seen to be quasi-isomorphic to the complex
C*(Czar, End(E))[1] of Zariski cohomology of C' with coefficient in the vector bundle End(E) =
E ® E*. Symbolically, one writes

TpVect(C) ~ H'(C, End(E)) — H°(C, End(E)).

This implies in particular that the dimension of TgVect(C') is independent of the point E, and is equal
to n?(g — 1), where g is the genus of C. The conlcusion is then that the stack Vect,(C) is smooth of
dimension n?(g — 1).

Let now S be a smooth projective surface, and Vect,, (S) the moduli stack of vector bundles on S.
Once again, Vect, (S) is an algebraic stack, and the stacky tangent space at a point F € Vect, (S)(C)
is easily seen to be given by the same formula

TyVect,(S) ~ H'(S, End(E)) — H°(S, End(E)).

Now, as H?(S, End(E)) might jump when specializing F, the dimension of TgVect(S), which h'(S, End(E))—
hY(S, End(E)), is not locally constant and therefore the stack Vect,(S) is not smooth anymore.

The main idea of derived algebraic geometry is that Vect, (S) is only the truncation of a richer
object RVect,(S), called the derived moduli stack of vector bundles on S. This derived moduli

stack, whatever it may be, should be such that its ftangent space at a point E is the whole com-
plex C*(S, End(FE))[1], or in other words,

TpRV ect,,(S) ~ —H?(S, End(E)) + H' (S, End(E)) — H’(S, End(E)).

The dimension of its tangent space at E is then expected to be —x(S, End(F)), and therefore locally
constant. Hence, the object RV ect,, (S) is expected to be smooth.

Remark 5.2.1 Another, very similar but probably more striking example is given by the moduli stack
of stable maps, introduced in [Kol]. A consequence of the expected existence of the derived moduli
stack of stable maps is the presence of a wvirtual structure sheaf giving rise to a virtual fundamental
class (see [Be-Fa]). The importance of such constructions in the context of Gromov-Witten theory
shows that the extra information contained in derived moduli spaces is very interesting and definitely
geometrically meaningful.

In the above example of the stack of vector bundles, the tangent space of RV ect, (S) is expected
to be a complex concentrated in degree [—1,1]. More generally, one can get convinced that tangent
spaces of derived moduli (1-)stacks should be complexes concentrated in degree [—1, 00| (see [Ci-Kal]).
It is therefore pretty clear that in order to make sense of an object such as RV ect, (S), schemes and
algebraic stacks are not enough, and one should look for a more general definition of spaces. This
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leads to the following general question.

Problem: Provide a framework in which derived moduli stacks can actually be constructed. In
particular, construct the derived moduli stack of vector bundles RV ect(S) discussed above.

Several construction of formal derived moduli spaces have appeared in the litterature (see for ex-
ample [Ko-So, So]), a general framework for formal DAG have been developed by V. Hinich in [Hin2],
and pro-representability questions were investigated by Manetti in [Man]. So, in a sense, the formal
theory has already been worked out, and what remains of the problem above is an approach to global
DAG.

A first approach to the global theory was proposed by M. Kapranov and I. Ciocan-Fontanine, and is
based on the theory of dg-schemes or more generally of dg-stacks (see [Ci-Kal, Ci-Ka2]). A dg-scheme
is, roughly speaking, a scheme together with an enrichement of its structural sheaf into commutative
differential graded algebras. This enriched structural sheaf is precisely the datum encoding the derived
information.

This approach has been very successful, and many interesting derived moduli spaces (or stacks)
have already been constructed as dg-schemes (e.g. the derived version of the Hilbert scheme, of the
Quot scheme, of the stack of stable maps, and of the stack of local systems on a space have been
defined in [Ka2, Ci-Kal, Ci-Ka2]). However, this approach have encountered two major problems,
already identified in [Ci-Ka2, 0.3].

1. The definition of dg-schemes and dg-stacks seems too rigid for certain purposes. By definition, a
dg-scheme is a space obtained by gluing commutative differential graded algebras for the Zariski
topology. Tt seems however that certain constructions really require a weaker notion of gluing, as
for example gluing differential graded algebras up to quasi-isomorphisms.

2. The notion of dg-schemes is not very well suited with respect to the functorial point of view, as
representable functors would have to be defined on the derived category of dg-schemes (i.e. the
category obtained by formally inverting quasi-ismorphisms of dg-schemes), which seems difficult
to describe and to work with. As a consequence, the derived moduli spaces constructed in
[Ka2, Ci-Kal, Ci-Ka2] do not arise as solution to natural derived moduli problems, and are
constructed in a rather ad-hoc way.

The first of these difficulties seems of a technical nature, whereas the second one seems more
fundamental. It seems a direct consequence of these two problems that the derived stack of vector
bundles still remains to be constructed in this framework (see [Kal] and [Ci-Kal, Rem. 4.3.8]).

It is the purpose of this note to show how HAG might be applied to provide a framework for DAG
in which problems (1) and (2) hopefully disappear. We will show in particular how to make sense of
various derived moduli functors whose representability can be proved in many cases.

5.3 The model category of D-stacks

In this subection we will present the construction of a model category of D-stacks. It will be our
derived version of the category of stacks that is commonly used in moduli theory, and all our examples
of derived moduli stacks will be objects of this category.

The main idea of the construction is the one used in [HAG-I], and consists of adopting systemat-
ically the functorial point of view. Schemes, or stacks, are sheaves over the category of commutative
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algebras. In the same way, D-stacks will be sheaves-like objects on the category of commutative
differential graded algebras. This point of view may probably be justified if one convinces himself
that commutative differential graded algebras have to be the affine derived moduli spaces, and that
therefore they are the elementary pieces of the theory that one would like to glue to obtain global
geometric objects. Another, more down to earth, justification would just be to notice that all of the
wanted derived moduli spaces we are aware of, have a reasonable model as an object in our category
of D-stacks.

Before starting with the details of the construction, we would like to mention that K. Behrend
has independently used a similar approach to DAG that uses the 2-category of differential graded
algebras (see [Be]) (his approach is actually the 2-truncated version of ours). It is not clear to us
that the constructions and results we are going to present in this work have reasonable analogs in
his framework, as they use in an essential way higher homotopical informations that are partially lost
when using any truncated version.

Conventions. For the sake of simplicity, we will work over the field of complex numbers C. The
expression cdga will always refer to a non-positively graded commutative differential graded algebra
over C with differential of degree 1. Therefore, a cgda A looks like

A" Afn+1 . Afl AU.

The category CDGA of cgda’s is endowed with its usual model category structure (see e.g. [Hinl]), for
which fibrations (resp. equivalences) are epimorphisms in degree < —1 (resp. quasi-isomorphisms).

5.3.1 D-Pre-stacks

With start by defining D — Af f := CDGA®P to be the opposite category of cdga’s, and we consider
the category SPr(D — Aff), of simplicial presheaves on D — Aff, or equivalently the category of
functors from CDGA to SSet. The category SPr(D — Af f) is endowed with its objectwise projective
model structure in which fibrations and equivalences are defined objectwise (see [Hi, 13.10.17]).

For any cdga A € D — Af f, we have the presheaf of sets represented by A, denoted by

ha: D—Aff?r — Set
B — Hom(B,A).

Considering a set as a constant simplicial set, we will look at hy as an object in SPr(D — Aff).
The construction A — h4 is clearly functorial in A, and therefore for any v : A — A" in D — Aff,
corresponding to a quasi-isomorphism of cdga’s, we get a morphism u : hg — hy in SPr(D — Aff).
These morphisms will simply be called quasi-isomorphisms.

Definition 5.3.1 The model category of D-pre-stacks is the left Bousfield localization of the model
category SPr(D — Aff) with respect to the set of morphisms {u : ha — ha'}, where u varies in the
set of all quasi-isomorphisms. It will be denoted by D — Af f".

Remark 5.3.2 1. The careful reader might object that the category D — Aff and the set of all
quasi-isomorphisms are not small, and therefore that definition 5.3.1 does not make sense. If this
happens (and only then), take two universes U € V, define CDGA as the category of U-small
cdga’s and SPr(D — Aff) as the category of functors from CDGA to the category of V-small
simplicial sets. Definition 5.3.1 will now make sense.

2. In [HAG-I], the model category D — Aff" was denoted by (D — Aff,W)", where W is the
subcategory of quasi-isomorphisms.
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By general properties of left Bousfield localization (see [Hi]), the fibrant objects in D — Af f" are
the functors F': CDGA — SSet satisfying the following two conditions

1. For any A € CDGA, the simplicial set F(A) is fibrant.
2. For any quasi-isomorphism u : A — B in CDGA, the induced morphism F(u) : F(A) — F(B)
is a weak equivalence of simplicial sets.

;From this description, we conclude in particular, that the homotopy category Ho(D — Aff")
is naturally equivalent to the full sub-category of Ho(SPr(D — Aff)) consisting of functors F :
CDGA — SSet sending quasi-isomorphisms to weak equivalences. We will use implicitely this
description, and we will always consider Ho(D — Af f") as embedded in Ho(SPr(D — Aff)).

Definition 5.3.3 Objects of D—Af f" satisfying condition (2) above (i.e. sending quasi-isomorphisms
to weak equivalences) will be called D-pre-stacks.

5.3.2 D-Stacks

Now that we have constructed the model category of D-pre-stacks we will introduce some kind of
étale topology on the category D — Aff. This will allow us to talk about a corresponding notion of
étale local equivalences in D — Af f", and to define the model category of D-stacks by including the
local-to-global principle into the model structure.

We learned the following notion of formally étale morphism of cdga’s from K. Behrend.

Definition 5.3.4 A morphism A — B in CDGA is called formally étale if it satisfies the following
two conditions.

1. The induced morphism H°(A) —s H°(B) is a formally étale morphism of commutative algebras.
2. For any n < 0, the natural morphism of H°(B)-modules

H"(A) ® o) H'(B) — H"(B)
s an isomorphism.

Remark 5.3.5 Itsseems that a morphism A — B of cdga’s is formally étale in the sense of Definition
5.3.4 if and only if the relative cotangent complex L, /A (e.g. in the sense of [Hinl]) is acyclic. This
justifies the terminology.

(From Definition 5.3.4 we now define the notion of étale covering families. For this, we recall that
a morphism of cdga’s A — B is said to be finitely presented if B is equivalent to a retract of a finite
cell A-algebra (see for example [EKMM]). This is also equivalent to say that for any filtered systems
{A — C;}ier, the natural morphism

COl’imiejMapA/CDGA(B, Cl) — MapA/CDGA(B, COl'Lmzejc’l)

is a weak equivalence (here Map 4 /cpaa denotes the mapping spaces, or function complexes, of the
model category A/CDGA of cdga’s under A, as defined in [Ho, §5.4])*.

*We warn the reader that if commutative algebras are considered as cdga’s concentrated in degree zero, the notion of
finitely presented morphisms of commutative algebras and the notion of finitely presented morphisms of cdga’s are not
the same. In fact, for a morphism of commutative algebras it is stronger to be finitely presented as a morphism of cdga’s
than as a morphism of algebras.
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Definition 5.3.6 A finite family of morphisms of cdga’s
{A — Bitier

is called an étale covering if it satisfies the following three conditions
1. For any i € I, the morphism A — B; is finitely presented.
2. For any i € I, the morphism A — B; is formally étale.
3. The induced family of morphisms of affine schemes

{Spec H*(B;) — Spec H*(A)}ier
s an €tale covering.

The above definition almost defines a pre-topology on the category D — Af f. Indeed, stability and
composition axioms for a pre-topology are statisfied, but the base change axiom is not. In general,
the base change of an étale covering {A — B, }icr along a morphism of A — C will only be an
étale covering if A — C'is a cofibration in CDGA. In other words, for the base change axiom to be
satisfied one needs to replace fibered products by homotopy fibered products in D — Af f. Therefore,
the étale covering families of Definition 5.3.6 do not satisfy the axioms for a pre-topology on D — Af f,
but rather satisfy a homotopy analog of them. This is an example of a model pre-topology on the
model category D — Af f, for which we refer the reader to [HAG-I, §4.3] where a precise definition is
given.

In turns out that the data of a model pre-topology on a model category M is more or less equiv-
alent to the data of a Grothendieck topology on its homotopy category Ho(M) (see [HAG-I, Prop.
4.3.5]). In our situation, the étale coverings of Definition 5.3.6 induce a Grothendieck topology, called
the étale topology on the opposite of the homotopy category Ho(D — Af f) of cdga’s. More concretely,
a sieve S over a cdga A € Ho(D — Aff) is declared to be a covering sieve if it contains an étale
covering family {A — B;};c;. The reader will check as an exercise that this defines a topology on
Ho(D — Aff) (hint: one has to use that étale covering families are stable by homotopy pull-backs in
D — Aff, or equivalentely by homotopy push-outs in CDGA). From now on, we will always consider
Ho(D — Af f) as a Grothendieck site for this étale topology.

For a D-pre-stack F € D — Aff" (recall from Definition 5.3.3 that this implies that F' sends
quasi-isomorphisms to weak equivalences), we define its presheaf of connected components

" (F): D—Aff? — Set
A —  m(F(A)).

As the object F' is a D-pre-stack (see 5.3.3), the functor =5 (F) will factors through the homotopy
category
" (F): Ho(D — Aff) — Set
A = wo(F(A)).

We can consider the sheaf m(F) associated to the presheaf 7" in the étale topology on Ho(D — Af f).
The sheaf 7 (F) is called the 0-homotopy sheaf of the D-pre-stack F. Now, if F € D — Af f" is any
simplicial presheaf, then one can apply the above construction to one of its fibrant models RF'. This
allows us to define its 0-th homotopy sheaf as my(F') := mo(RF).

As for the case of simplicial presheaves (see [Jal]), one can also define higher homotopy sheaves,
which are sheaves of groups and abelian groups on the sites Ho(D — Af f/A) for various cdga’s A.
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Precisely, let F' be a D-pre-stacks and s € F(A)y a point over a cdga A € D — Aff. We define the
n-th homotopy group presheaf pointed at s by

w'(F,s): D— Aff®/A=A/CDGA —» Gp
(u:A— B) —  ma(F(B),u*(s)).

Again, as F' is a D-pre-stack, this presheaves descend to the homotopy category

Al (F,s): Ho(D — AffoP/A) = Ho(A/CDGA) —s Gp
(u: A — B) T (F(B),u*(s)).

The étale model pre-topology on D — Aff also induces Grothendieck topologies on the various ho-
motopy categories Ho(A/C DG A), and therefore one can consider the sheaves associated to 7 (F, s).
These sheaves are called the n-th homotopy sheaves of F pointed at s and are denoted by 7, (F, s).
As before, if F' is any object in D — Aff", one can define m,(F,s) := m,(RF,s) for RF a fibrant
replacement of F'.

The notion of homotopy sheaves defined above gives rise to the following notion of local equiva-
lences.

Definition 5.3.7 A morphism f : F — F' in D — Aff" is called a local equivalence if it satisfies
the following two conditions

1. The induced morphism of sheaves mo(F) — mo(F") is an isomorphism.

2. For any A € D — Aff, and any point s € F(A), the induced morphism of sheaves m,(F,s) —
mn(F', f(8)) is an isomorphism.

One of the key results of “HAG” is the following theorem. It is a very special case of the exis-
tence theorem [HAG-I, §4.6], which extends the existence of the local model structure on simplicial
presheaves (see [Jal]) to the case of model sites.

Theorem 5.3.8 There exists a model category structure on D — Aff" for which the equivalences
are the local equivalences and the cofibrations are the cofibrations in the model category D — Aff" of
D-pre-stacks.

This model category is called the model category of D-stacks for the étale topology, and is denoted
by D — Aff~.

The reason for calling D — Af f~ the model category of D-stacks is the following proposition. It
follows from [HAG-I, 4.6.3], which is a generalization to model sites of the main theorem of [DHI].

Proposition 5.3.9 An object F € D — Aff~ is fibrant if and only if it satisfies the following three
conditions

1. For any A € D — Aff, the simplicial set F(A) is fibrant.

2. For any quasi-isomorphism of cdga’s A — B, the induced morphism F(A) — F(B) is a weak
equivalence.

3. For any cdga A, and any étale hyper-covering in D — Aff (see [HAG-I] for details) A — By,
the induced morphism
F(A) — HolimpeaF(By)

18 o weak equivalence.
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Condition (3) is called the stack condition for the étale topology. Note that a typical étale hyper-
covering of cdga’s A — B, is given by the homotopy co-nerve of an étale covering morphism A — B

B, =B Ba} - o} B.
nt;;ws

Condition (3) for these kind of hyper-coverings is the most commonly used descent condition, but
as first shown in [DHI] requiring descent with respect to all étale hyper-coverings is necessary for
Proposition 5.3.9 to be correct.

Definition 5.3.10 A D-stack is any object F € D — Aff~ satisfying conditions (2) and (3) of
Proposition 5.3.9. By abuse of language, objects in the homotopy category Ho(D — Af f~) will also be
called D-stacks.

A morphism of D-stacks is a morphism in the homotopy category Ho(D — Aff™).

The second part of the definition is justified because the homotopy category Ho(D — Aff~) is
naturally equivalent to the full sub-category of Ho(SPr(D — Aff)) consisting of objects satisfying
conditions (2) and (3) of Proposition 5.3.9.

5.3.3 Operations on D-stacks

One of the main consequences of the existence of the model structure on D — Af f~ is the possibility
to define several standard operations on D-stacks, analogous to the ones used in sheaf theory (limits,
colimits, sheaves of morphisms ...).

First of all, the category D — Aff™ being a category of simplicial presheaves, it comes with
a natural enrichement over the category of simplicial sets. This makes D — Af f~ into a simplicial
model category (see [Ho, 4.2.18]). In particular, one can define in a standard way the derived simplicial
Hom’s (well defined in the homotopy category Ho(SSet)),

RHom (F,G) := Hom(QF, RG),

where @) is a cofibrant replacement functor, R is a fibrant replacement functor, and Hom are the
simplicial Hom’s sets of D — Af f~. These derived simplicial Hom’s allows one to consider spaces of
morphisms between D-stacks, in the same way as one commonly considers groupoids of morphisms
between stacks in groupoids (see [La-Mo]).

This simplicial structure also allows one to define exponentials by simplicial sets. For an object
FeD—-Aff~ and K € SSet, one has a well defined object in Ho(D — Af f™)

F*E .= (RF)X

which satisfies the usual adjunction formula

RHom (G, F*E) ~ RHom (K,RHom (G, F)).

The existence of the model structure D — Af f~ also implies the existence of homotopy limits and
homotopy colimits, as defined in [Hi, §19]. The existence of these homotopy limits and colimits is the
analog of the fact that category of sheaves have all kind of limits and colimits. We will use in particular
homotopy pull-backs i.e. homotopy limits of diagrams F<—— H —— G , that will be denoted by

F x% G := Holim{ F~—H—G }.
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Finally, one can show that the homotopy category Ho(D — Af f~) is cartesian closed (see [HAG-I,
§4.7]). Therefore, for any two object F' and G, there exists an object RHOM (F,G) € Ho(D—Af f~),
which is determined by the natural isomorphisms

RHom(F x G,H) ~ RHom (F,RHOM (G, H)).

We say that RHOM(F,G) is the D-stack of morphisms from F to G, analogous to the sheaf of
morphisms between two sheaves.

If one looks at these various constructions, one realizes that D— A f f~ has all the homotopy analogs
of the properties that characterize Grothendieck topoi. To be more precise, C. Rezk has defined a
notion of homotopy topos (we rather prefer the expression model topos), which are model categories
behaving homotopically very much like a usual topos. The standard examples of such homotopy topoi
are model categories of simplicial presheaves on some Grothendieck site, but not all of them are of this
kind; the model category D — Af f~ is in fact an example of a model topos which is not equivalent
to model categries of simplicial presheaves on some site (see [HAG-I, §3.8] for more details on the
subject).

5.4 First examples of D-stacks

Before going further with the geometric properties of D-stacks, we would like to present some examples.
More examples will be given in the Section 5.

5.4.1 Representables

The very first examples of schemes are affine schemes. In the same way, our first example of D-stacks
are representable D-stacks®.

We start by fixing a fibrant resolution functor I' on the model category C DG A. Recall that this
means that for any cdga B, T'(B) is a simplicial object in C DG A, together with a natural morphism
B — I'(B) that makes it into a fibrant replacement for the Reedy model structure on simplicial
objects (see [Ho, §5.2]). In the present situation, one could choose the following standard fibrant
resolution functor

I'(B): A? — CDGA
[n] = [I[(B),:=B®Qh..
Here Q.. is the cdga (exceptionally positively graded) of algebraic differential forms on the standard
algebraic n-simplex. Of course the cdga B ® 2\, is not non-positively graded, but one can always

take its truncation in order to see it as an object in CDGA.
Now, for any cdga A, we define a functor

SpecA: CDGA — SSet
B —  Hom(A,T'(B)),

that is considered as an object in D — Af f~. This construction is clearly functorial in A and gives
rise to a functor

Spec: CDGA® =D — Aff — D — Aff"~.

The functor Spec is almost a right Quillen functor: it preserves fibrations, trivial fibrations and limits,
but does not have a left adjoint. However, it has a well defined right derived functor

RSpec : Ho(CDGA)? =Ho(D — Aff) — Ho(D — Af f™).

A fundamental property of this functor is the following lemma.

5We could as well have called them affine D-stacks.
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Lemma 5.4.1 The functor RSpec is fully faithful. More generally, for two cdga’s A and B, it induces
a natural equivalence on the mapping spaces

RHom (A, B) ~ RHom (RSpec B,RSpec A).

The above lemma contains two separated parts. The first part states that RSpec is fully faithful
when considered to have values in Ho(D — Aff") (i.e. when one forgets about the topology). This
first part is a very general result that we call Yoneda lemma for model categories (see [HAG-I, §4.2]).
The second part of the lemma states that for a cofibrant cdga A, the object Spec(A) is a D-stack (see
Definition 5.3.10). This is not a general fact, and of course depends on the choice of the topology.
Another way to express this last result is to say that the étale topology is sub-canonical.

Definition 5.4.2 A D-stack isomorphic in Ho(D — Aff~) to some RSpec A is called a representable
D-stack.

In particular, Lemma 5.4.1 implies that the full subcategory of Ho(D — Af f)™~ consisting of rep-
resentable D-stacks is equivalent to the homotopy category of cdga’s.

5.4.2 Stacks vs. D-stacks

Our second example of D-stacks are simply stacks. In other words, any stack defined over the category
of affine schemes with the étale topology gives rise to a D-stack.

Let Alg be the category of commutative C-algebras, and Af f = Alg°P its opposite category. Recall
that there exists a model category of simplicial presheaves on Aff for the étale topology (see [Jal]).
We will consider its projective version described in [Bl], and denote it by Af f~. This model category
is called the model category of stacks for the étale topology. Its homotopy category Ho(Af f~) contains
as full subcategories the category of sheaves of sets and the category of stacks in groupoids (see e.g.
[La-Mo]). More generally, one can show that the full subcategory of n-truncated objects in Ho(Af ™)
is naturally equivalent to the homotopy category of stacks in n-groupoids (unfortunately there are no
references for this last result until now but the reader might consult [Hol] for the case n = 1). In
particular, Ho(Af f™) contains as a full subcategory the category of schemes, and more generally of
Artin stacks.

There exists an adjunction

H°: CDGA — Alg CDGA «+— Alg: 7,

for which j is the full embedding of Alg in CDGA that sends a commutative algebra to the corre-
sponding cdga concentrated in degree 0. Furthermore, this adjunction is a Quillen adjunction when
Alg is endowed with its trivial model structure (as written above, 5 is on the right and HO is its left
adjoint). This adjunction induces various adjunctions between the category of simplicial presheaves

nAffT —D—-Aff~  AffT<+—D—-Aff7 5"
J* D — AffY — Aff~ D —Aff~ «— Aff~: (HY*

One can check that these adjunction are Quillen adjunction (where the functors written on the left
are left Quillen). In particular we conclude that j* is right and left Quillen, and therefore preserves
equivalences. ;From this we deduce easily the following important fact.

Lemma 5.4.3 The functor
i:=1Lyj : Ho(Aff~) — Ho(D — Af ™)
is fully faithful.
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The important consequence of the previous lemma is that Ho(D — Af f~) contains schemes, alge-
braic stacks ..., as full sub-categories.

Warning: The full embedding ¢ does not commute with homotopy pull-backs, nor with internal
Hom- D-stacks.

Here we reach the real heart of DAG: the category of D-stacks contains usual stacks, but these are
not stable under the standard operations of D-stacks. In other words, if one starts with some schemes
and performs some constructions on these schemes, considered as D-stacks, the result might not be
a scheme anymore. This is the main reason why derived moduli spaces are not schemes, or stacks in
general !

Notations. In order to avoid confusion, a scheme or a stack X, when considered as a D-stack
will always be denoted by 7(X), or simply by iX.

The full emdedding ¢ = ILj, has a right adjoint Rj* = j*. It will be denoted by
RO = j* s Ho(D — Af f~) — Ho(Af ™),
and called the truncation functor. Note that for any cdga, one has
h?(RSpec A) ~ Spec H°(A),

which justifies the notation h°. Note also that for any D-stack I, and any commutative algebra A,

one has
F(A) ~ RHom (iSpec A, F) ~ RHom (Spec A,h°(F)) ~ h°(F)(A).

This shows that a D-stack F and its truncation h°(F) have the same points with values in commutative
algebras. Of course, F' and h°(F) do not have the same points with values in cdga’s in general, except
when F is of the form iF" for some stack F' € Ho(Af f™).

Terminology. Points with values in commutative algebras will be called classical points.

We just saw that a D-stack I and its truncation h°(F) always have the same classical points.

Given two stacks F' and G in Af f~, there exists a stack of morphisms RHOM (F,G), that is the
derived internal Hom’s of the model category Af f~ (see [HAG-I, §4.7]). As remarked above, the two
objects iIRHOM (F,G) and RHOM (iF,iG) are different in general. However, one has

RO(RHOM(iF,iG)) ~ RHOM(F,G),
showing that iIRHOM (F,G) and RHOM (iF,iG) have the same classical points.

5.4.3 dg-Schemes

We have just seen that the homotopy category of D-stacks Ho(D — Aff™) contains the categories
of schemes and algebraic stacks. We will now relate the notion of dg-schemes of [Ci-Kal, Ci-Ka2] to
D-stacks.

Recall that a dg-scheme is a pair (X, Ax), consisting of a scheme X and a sheaf of Ox-cdga’s
on X such that A} = Oy (however, this last condition does not seem so crucial). For the sake of
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simplicity we will assume that X is quasi-compact and separated. We can therefore take a finite affine
open covering U = {U;}; of X, and consider its nerve N (U) (which is a simplicial scheme)

NU): A —  {Schemes}
[n] = Hio,...,in UiOr-',in

where, as usual, U;, . ;. = U;, "NU;, N...U;,. Note that as X is separated and the covering is finite,
N(U) is in fact a simplicial affine scheme.

For each integer n, let A(n) be the cdga of global sections of Ax on the scheme N (U),. In other
words, one has

An) = [ Ax(Ui) x Ax(Ui,) x ... Ax(Us,).
§0yeensin

The simplicial structure on N(U) makes [n] — A(n) into a co-simplicial diagram of cdga’s. By
applying levelwise the functor RSpec, we get a simplicial object [n] — RSpec A(n) in D — Af f~. We
define the D-stack O(X, Ax) € Ho(D — Aff™) to be the homotopy colimit of this diagram

O(X, Ax) := Hocolim,)cporRSpec A(n).
One can check, that (X, Ax) — ©(X, Ax) defines a functor
© : Ho(dg — Sch) — Ho(D — Aff™),

from the homotopy category of (quasi-compact and separated) dg-schemes to the homotopy category
of D-stacks. This functor allows us to consider dg-schemes as D-stacks.

Question: Is the functor © fully faithful ?

We do not know the answer to this question, and there are no real reasons for this answer to be
positive. As already explained in the Introduction, the difficulty comes from the fact that the homotopy
category of dg-schemes seems quite difficult to describe. In a way, it might not be so important to know
the answer to the above question, as until now morphisms in the homotopy category of dg-schemes
have never been taken into account seriously, and only the objects of the category Ho(dg — Sch) have
been shown to be relevant. More fundamental is the existence of the functor © which allows to see
the various dg-schemes constructed in [Ka2, Ci-Kal, Ci-Ka2] as objects in Ho(D — Aff™).

Remark 5.4.4 The above construction of © can be extended from dg-schemes to (Artin) dg-stacks.

5.4.4 The D-stack of G-torsors

As our last example, we present the D-stack of G-torsors where G is a linear algebraic group G. As an
object in Ho(D — Aff~) it is simply i:BG (where BG is the usual stack of G-torsors), but we would
like to describe explicitly the functor CDGA — SSet it represents.

Let H := O(G) be the Hopf algebra associated to G. By considering it as an object in the model
category of commutative differential graded Hopf algebras, we can take a cofibrant model QH of H,
as a dg-Hopf algebra. It is not very hard to check that QH is also a cofibrant model for H is the
model category of cdga’s. Using the co-algebra structure on QQH, one sees that the simplicial presheaf

SpecQH : D — Af f? — SSet

has a natural structure of group-like object. In other words, Spec QH is a presheaf of simplicial
groups on D — Aff. As the underlying simplicial presheaf of Spec QH is naturally equivalent to
RSpec H ~ iG, we will simply denote this presheaf of simplicial groups by iG.
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Next, we consider the category iG — Mod, of objects in D — Af f~ together with an action of
1G. If one sees iG as a monoid in D — Aff~, the category iG — Mod is simply the category of
modules over iG. The category iG — Mod is equipped with a notion of weak equivalences, that are
defined through the forgetful functor iG — Mod — D — Af f~ (therefore a morphism of iG-modules
is a weak equivalence if the morphism induced on the underlying objects is a weak equivalence in
D — Aff~). More generally, there is a model category structure on i{G — Mod, such that fibrations
and equivalences are defined on the underlying objects. For any object F' € iG — Mod, we also get
an induced model structure on the comma category iG — Mod/F. In particular, it makes sense to
say that two objects G — F and G’ — F in iG — Mod are equivalent over F, if the corresponding
objects in Ho(iG — Mod/F') are isomorphic.

Let @ be a cofibrant replacement functor in the model category C DG A. For any cdga A, we have
SpecQA € D — Af f~, the representable D-stack represented by A € D — Af f, that we will consider
as iG-module for the trivial action. A G-torsor over A is defined to be a iG-module F' € i1G — Mod,
together with a fibration of iG-modules FF' — Spec QA, such that there exists an étale covering
A — B with the property that the object

F Xgpecga Spec QB — SpecQB

is equivalent over Spec @B to iG x Spec QB — Spec QB (where iG acts on itself by left translations).

For a cdga A, G-torsors over A form a full sub-category of iG — Mod/Spec QA, that will be
denoted by G —Tors(A). This category has an obvious induced notion of weak equivalences, and these
equivalences form a subcategory denoted by wG —Tors(A). Transition morphisms wG — Tors(A) —
wG — Tors(B) can be defined for any morphism A — B by sending a G-torsor F' — Spec QA to
the pull-back F' X gpeca Spec QB — Spec QB. With a bit of care, one can make this construction
into a (strict) functor

CDGA — Cat
A —  wG —Tors(A).

We are now ready to define our functor

RBG: CDGA — SSet
A = |wG —Tors(A)|,

where |wG —Tors(A)| is the nerve of the category wG —Tors(A). The following result says that RBG
is the associated D-stack to iBG (recall that BG is the Artin stack of G-torsors, and that ¢BG is its
associated D-stack defined through the embedding i of Lemma 5.4.3).

Proposition 5.4.5 1. The object RBG € D — Aff~ is a D-stack.
2. There exists an isomorphism iBG ~ RBG in the homotopy category Ho(D — Aff™).

An important case is G = GI,,, for which we get that the image under ¢ of the stack Vect, of
vector bundles of rank n is equivalent to RBGI,, as defined above.
5.5 The geometry of D-stacks

We are now ready to start our geometric study of D-stacks. We will define in this Section a notion of
(1)-geometric D-stack, analogous to the notion of algebraic stack (in the sense of Artin). We will also
present the theory of tangent D-stacks, as well as its relations to the cotangent complex.
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5.5.1 Geometricity

A 1-geometric D-stack is a quotient of disjoint union of representable D-stacks by the action of a
smooth affine groupoid. In order to define precisely this notion, we need some preliminaries.

1.

Let f : F — F' be a morphism in Ho(D — Af f~). We say that f is a representable morphism,
if for any cgda A, and any morphism RSpec A — F’, the homotopy pull-back F' x%, RSpec A is
a representable D-stack (see Definition 5.4.2).

We say that a D-stack F' has a representable diagonal if the diagonal morphism A : FF — F x F
is representable. Equivalently, F' has a representable diagonal if any morphism RSpec A — F
from a representable D-stack is a representable morphism.

Let u : A — B be a morphism of cdga’s. We say that u is strongly smooth® if there exists an
étale covering B — B’, and a factorization

A B

l |

A (CXy,...,Xy] —= B’

with A ® C[Xy,...,X,] — B’ formally étale; here C[X1, ..., X,] is the usual polynomial ring,
viewed as a cdga concentrated in degree zero. This is an extension of one of the many equivalent
characterizations of smoothness for morphisms of schemes (see [Mil, Prop. 3.24 (b)]); we learn
it from [MCM] in which smooth morphisms (called there thh-smooth) between S-algebras are
defined.

A representable morphism of D-stacks f : F — F' is called strongly smooth, if for any morphism
from a representable D-stack RSpec A — F’, the induced morphism

F X};w RSpec A — RSpec A

is induced by a strongly smooth morphism of cdga’s.

A morphism f : F — F' in Ho(D — Aff™) is called a covering (or an epimorphism), if the
induced morphism 7y (F) — m(F") is an epimorphism of sheaves.

Note that definition (4) above makes sense because of (1) and because the functor A — RSpec A

is fully faithful on the homotopy categories.

Using these notions, we give the following

Definition 5.5.1 A D-stack F is strongly (1)-geometric if it satisfies the following two conditions

1. F has a representable diagonal.

2. There exist representable D-stacks RSpec A;, and a covering

H RSpec A; — F,

)

such that each of the morphisms RSpec A; — F (which is representable by 1.) is strongly
smooth. Such o family of morphisms will be called o strongly smooth atlas of F.

6The expression smooth morphism will be used for a weaker notion in §4.4.
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Remark 5.5.2 Objects satisfying Definition 5.5.1 are called strongly 1-geometric D-stacks as there
exists a more general notion of strongly n-geometric D-stacks, obtained by induction as suggested in
[S2]. The notion of strongly 1-geometric D-stacks will be enough for our purposes (except for our last
example in section 5), and we will simply use the expression strongly geometric D-stacks.

The following proposition collects some of the basic properties of strongly geometric D-stacks.

Proposition 5.5.3 1. Representable D-stacks are strongly geometric.

2. The homotopy pull-back of a diagram of strongly geometric D-stacks is again a strongly geometric
D-stack. In particular strongly geometric D-stacks are stable by finite homotopy limits.

3. If F is any algebraic stack (in the sense of Artin, see [La-Mo]) with an affine diagonal, then iF
s a strongly geometric D-stack.

4. If F is a strongly geometric D-stack then h®(F) is an algebraic stack (in the sense of Artin) with
affine diagonal. In particular, ih?(F) is again a strongly geometric D-stack.

5. For any dg-scheme (X, Ax), (X separated and quasi-compact), ©(X, Ax) (see §3.3) is a strongly
geometric D-stack.

In particular, Proposition 5.4.5 and point (3) above, tell us that the derived stack RBG of G-
torsors is a stongly geometric D-stack for any linear algebraic group G.

We are not going to present the theory in details in this work, but we would like to mention that
standard notions in algebraic geometry (e.g. smooth or flat morphisms, sheaves, cohomology ...) can
be extended to strongly geometric D stacks. We refer to [La-Mo] and [S2] for the main outline of the
constructions. The reader will find all details in [HAG-II].

5.5.2 Modules, linear D-stacks and K-theory

Let G, be the additive group scheme (over C) and consider the object iG, € Ho(D — Af f~). It has
a nice model in D — Aff~ which is Spec C[T] that we will denote by O (note that C[T] as a cdga
in degree 0 is a cofibrant object). The D-stack O is actually an object in commutative C-algebras,
explicitly given by
O: CDGA — (C - Alg)>™
A o (] o Ta(A)),

where I is a fibrant resolution functor. The D-stack is called the structural D-stack.
Let us now fix a D-stack F, and consider the comma category D — Aff~/F of D-stacks over
F'; this category is again a model category for the obvious model structure. We define the relative
structural D-stack by
Op =0O0xF —FeD-Aff"/F.

Since O is a C-algebra object, we deduce immediately that O is also a C-algebra object in the comma
model category D — Aff~/F.

Then we can consider the category Or — Mod, of objects in Op-modules in the category D —
Aff~/F. If one defines equivalences and fibrations through the forgetful functor D — Af f~/F —
D — Aff~, the category O — Mod becomes a model category. It has moreover a natural tensor
product structure ®p,. The model category O — Mod is called the model category of O-modules on
F.

Let A be a cdga and M be an (unbounded) A-dg module. We define a Ogpec a-module M in the
following way.
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Let I' be a fibrant resolution functor on the model category CDGA. For any cdga B, and any
integer n, we define M(B)n as the set of pairs (u, m), where u is a morphism of cdga’s A — ', (B)
(i.e. u € Spec A(B)), and m is a degree 0 element in M ® 4 ', (B) (i.e. m is a morphism of complexes
of C-vector spaces m : C — M ®4 I';,(B)). This gives a simplicial set [n] — M (B),, and therefore
defines an object in D — Af f~

M: CDGA —  SSet
B+~ M(B).

Clearly, the projection (u,m) — wu in the notation above induces a morphism M — Spec A.
Finally, this object is endowed in an obvious way with a structure of Ogpec a-module.

This construction, M M induces a functor
M :A—Mod — Ogpees — Mod

from the category of (unbounded) dg-A-modules, to the category of Ogpeca-modules. This functor
can be derived (by taking first cofibrant replacements of both A and M) to a functor

RM : Ho(A — Mod) — Ho(Ogspec 4 — Mod).
Lemma 5.5.4 The functor RM defined above is fully faithful.

Definition 5.5.5 1. A O-module on a representable D-stack RSpec A is called pseudo-quasi-coherent
if it is equivalent to some RM as above.

2. Let F be a D-stack, and M be a O-module. We say that M is pseudo-quasi-coherent if for
any morphism u : RSpec A — F, the pull-back u*M is a quasi-pseudo-coherent O-module on
RSpec A.

The construction M — M described above also has a dual version, denoted by M — Spel(M) and
defined in a similar way.

Let A be a cdga and M be an (unbounded) dg-A-module. For a cdga B and an integer n, we
define Spel(M)(B),, to be the set of pairs (u,a), where u : A — T',,(B) is a morphism of cdga, and
a: M — T',,(B) is a morphism of dg-A-modules. This defines a D-stack B — Spel(M)(B) which has
a natural projection (u,a) — u, to the Spec A. Once again, Spel(M) comes equipped with a natural
structure of Ogpec a4-module. Also, this Spel construction can be derived, to get a functor

RSpel : Ho(A — Mod)®” — Ho(Orspec 4 — Mod).
Lemma 5.5.6 The functor RSpel defined above is fully faithful.

Definition 5.5.7 1. A O-module on a representable D-stack RSpec A is called representable if it
is equivalent to some RSpel(M) as above.

2. Let F be a D-stack, and M be a O-module. We say that M is representable or is a linear
D-stack over F' if for any morphism u : RSpec A — F, the pull-back u*M is a representable
O-module on RSpec A.

3. A perfect O-module on a D-stack F is a Op-module which is both pseudo-quasi-coherent and
representable.

One can prove that the homotopy category of perfect O-modules on RSpec A is naturally equiva-
lent to the full sub-category of Ho(A — Mod) consisting of strongly dualizable modules, or equivalently
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of dg-A-modules which are retracts of finite cell modules (in the sense of [Kr-Ma, §III.1]). In partic-
ular, if A is concentrated in degree 0, then the homotopy category of perfect O-modules on RSpec A
is naturally equivalent to the derived category of bounded complexes of finitely generated projective
A-modules.

This notion of perfect O-modules can be used in order to define the K-theory of D-stacks. For
any D-stack F', one can consider the homotopy category of perfect O-modules on F, that we denote
by Dpe(F). This is a triangulated category having a natural Waldhausen model WPerf(F'), from
which one can define the K-theory spectra on the D-stack F, as K(F') := K(WPerf(F)). The tensor
product of O-modules makes K (F') into an E-ring spectra. Of course, when X is a scheme K (i.X)
is naturally equivalent to the K-theory spectra of X as defined in [T'T].

A related problem is that of defining reasonable Chow groups and Chow rings for strongly geometric
D-stacks, receiving Chern classes from the K-theory defined above. We are not aware of any such
constructions nor we have any suggestion on how to approach the question. It seems however that
an intersection theory over D-stacks would be a very interesting tool, as it might for example give
new interpretations (and probably extensions) of the notion of virtual fundamental class defined in
[Be-Fa]. For this case, the idea would be that for any strongly geometric D-stack F', there exists a
virtual fundamental class in the Chow group of its truncation h°F. The structural sheaf of F' should
give rise, in the usual way, to a fundamental class in its Chow group, such that integrating against it
over the all F is the same thing as integrating on its truncation h°F against the virtual fundamental
class. However, even if there is still no theory of Chow groups for D-stacks, if one is satisfied with
working with K-theory instead of Chow groups, the obvious class 1 =: [Of] € K(F'), will correspond
exactly to the class of the expected virtual structure sheaf.

5.5.3 Tangent D-stacks
Let SpecCle] the spectrum of the dual numbers, and let us consider iSpecCle] € Ho(D — Af f™).
Definition 5.5.8 The tangent D-stack of a D-stack F is defined to be

RTF := RHOM (iSpecCle], F) € Ho(D — Aff™).

Note that the zero section morphism Spec C — Spec Cle] and the natural projection Spec Cle] —
SpecC induces natural morphisms

m:RT'F — F e: FF— RTF,

where e is a section of .
An important remark is that for any D-stack F, the truncation h°RTF is equivalent to the tangent
stack of hYF (in the sense of [La-Mo, §17]). In other words, one has

RORTF ~ T(h°F).

In particular, the D-stacks RTF and iT'(h°F) have the same classical points. However, it is not true
in general that iTF ~ RT (i F') for a stack F'. Even for a scheme X, it is not true that RT'(iX) ~ T X,
except when X is smooth.

Definition 5.5.9 If z : iSpecC — F is a point of a D-stack F', then the tangent D-stack of F' at =
is the homotopy fiber of w : R'F — F at the point x. It is denoted by

RTF, := RTF x"% iSpecC € Ho(D — Aff™).
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Let us now suppose that F' is a strongly geometric D-stack. One can show that RT'F is also
strongly geometric. In particular, for any point z in F(C) the D-stack RT'F, is strongly geometric.

Actually much more is true. For any strongly geometric D-stack F', and any point z in F/(C), the
D-stack RT'F, is a linear D-stack (over iSpecC) as defined in 5.5.7. Let us recall that this implies
the existence of a natural complex RQL ~ of C-vector spaces (well defined up to a quasi-isomorphism
and concentrated in degree | — 0o, 1]), with the property that, for any cdga A, there exists a natural
equivalence

RTFy (A) = RHom () (R, A),

where RHom ¢ ) denotes the mapping space in the model category of (unbounded) complexes of
C-vector spaces. Symbolically, one writes

RTF, = (RQ}%)*,

where (RQ}UJ)* is the dual complex to RQ}?J. In other words, the tangent D-stack of F' at x “is” the
complex (]RQ}?,I)*, which is now concentrated in degree [—1, ool.

Definition 5.5.10 If z : i:SpecC — F 1is a point of a strongly geometric D-stack, then we say that
the dimension of F' at x is defined if the complex RQ};@ has bounded and finite dimensional cohomology.
If this is the case, the dimension of F' at x is defined by

RDim, F = (=1)'H'(RQ, ).

)

This linear description of RT'F}, has actually a global version. In fact, one can define a cotangent
compler RQL, of a strongly geometric D-stack, which is in general an O-module on F in the sense
of Definition 5.5.5, which is most of the times quasi-coherent. One then shows that there exists an
equivalence of D-stacks over F

RTF ~ RSpel (RQL),

and in particular that the D-stack RT'F' is a linear stack over F in the sense of Definition 5.5.7.

An already interesting application of this description, is to the case F = iX, for X a scheme
or even an algebraic stack. Indeed, the cotangent complex RQ}X mentioned above is precisely the
cotangent complex Ly of [La-Mo, §17]. The equivalence

RT(iX) ~ RSpel (RQY)

gives a relation between the purely algebraic object Ly and the geometric object RT'(iX). In a sense,
the usual geometric intuition about the tangent space is recovered here, at the price of (and thanks
to) enlarging the category of objects under study: the cotangent complex of a scheme becomes the
derived tangent space of the scheme considered as a D-stack. We like to see this as a possible answer
to the following remark of A. Grothendieck ([Grl, p. 4]):

[...] Il est trés probable que cette théorie pourra s’étendre de fagon a donner une correspondance
entre complexes de chaines de longeur n, et certaines “n-catégories” cofibrées sur C'; et il n’est pas
exclus que par cette voie on arrivera également a une “interprétation géométrique” du compleze cotan-
gent relatif de Quillen.

5.5.4 Smoothness

To finish this part, we investigate various non-equivalent natural notions of smoothness for geometric
D-stacks.
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Strong smoothness. We have already defined the notion of a strongly smooth morphisms of
cdga’s in §4.1. We will therefore say that a morphism

F — RSpec B

from a geometric D-stack F' is strongly smooth if there is a strongly smooth atlas [[ RSpec A; — F
as in Definition 5.5.1, such that all the induced morphisms of cdga’s B — A; are strongly smooth
morphisms of cdga’s (see §4.1). More generally, a morphism between strongly geometric D-stacks,
F — F', is called strongly smooth if for any morphism RSpec B — F' the morphism F xZ,
RSpec B — RSpec B is strongly smooth in the sense above.

Strong smoothness is not very interesting for D-stacks, as a strongly geometric D-stack F' will be
strongly smooth if and only if it is of the form iF’, for F' a smooth algebraic stack.

Standard smoothness. A more interesting notion is that of standard smooth morphisms, or
simply smooth morphisms. On the level of cdga’s they are defined as follows.

A morphism of cdga’s A — B is called standard smooth (or simply smooth), if there exists an
étale covering B — B’, and a factorization

ﬁB

A
A,—>Ba

such that the A-algebra A’ is equivalent to a free A-algebra over some perfect dg-A-module (i.e.
A — A’ is free and finitely presented). This notion, defined on cdga’s, can be extended (as we did
above for strongly smooth morphisms) to morphisms between strongly geometric D-stacks.

This notion is more interesting than strong smoothness, as a strongly geometric D-stack can
be smooth without being an algebraic stack. However, one can check that if F' is a smooth strongly
geometric D-stack in this sense, then h°(F) is also a smooth algebraic stack. In particular, the derived
version of the stack of vector bundles on a smooth projective surface, discussed in the Introduction
(see also conjecture 5.6.4), will never be smooth in this sense as its truncation is the stack of vector
bundles on the syrface which is singular in general).

Nevertheless, smooth morphisms can be used in order to define the following more general notion
of geometric D-stacks.

Definition 5.5.11 A D-stack F is (1)-geometric if it satisfies the following two conditions
1. The D-stack has a representable diagonal.

2. There exists representable D-stacks RSpec A;, and a covering

H]RSpecAi — F,
7

such that each of the morphisms RSpec A; — F is smooth. Such a family of morphisms will be
called a smooth atlas of F'.

Essentially all what we have said about strongly geometric D-stacks is also valid for geometric
D-stacks in the above sense. In Section 5 we will give some natural examples of geometric D-stacks
which are not strongly geometric.

fp-smoothness. The third notion of smoothness is called fp-smoothness and is the weakest of

the three and it seems this is the one which is closer to the smoothness notion referred to in the DDT
program in general. It is also well suited in order for the derived stack of vector bundles to be smooth.
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Recall that a morphism of cgda’s, A — B is finitely presented if it is equivalent to a retract of a
finite cell A-algebra, or equivalently if the mapping space Map 4/cpea(B, —) commutes with filtered
colimits (this is the same as saying that RSpec A commutes with filtered colimits). We will then say
that a morphism of geometric D-stacks, F' — F’ is locally finitely presented if for any morphism
RSpec A — F' there exists a smooth atlas

HRSpecAi — F X RSpec A

such that all the induced moprhisms of cdga’s A — A; are finitely presented. Locally finitely
presented morphisms will also be called fp-smooth morphisms. The reason for this name is given by
the following observation.

Proposition 5.5.12 Le F be a geometric D-stack which is fp-smooth (i.e. F — % = iSpecC is
fp-smooth). Then the cotangent complex ]RQ}; s a perfect complex of O-modules on F'.

In particular, for any point x € F(C), the dimension of F at x is defined and locally constant for
the étale topology.

Of course, one has strongly smooth = smooth = fp-smooth, but each of these implications is
strict. For example, a smooth scheme is strongly smooth. Let E be a complex in non-positive degrees
which is cohomologically bounded and of finite dimension. Then RSpel(F) is smooth but not strongly
smooth as it is not a scheme in general. Finally, any scheme which is a local complete interesection is
fp-smooth, but not smooth in general.

5.6 Further examples

In this Section we present three examples of geometric D-stacks: the derived stack of local systems
on a space, the derived stack of wector bundles and the derived stack of associative algebra and
Ao-categorical structures. The derived moduli space of local systems on a space has already been
introduced and defined in [Ka2] as a dg-scheme. In the same way, the derived moduli space of
(commutative) algebra structures has been constructed in [Ci-Ka2] also as a dg-scheme. Finally, the
formal derived moduli spaces of local systems on a space and of As-categorical structures have been
considered in [Hin2, Ko2, Ko-So].

The new mathematical content of this part is the following. First of all we give a construction of
the derived moduli stack of vector bundles, that seems to be new, and we also define global versions
of the formal moduli spaces of A, -categorical structures that were apparently not known. We also
provide explicit modular descriptions, by defining various derived moduli functors, which were not
known (and probably not easily available), for the constructions of [Ka2, Ci-Kal, Ci-Ka2].

5.6.1 Local systems on a topological space

Throughout this subsection, X will be a CW-complex. For any cdga A, we denote by A — Modx
the category of presheaves of dg-A-modules over X. We say that a map M — N in A — Mody is
a quasi-isomorphism if it induces a quasi-isomorphism of dg-A-modules on each stalk. This gives a
notion of equivalences in the category A — Mody, and of equivalent objects (i.e. objects which are
isomorphic in the localization of the category with respect to equivalences).

A presheaf M of dg-A-modules on X will be said locally on X x A¢ equivalent to A™ if, for any
z € X, there exists an open neighborhood U of z in X and an étale cover A — B, such that the
presheaves of dg-B-modules M|y ® 4 B and B" are equivalent. We will also say that a presheaf M of
dg-A-modules is flat, if for any open U of X, the dg-A-module M(U) is cofibrant. By composing with
a cofibrant replacement functor in A — Mod, one can associate to any dg-A-module an equivalent flat
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dg-A-module (since equivalences are stable by filtered colimits). The category wLoc,(X; A) of rank n
local systems of dg-A-modules has objects those presheaves of flat dg- A-modules on X which are locally
on X X Ag equivalent to A", and morphisms quasi-isomorphisms between them. For morphisms of
cdga’s A — B we obtain pull-back functors

wLoc,(X;A) — wLoc,(X; B)
M — M®s B.

This makes wLoc,(X;A) into a lax functor from CDGA to categories, that we turn into a strict
functor by applying the standard strictification procedure.

We denote by RLoc,,(X) the simplicial presheaf on D — Af f sending a cdga A to |wLocy,(X)| (the
nerve of wLoc,(X;A)). We call it the D-pre-stack of rank n derived local systems on X.

Obviously, the objects in wLoc, (X; A) are a derived version of the usual local systems of R-modules
on X, where R is a commutative ring. More precisely, if we consider such an R as a cdga concentrated
in degree zero, then RLoc,(X;R) is the closure under quasi-isomorphisms of the groupoid of rank
n local systems of R-modules on X; in other words, if we invert quasi-isomorphisms in the category
wLoc, (X; R) then we obtain a category which is equivalent to the groupoid of rank n local systems
of R-modules on X.

Theorem 5.6.1 1. The D-pre-stack RLoc,,(X) is a D-stack. Furthermore, one has RLoc,, (pt) ~
1BGl,,.

2. One has an equivalence
h'RLoc,,(X) ~ [Hom(m (X), Gl,)/Gly),

between the truncation of RLoc, (X) and the (Artin) stack of local systems on X.
3. If S(X) denotes the singular complex of X, we have the following isomorphisms in Ho(D—Af ™),

RLoc,, (X) ~ RHOM (S(X),iBGl,) ~ RHOM (S(X),Loc, (pt)),

where RHOM denotes the Hom-stack (internal Hom in Ho(D — Aff~)) and S(X) denotes the
simplicial constant presheaf with value S(X).

4. For any rank n local system L on X, the tangent D-stack of RLoc, (X) at L is the complex
C*(X, End(L))[1], of cohomology of X with coefficients in End(L).

5. If X is a finite CW-complex, then the stack RLoc, (X) is strongly geometric, fp-smooth of (the
expected) dimension —n?x(X), x(X) being the Euler characteristic of X.

Note that the classical points of RLoc,, (X) (i.e. morphisms from iSpeck, for some commutative
ring k) coincide with the classical points of its truncation h®RLoc,, (X) which coincides with the usual
(i.e. not derived) stack of rank n local systems on X. So we have no new classical points, as desired.

Let us give only some remarks to show what the proof of Theorem 5.6.1 really boils down to.
First of all notice that the first assertion is a consequence of the second one, once one knows that
RLoc,, (pt) ~ iBGL, and is a stack; so we are reduced to prove the absolute case (X = pt) of 1. and
2. The first two properties in 3. follows from 2., the finiteness of X and the analogous properties of
BGl,. Finally the dimension count in 3. is made by an explicit computaion of the tangent D-stack
at some local system E. Explicitly, one finds that (in the notations of §4.3) (RQL, (X),E)* is the
complex C*(X, End(FE))[1], which is a complex of C-vector spaces concentrated in_dggrees [—1,00[
whose Euler characteristic is exactly —n?x(X).
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Remark 5.6.2 The example of local systems is one of those cases where there is a canonical way
to derive the usual moduli stack (see the discussion in Section 6). In fact, in this case we have
HOM(S(X),Locy(pt)) =~ Loc,(X), for any CW-complex X, where HOM denotes the (underived)
Hom-stack between (underived) stacks; therefore the natural thing to do is to first view the usual
absolute stack Loc,(pt) as a derived stack via the inclusion 7 and then derive the Hom-stack from
S(X) to iLoc,. This authomatically gives an extension of Loc,(X) i.e. a canonical derivation of it.

It is important to notice that the D-stack RLoc, (X) might be non-trivial even if X is simply
connected. Indeed, the tangent at the unit local system is always the complex C*(X,C)[1]. This
shows that RLoc,, (X)) contains interesting information concerning the higher homotopy type of X. As
noticed in the Introduction of [K-P-S], this is one of the reasons why the D-stack RLoc,, (X) might be
an interesting object in order to develop a version of non-abelian Hodge theory. We will therefore ask
the same question as in [K-P-S].

Question 5.6.3 Let X be a smooth projective complex variety and X'P its underlying topological
space. Can one extend the non-abelian Hodge structure defined on the moduli space of local systems
in [S3], to some kind of Hodge structure on the whole RLoc,, (X) ?

This question is of course somewhat imprecise, and it is not clear that the object RLoc,,(X) itself
could really support an interesting Hodge structure. However, we understand the previous question in
a much broader sense, as for example it includes the question of defining derived versions of the moduli
spaces of flat and Higgs bundles, and to study their relations from a non-abelian Hodge theoretic point
of view, as done in [S3] for example.

5.6.2 Vector bundles on a projective variety

We now turn to the example of the derived stack of vector bundles, which is very close to the previous
one. Let X be a fixed smooth projective variety.

If A is a cdga, we consider the space X (with the Zariski topology) together with its presheaf of
cdga Ox ® A. Tt makes sense to consider also presheaves of dg-Ox ® A-modules on X and morphisms
between them. We define a notion of equivalences between such presheaves, by saying the f : M — N
is an equivalence if it induces a quasi-isomorphism at each stalks. Using this notion of equivalences we
can talk about equivalent dg-Ox ® A-modules (i.e. objects which become isomorphic in the localization
of the category with respect to quasi-isomorphisms).

We say that a presheaf of dg-Ox ® A-module M on X is a vector bundle of rank n, if locally on
Xzar X Ag it is equivalent to (Ox ® A)" (see the previous Subsection for details on this definition).
We consider the category wVect, (X, A), of dg-Ox ® A-modules which are vector bundles of rank n
and flat (i.e. for each open U in X, the Ox(U) ® A-module M(U) is cofibrant), and equivalences
between them. By the standard strictification procedure we obtain a presheaf of categories

CDGA — Cat
A — wVect, (X, A)
(A=-B) —» (M—M®aB).

We then deduce a simplicial presheaf by appying the nerve construction

RVect,(X): CDGA — Cat
A = |JwVect, (X, A)|.

This gives an object RV ect, (X) € D — Af f~ that we call the derived moduli stack of rank n vector
bundles on X.
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We state the following result as a conjecture, as we do not have checked all details. However,
we are very optimistic about it, as we think that a proof will probably consist of reinterpreting the
constructions of [Ci-Kal] in our context.

Conjecture 5.6.4 1. The D-pre-stack RV ect, (X) is a strongly geometric, fp-smooth D-stack.
2. There exists a natural isomorphism in Ho(D — Af f~)

RV ect, (X) ~ RHOM (X,iBGl,).

3. One has an equivalence
hORV ect, (X) ~ Vect, (X)

between the truncation of the D-stack h®RV ect, (X) and the (Artin) stack of rank n vector bundles
on X.

4. The tangent D-stack of RV ect, (X) at a vector bundle E on X, is the complex
C*(XZaraM(E))[l]'

The same remark as in the case of the derived stack of local systems holds. Indeed, the usual Artin
stack of vector bundles on X is given by RHOM (X, BGI,), and our D-stack of vector bundles on X
is RHOM (i X,iBGl,).

5.6.3 Algebras and A,,-categorical structures

In this last Subsection we present the derived moduli stack of associative algebra structures and A-
categorical structures. These are global versions of the formal moduli spaces studied in [Ko2, Ko-So].

Associative algebra structures. We are going to construct a D-stack RAss, classifying asso-
ciative dg-algebra structures.

Let A be any cgda, and let us consider the category of (unbounded) associative differential graded
A-algebras A — Ass (i.e. A — Ass is the category of monoids in the symmetric monoidal category
A — Mod, of (unbounded) dg-A-modules)”. This category is a model category for which the weak
equivalences are the quasi-isomorphisms and fibrations are epimorphisms. We restrict ourselves to
the category of cofibrant objects A — Ass® and consider the sub-category wA — Ass® consisting of
equivalences only. If A — A’ is any morphism of cdga’s, then we have pull-back functors

—®aA

wA — Ass wA’ — Ass® .

This defines a (lax) functor on the category of cdga’s that we immediately strictify by the standard
procedure. We will therefore assume that the above constructions are strictly functorial in A. By
passing to the corresponding nerves we get a presheaf of simplicial sets

RAss: CDGA — SSet
A = JwA — Ass®|.

This gives a well defined object RAss in D — Af f~.

We define a sub-simplicial presheaf RAss, of RAss, consisting of associative dg-A-algebras B for
which there exists an étale covering A — A’ such that the dg-A’-module B ®% A’ is equivalent to
(A%

"By definition our associative A-dga’s are then all central over A since they are commutative monoids in A — Mod.
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Theorem 5.6.5 1. The D-pre-stack RAss,, is a D-stack.

2. The D-stack RAss,, is strongly geometric. Furthermore, h®RAss, is naturally equivalent to the
(usual) Artin stack of associative algebra structures on C".

3. For any global point V : x — RAss,,, corresponding to an associative C-algebra V', the tangent
D-stack of RAssy, at V is the complex RDer(V,V)[1] of (shifted) derived derivations from V to
V.

JFrom (3) we see that the geometric D-stack RAss,, is not fp-smooth. Indeed, Quillen gives in
[Quil, Ex. 11.8] an example of a point in RAss, at which the dimension in the sense of Definition
5.5.10 is not defined.

The previous theorem can also be extended in the following way. Let V' be a fixed cohomologically
bounded and finite dimensional complex of C-vector spaces. We define RAssy to be the sub-simplicial
presheaf of RAss consisting of associative dg-A-algebras B for which there exists an étale covering
A — A’ such that the dg-A'-module B ®% A’ is equivalent to A’ ® V.

On can that RAssy is again a D-stack, but it is not in general strongly geometric in the sense of
Definition 5.5.1. However, one can show that it admits a smooth atlas and therefore is geometric in
the sense of Definition 5.5.11. The tangent D-stack of RAssy at a point is given by the same formula
as before.

The construction of RAssy can also be extended to classify algebra structures over an operad on
the complex V. One checks that one also get geometric D-stacks this way. These are the geometric
counterparts of the (discrete) moduli spaces described by C. Rezk in [Re].

A-Categorical structures®. Let A by any cdga. Recall that a dg-A-category C consists of the
following data

1. A set of objects Ob(C).
2. For each pair of object (z,y) in Ob(C'), a (unbounded) dg-A-module Cy .

3. For each triplet of object (z,y, ) in Ob(C), a composition morphism Cy , ® 4 Cy , — Cy , which
satisfies obvious associativity and unital conditions.

There is an obvious notion of morphism between dg-A-categories. There is also a notion of equiv-
alences of dg-A-categories: they are morphisms f : C' — C’ satisfying the following two conditions

1. For any pair of objects (z,y) of C, the induced morphism f,, : Cp, — C;,,y is a quasi-
isomorphism of dg- A-modules.

2. Let H'(C) (resp. H°(C')) be the categories having repectively the same set of objects as C
(resp. as C"), and H°(Cyy) (resp. H(C},,)) as set of morphisms from z to y. Then, the induced
morphism

HO(f) : H*(C) — H(C")
is an equivalence of categories (in the usual sense).

Using these definitions, one has for any cdga A, a category A — Cat of dg-A-categories, with a
sub-category of equivalences wA — Cat. Furthermore, if A — A’ is a morphism of cdga, one has a

8We are working here with the stronger notion of dg-category (or strict A -categories), and of course one could also
use Aso-categories instead. However, as the homotopy theories of dg-categories and Ao-categories are equivalent, the
D-stacks obtained would be the same.
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pull-back functor A — Cat — A" — Cat, obtained by tensoring the dg-A-modules C;, with A’. With
a bit of care (e.g. by restricting to cofibrant dg-A-categories), one gets a simplicial presheaf

RCat: CDGA — SSet
A = |lwA — Catl,

that is an object in D — Af ™.

We now consider the sub-simplicial presheaf RCat; of RCat, consisting of all dg-A-categories C'
such that all the dg-A-modules C, , are finitely presented (i.e. are retracts of finite cell dg-A-modules
[Kr-Ma, §III.1], or equivalently are strongly dualizable or equivalently perfect).

In order to state the following result, we mention that iterating Definition 5.5.11 leads to a notion
of n-geometric D-stacks. We will use the notion of a 2-geometric D-stacks, which is defined to be a
D-stack having a 1-representable diagonal (i.e. pull-backs of the morphism ' — F x F along all
RSpecA — F x F are l-geometric D-stacks), and which admits a smooth 1-geometric atlas (i.e.
a smooth morphism from a disjoint union of 1-geometric stacks, which is a covering). The reader
will find the full definition of higher geometric D-stacks in the forthcoming paper [HAG-II], or might
himself reconstruct the definition from [S2].

Theorem 5.6.6 Let RCaty be the associated D-stack to the D-pre-stack RCaty.

1. The D-stack R/C\c_z?f s 2-geometric.

2. For any global point C' : x — RCaty, corresponding to a dg-category C, the tangent D-stack of

R/C\c_zt/f at C is the whole (shifted) Hochschild cohomology complez C*(C,C)[2] (see e.g. [Ko-So,
2.1] or [So, 2]).

Remark 5.6.7 For a cgda A, points in R/C\c_z?f (A) can be described as certain twisted forms of dg-A-
categories on the étale site of A.

Note that the D-stack R/C\c_z?f cannot be 1-geometric, as its truncation hUR/C—Y\C_l?f has a component
corresponding to the 2-geometric stack of linear categories. As a l-geometric stack is always 1-
truncated (contrary to the derived situation), this shows that m must be at least 2-geometric.

We let RAssy; be the sub-simplicial presheaf of RAss defined before, consisting of associative
A-dga’s which are finitely presented as dg-A-modules. Then, there exists a natural morphism

RASSf —>R/C\C_lt/f,

that sends an associative dga to the dg-category, with one object, it defines. This morphism is actually
a gerbe in the following sense. If B : RSpec A — RAssy corresponds to associative A-dga, then the
homotopy fiber F' of the previous morphism is locally equivalent to the D-stack over RSpec A sending
an cdga A — A’ to the simplicial set K((B®4 A")*, 1), where (B®4 A")* is the loop space of invertible
elements in B ®4 A’ (i.e. the mapping space Map s+ o, (A[T,T~'],B ®4 A’)). In particular, one

deduces that the morphism RAss; — RCat; is a smooth morphism of 2-geometric stacks (a smooth
morphisms between 2-geometric stacks is defined in an analogous way as for 1-geometric stacks). This
smooth morphism induces in particular an exact triangle between the tangent D-stacks

—alg

+1
RTFp — RT(RAssf)p —=RT(RCat;)p —

which can also be written

B[1] —> RDer (B, B)[1] — C{(B, B)[2] =
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which is our way of understanding the triangle appearing in [Ko2, p. 59] (at least for d = 1).

The fact that the tangent D-stack of RCat; at a dg-category with only one object is the whole
(shifted) Hochschild complex C*(A, A)[2], where A is the dg-algebra of endomorphism of the unique
object, is also our way to understand the following sentence from [Ko-So, p. 266]:

In some sense, the full Hochschild complex controls deformations of the As-category with one
object, such that its endomorphism space is equal to A.

We see that the previous results and descriptions produce global versions of the formal moduli
spaces of A, -categories studied for example in [Ko-So, So]. This also shows that there are interesting
2-geometric stacks, and probably interesting n-geometric stacks (as, for example, the n-geometric stack
of (n—1)-dg-categories, whatever these are) as suggested by a higher analog of the exact triangle above
(see [Ko2, 2.7 Claim 2]).

5.7 Final comments on deriving moduli functors

In this Subsection, keeping in mind the examples presented before, we would like to discuss, from a
more general point of view, the problem of derivation of moduli functors, with the aim of at least
making explicit some general features shared by the examples.

Suppose M : (Af f)°? = (C—alg) — Set is a functor arising from some geometric moduli problem
e.g., the problem of classifying isomorphism classes of families of (pointed) curves of a given genus.
Very often, the moduli functor M is not representable and only admits a coarse moduli space. As its
name says, when passing to a coarse moduli space some information is lost. The theory of stacks in
groupoids was originally invented to correct this annoyance, by looking at natural extensions of M,
i.e. to functors M, from algebras to groupoids, such that the following diagram commutes

Affor M 5 ey

]

Grpd,

Here the vertical arrow assigns to a given groupoid its set of isomorphisms classes of objects. Of
course, the point of the theory of stacks in groupoids is precisely to develop a geometry on this kind
of functors.

More generally, other natural higher moduli problems are not representable even when considered
as stacks in groupoids, e.g. the 2-stack perfect complexes of length 1, the 2-stack of linear categories
...; the theory of higher stacks precisely says that one should consider M extended as follows

Affor Mo gep

&

M Grpd

|

SSet,

where the functor II; maps a simplicial sets to its fundamental groupoid. The notion of geometric
n-stacks of [S2] can then be used in order to set up a geometry over these kind of objects, in pretty
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much the same way one is doing geometry over stacks in groupoids.

The idea of derived algebraic geometry is to seek for derived extensions of M, M; and M i.e.
to extend not (only) the target category of this functors but more crucially the source category in a
“derived” direction. More precisely, we define a derived extension of a functor M : Af fP — SSet,
as above, to be a functor RM : (D — Af f)°? — SSets making the following diagram commute

M

Af fop Set
& TWO
j M Grpd

2

D — AffP —— SSet

where j denotes the natural inclusion (a C-algebra viewed as a cdga concentrated in degree zero). The
above diagram shows that, for any derived extension RM, we have

moRM (j(SpecR)) ~ M (SpecR)

and moreover

II;RM (j(SpecR)) ~ M;(SpecR)

for any commutative C-algebra R. In other words, the O-truncation of RM gives back M when re-
stricted to the image of j, while its 1-truncation gives back Mj.

What about the existence or uniqueness of a derived extension RM 7 First of all, extensions always
exists, as one can use the trivial one given by the functor ¢ of §3.2. But of course, this extension is
far from being unique and usually does not give the expected answer. However, there is no canonical
choice for an extension which could be nicer than others. This tells us that the choice of the extended
moduli functor RM highly depends on the geometrical meaning of the original moduli functor M,
M of M. We would like to give here a clear example to show this.

Let S? be the 2-dimensional sphere, and let us consider M; := Loc, (5?), the moduli stack of rank
n local systems on S?. We clearly have M ~ BGL,,. If one thinks of M simply as BGI,,, and forget
about the fact that it is the moduli stack of local systems on S?, then a reasonable extension of M is
simply iBGI,, ~ RBGI, as described in §3.4. However, if one remembers that M is Loc,, (S?), then
the correct (or at least ezpected) extension is RLoc,, (S?) presented in Theorem 5.6.1. Definitely, these
two extensions are very different. This example shows that the ezpected extension RM depends very
much on the way we think of the original moduli problem M. In a way we are more deriving our
interpretation of the moduli functor rather than the moduli functor itself. Another example of the
existence of multiple choices can be found in [Ci-Ka2], in which the derived Hilbert dg-scheme is not
the same as the derived Quotp dg-scheme.

Nevertheless, the derived extension of a moduli functor that typically occurs in algebraic geometry,
is expected to satisfy certain properties and this gives some serious hints in order to guess the correct
answer.

First of all, in general, one knows a priori what is the ezpected derived tangent stack TRM (or,
at least, the disembodied derived tangent complexes at the points, the (Q%& M@)*’s in the notations of
§4.3); namely, this is true in the case where M classifies vector bundles over a scheme, local systems
over a topological space, families curves or higher dimensional algebraic varieties, stable maps from
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a fixed scheme and so on. For some examples of the expected derived tangent spaces we refer again
to [Ci-Kal, Ci-Ka2]. To put it slightly differently, it is always the case that one looks for a derived
extension by simply requiring it to have the expected derived tangent stack. This is essentially due to
the fact that the correct derived deformation theory of the moduli problem has already been guessed,
and the corresponding, already established, formal theoy is based on this guess (see [Hin2, Ko-So, So],
to quote a few).

Even if this does not say exactly how to construct a derived extension, it certainly puts some con-
straints on the possible choices. To go a bit further, one may notice that all the usual moduli functor
occurring in algebraic geometry classify families of geometric objects over varying base schemes. To
produce a derived extension RM, the main principle is then the following

Main principle: Let M be a moduli stack classifying certain kind of families of geometric objects
over varying commutative algebras A. In order to guess what the extended moduli stack RM should be,
guess first what is a family of geometric objects of the same type parametrized by a commutative dga A.

In the case, for example, where the classical notion of a family is defined through the existence of
a map with some properties (like for example in the case of the stack of curves), the derived analog
is more or less clear: one should say that a derived family over a cdga A is just a map of simplicial
presheaves FF — RSpec A, having the same properties in the derived sense (e.g., as we extended
the notion of étale morphism of schemes to cdga’s, see §2.2, the same can be done with the notions
of smooth, flat ... morphisms of schemes). Then, a natural candidate for a derived notion of fam-
ily of geometric objects, is given by any derived analog of a family such that when restricted along
Spec(H(A)) — SpecA it becomes equivalent to an object coming from M (Spec(H°(A))). This con-
dition, required in order to really get a derived extension, essentially says that the derived version of
a family of geometric objects should reduce to a non-derived family of geometric objects in the non-
derived or scheme-like direction, i.e. along Spec(H°(A)) — SpecA. A typical example of this case
is the one of G-torsors given in §3.4. Another example would be that of the moduli stack of surfaces.
One could say for example that a smooth projective family of surfaces over a cdga A, is a strongly
smooth morphism of strongly geometric D-stacks F' — RSpec A, such that for any geometric point
z : SpecC — RSpec A, the pull-back F xﬁéspecA SpecC is equivalent to a smooth projective surface.

Though this gives perhaps only a vague recipee of a possible construction of derived extensions of
some of the moduli functors occurring in algebraic geometry, we thought it was worthwhile presenting
it, if not certainly to solve the problem at least to pose it in a general perspective.
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