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1 Introduction

1 Introduction

Category theory has been around for about half a century now, invented in the
1940’s by Eilenberg and MacLane. Eilenberg was an algebraic topologist and
MacLane was an algebraist. They realized that they were doing the same calcu-
lations in different areas of mathematics, which led them to develop category
theory. Category theory is really about building bridges between different areas
of mathematics.

1.1 Definitions and examples

This is just about setting up the terminology. There will be no theorems in this
chapter.

Definition 1.1. A category C consists of
(i) a collection ob C of objects A, B, C, ...
(ii) a collection mor C of morphisms f,g,h...

(iii) two operations, called dom(—) and cod(—), from morphisms to objects.
We write A > B or f:A — Bfor f € morC and dom(f) = A and
cod(f) = B;

(iv) an operation A — 14 from objects to morphisms, such that A 14, A;

(v) an operation o: (f,g) — f o g from pairs of morphisms (so long as we
have dom f = cod g) to morphisms, such that dom(fg) = dom(g) and

cod(fg) = cod(f).
These data must satisfy:

(vi) forall f: A— B, fly =1pf = f;
(vii) composition is associative. If f¢ and gh are defined, then f(gh) = (fg)h.
Remark 1.2.

(a) We don’t require that ob C and mor C are sets.
(b) If they are sets, then we call C a small category.

(c) We can get away without talking about objects, since A — 14 is a bijection
from ob C to the collection of morphisms f satisfying fg = gand hf = h
whenever teh composites are defined. Essentially, we can represent objects
by their identity arrows.

Example 1.3.

(a) The category Set whose objects are sets and whose arrows are functions.
Technically, we should specify the codomain for the functions because re-
ally the definition of a function doesn’t specify a codomain. So morphisms
are pairs (f, B), where B is the codomain of the function f.
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1 Introduction 1.1 Definitions and examples

(b) Gp is the category of groups and group homomorphisms;

(c) Ring is the category of rings and ring homomorphisms;

(d) R-Mod is the category of R-modules and R-module homomorphisms;
(e) Top is the category of topological spaces and continuous maps;

(f) Mf is the category of smooth manifolds and smooth maps;

(g) The homotopy category of topological spaces Htpy has the same objects
as Top, but the morphisms X — Y are homotopy classes of continuous
maps;

(h) for any category C, we can turn the arrows around to make the opposite
category C°P.

Example (h) leads to the duality principle, which is a kind of “two for the
price of one” deal in category theory.

Theorem 1.4 (The Duality Principle). If ¢ is a valid statement about categories,
so is the statement ¢* obtained by reversing all the morphisms.

Example (g) above gives rise to the following definition.

Definition 1.5. In general, an equivalence relation ~ on the collection of all
morphisms of a category is called a congruence if

(i) f~g = domf =domgandcodf =codg;
() f~g = fh~ ghand kf ~ kg whenever the composites are defined.

There’s a category C/ ~ with the same objects as C but ~-equivalence classes as
morphisms.

Example 1.6. Continued from Example 1.3.

(i) A category C with one object * must have dom f = cod f = * for all
f € mor C. So all composites are defined, and (if mor C is a set), mor C is
just a monoid (which is a semigroup with identity).

(j) In particular, a group can be considered as a small category with one
object, in which every morphism is an isomorphism.

(k) A groupoid is a category in which all morphisms are isomorphisms. For
a topological space X, the fundamental groupoid 7(X) is the “basepoint-
less fundamental group;” the objects are points of X and the morphisms
x — y are homotopy classes paths from x to y. (Homotopy classes are
required so that each path has an inverse).

() a category whose only morphisms are identites is called discrete. A
category in which, for any two objects A, B there is at most one morphism
A — B is called preorder, i.e. it’s a collection of objects with a reflexive
and transitive relation. In particular, a partial order is a preorder in which
the only isomorphisms are identities.
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1 Introduction 1.1 Definitions and examples

(m) The category Rel has the same objects as Set, but the morphisms are
relations instead of functions. Precisely, a morphism A — B is a triple
(A, R, B) where R € A x B. The composite (B,S,C)(A,R,B)is (A,RoS,C)
where
RoS={(a,c)|3beBst (a,b)eRand (b,c) € S}.

Note that Set is a subcategory of Rel and Rel =~ Rel°P.
Let’s continue with the examples.
Example 1.7. Continued from Example 1.3.

(n) Let K be a field. The category Matg has natural numbers as objects. A
morphism n — p is a p x n matrix with entries in K. Composition is
just matrix multiplication. Note that, once again, Matg =~ Matip, via
transposition of matrices.

(0) An example from logic. Suppose you have some formal theory T. The
category Dety of derivations relative to T has formulae in the language
of T as objects, and morphisms ¢ — ¢ are derivations

¢

4

and composition is just concatenation. The identity 14 is the one-line
derivation ¢.

Definition 1.8. Let C and D be categories. A functor F: C — D consists of
(i) an operation A — F(A) from ob C to ob D;
(ii) an operation f — F(f) from mor C to mor D,
satisfying
(i) dom F(f) = F(dom f),cod F(f) = F(cod f) for all f;
(i) F(1a) = 1p(4) forall 4;
(iii) and F(fg) = F(f)F(g) whenever fg is defined.
Let’s see some examples again.

Example 1.9. (a) The forgetful functor Gp — Sets which sends a group to
its underlying set, and any group homomorphism to itself as a function.
Similarly, there’s one Ring — Set, and Ring — Ab, and Top — Set

(b) There are lots of constructions in algebra and topology that turn out to
be functors. For example, the free group construction. Let FA denote
the free group on a set A. It comes equipped with an inclusion map
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1 Introduction 1.1 Definitions and examples

Ha: A — FA,and any f: A — G, where G is a group, extends uniquely to
a homomorphism FA — G.

FA ----- > G
UAT /f
A

F is a functor from Set to Gp, and given g: A — B, we define Fg to be the

unique homomorphism extending the composite A 2, B, FB.

(c) The abelianization of an arbitrary group G is the quotient G/G’ of G by
it's derived subgroup G’ = (xyx~'y~! | x,y € G). This gives the largest
quotient of G which is abelian. If ¢: G — H is a homomorphism, then
it maps the derived subgroup of G to the derived subgroup of H, so the
abelianization is functorial Gp — Ab.

(d) The powerset functor. For any set A, let PA denote the set of all subsets of
A. P is a functor Set — Set; given f: A — B, we define Pf(A’) = {f(x) |
xe A’} for A’ € A.

But we also make P into a functor P*: Set — Set°? (or Set°? — Set) by
setting P*f(B') = f~1(B’) for B’ < B.

This last example is what we call a contravariant functor.

Definition 1.10. A contravariant functor F: C — D is a functor F: C — D
(equivalently, C°? — D). The term covariant functor is used sometimes to
make it clear that a functor is not contravariant.

Example 1.11. Continued from Example 1.9

(e) The dual space of a vector space over K defines a contravariant functor
k-Mod — k-Mod. If «: V — W is a linear map, then a*: W* — V* is the
operation of composing linear maps W — K with «a.

(f) Let Cat denote the category of small categories and functors between
them. Then C — C°P is covariant functor Cat — Cat.

(g) If M and N are monoids, regarded as one-object categories, what is a
functor between them? It’s just a monoid homomorphism from M to N: it
preserves the identity element and composition. In particular, if M, N are
groups, then the functor is a group homomorphism. Hence, we may think
of Gp is a subcategory of Cat.

(h) Similarly, if P and Q are partially ordered sets, regarded as categories, a
functor P — Q is just an order-preserving map.

(i) Let G be a group, regarded as a category. A functor F: G — Sets picks out
a set as the image of the one object in G, and each morphism of G is an
isomorphism so gets mapped to a bijection of this set. So this is a group
action G C F(G). If we replace Sets by k-Vect for k a field, we get linear
representations of G.
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1 Introduction 1.1 Definitions and examples

() In algebraic topology, there are many functors. For example, the fun-
damental group 711(X, x) defines a functor from Top,, (the category of
pointed topological spaces, i.e., those with a distinguished basepoint) to
Gp. Similarly, homology groups are functors H;,: Top — Ab (or more
commonly, Htpy — Ab).

There’s another layer too. There are morphisms between functors, called
natural transformations.

Definition 1.12. Let C and D be categories and F, G: C — D. A natural trans-
formation a: F — G is an operation A — a4 from ob C to mor D, such that
dom(a ) = F(A), cod(as) = G(A) for all A, and the following diagram com-
mutes.

A - B

[, L
G
Ga -1, cB
Again, we should mention some examples of natural transformations.

Example 1.13. (a) There’s a natural transformation a: 1jpeq — *%, Where
* is the dual space functor. This is the statement that a vector space is
canonically isomorphic to it’s double dual. ay: V — V** sendsr € V
to the “evaluate at r” map V* — k. If we restrict to finite-dimensional
spaces, then « becomes a natural isomorphism, i.e. an isomorphism in
the category [k-fgMod, k-fgMod], where [C, D] denotes the category of
all functors C — D with natural transformations as arrows.

Remark 1.14. Note that if « is a natural transformation, and each a4 is an
isomorphism, then the inverses 4 of the a4 also form a natural transformation,
because

PpoGf =ppoGfongopa=ppoapoFfofa=Ffopa.

Example 1.15. Continued from Example 1.13

(b) Let F: Sets — Gp be the free group functor, and let U: Gp — Set be
the forgetful functor. The inclusion of generators 174: A — UFA is the
A-component of a natural transformation 1gey — UF.

(c) For any set A, the mapping a — {a} is a function {—}4: A — P(A). We
see that {—} is a natural transformation 1get — P, since for any f: A — B,

we have Pf({a}) = {f(a)}.

(d) Suppose given two groups G, H and two homomorphisms f, f': G —
H. A natural transformation f — f’ is an element i € H such that
hf(g) = f'(g)h for all g € G, or equivalently, hf(g)h~! = f'(g). So such a

transformation exists if and only if f and f’ are conjugate.
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(e) For any space X with a base point x, there’s a natural homomorphism
hix ) m(X,x) — Hi(X) called the Hurewicz homomorphism. This
is the (X, x)-component of the natural transformation / from 7 to the
composite

Top,, 4, Top M, Ap L Gp,
where U is the forgetful functor and I is the inclusion.

It’s not often useful to say that functors are injective or surjective on objects.
Generally, a functor might output some object which is isomorphic to a bunch
of others, but might not actually be surjective — it could be surjective up to
isomorphism. This is is similar to the idea that equality is not useful when
comparing groups, but rather isomorphism.

Definition 1.16. Let F: C — D be a functor. We say F is
(1) faithful if, given f, ¢ € morC, the three equations dom(f) = dom(g),
cod(f) = cod(g), and Ff = Fgimply f = g;

(2) fullif, given g: FA — FBin D, there exists f: A - Bin Cwith Ff = g.
We say a subcategory C’ of C is full if the inclusion functor C’ — C is full.
Example 1.17.

(a) Ab is a full subcategory of Gp;

(b) The category Lat of lattices (that is, posets with top element 1, bottom
element 0, binary joint v, binary meet A) is a non-full subcategory of
Posets.

Likewise, equality of categories is a very rigid idea. Isomorphism of cate-
gories, as well, is a little bit too rigid. We might have several objects in a category
C which are isomorphic in C and all mapped to the same object in D — in this
case, we want to consider these categories somehow the same. If we require
isomorphism of categories, we cannot insist on even the number of objects being
the same. See Example 1.20 for a concrete realization of this.

Definition 1.18. Let C and D be categories. An equivalence of categories
between C and D is a pair of functors F: C — D and G: D — C together with
natural isomorphisms a: 1¢ — GF, §: FG — 1p.

The notation for this is C ~ D.

Definition 1.19. We say that a property of categories is a categorical property
if whenever C has property P and C ~ D, then D has P as well.

Example 1.20.

(a) Given an object B of a category C, we write C/B for the category whose

objects are morphisms A Z, B with codomain B, and whose morphisms
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1 Introduction 1.1 Definitions and examples

(b)

(c

~

(d)

g (A IR B) — (A’ EiN B) are commutative triangles

A—8%8 L u

N

The category Sets/B is equivalent to the category Sets® of B-indexed

families of sets. In one direction, we send (A 1, B) to (f~(b) | b e B),
and in the other direction we send (C;, | b € B) to

| Co x (b} = B.
beB

Composing these two functors doesn’t get us back to where we started,
but it does give us something clearly isomorphic.

Let 1/Set be the category of pointed sets (A, 2), and let Part be the subcat-
egory of Rel whose morphisms are partial functions, i.e. relations R such
that (a,b) € Rand (a,V') € R implies b = b'.
Then 1/Set ~ Part: in one direction we send (A, a) to A\{a} and f: (A,a) —
(B,b) to

{vy) |xeAyeB f(x)=yy+#b}
In the other direction we send A to (A u {A}, A) and a partial function
f+A — B (apparently that’s the notation for partial functions) to the
function f defined by

f(a) aedomf
fla)=<B ae A\dom f
B a=A

The category fdModj of finite dimensional vector spaces over k is equiva-
lent to fdMod](()P by the dual functors

fdMod, # fdMod’¥,

and the natural isomorphism 1¢gmeq, — *+. This is an equivalence but
not an isomorphism of categories.

The category fdModj is also equivalent to Maty: in one direction send an
object of n of Maty to k", and a morphism A to the linear map with matrix
A relative to the standard basis. In the other direction, send a vector space
V to dim V and choose a basis for each V to send a linear transformation
0: V — W to the matrix representing 6 with respect to the chosen bases.

The composite Mat;, — fdMod; — Maty is the identity; the other compos-
ite is isomorphic to the identity via the isomorphisms sending the chosen
bases to the standard basis of k4™ V.
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There’s another notion slightly weaker than surjectivity of a functor. Some
call it “surjective up to isomorphism.”

Definition 1.21. We say a functor F: C — D is essentially surjective if for
every object D of D, there exists an object C of C such that D =~ F(C).

The next lemma somehow uses a more powerful version of the axiom of
choice and is beyond usual set theory.

Lemma 1.22. A functor F: C — D is part of an equivalence between C and D if
and only if F is full, faithful, and essentially surjective.

Proof (=). Suppose given G: D — C,a: 1¢ — GF and : FG — 1p as in the
definition of equivalence of categories. Then B =~ FGB for all B, so F is clearly
essentially surjective.

Let’s prove faithfulness. Now suppose given f,g: A — B € C such that
Ff = Fg. Then GFf = GFg. Using the naturality of «, the following diagram
commutes:

GrA —SH=CF8, orp

NAT aBT 1)
A % B

Now
f=ag" (GFfau
=y (GFg)ay
=g,

the last line by the naturality of « with g along the bottom arrow of (1) instead
of f. Therefore, f is faithful.
For fullness, suppose given g: FA — FB in D. Define

f=az'0(Gg)oas: A— GFA — GFB — B.
Observe that Gg = apo fo a;l. Similarly, the following square commutes:

crA Y, GrB

A B
al
A—L B

by the naturality of a. Therefore, GFf = ago fo 0421 as well. Hence,
GFf =agofoua, = Gg.

Applying the argument for faithfulness of F to the functor G shows that G is
faithful. Therefore, GFf = Gg implies that Ff = g. Hence, the functor F is full.
(«<=). We have to define the functor G: D — C.
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For each object D of D, there is some C € ob C such that FC =~ D, because F
is essentially surjective. Define GD = C for some choice of C, and also choose
an isomorphism Bp: FGD — D for each D. This defines G on objects.

To define G on morphisms, suppose we are given g: X — Y in D. Since
F is full and faithful, there is a unique f: GX — GY such that Ff = g. We
could define G in this way, but we won’t because we want f to be a natural
isomorphism. Instead, we define Gg: GX — GY to be the unique morphism in
C whose image under F is
By

Bx 8

FGX X Y FGY.

This definition guarantees that j is a natural isomorphism.

To check that G is a functor, we can apply faithfulness of F to assert that
G(g) o G(h) = G(gh) whenever gh is defined, since these two morphisms of C
have the same image under F. So G is a functor, and f is a natural isomorphism
FG — 1p by construction.

To define a4 : A — GFA, take it to be the unique map in C such that Fay =
ﬁ;j This is an isomorphism since the unique morphism mapped to Br4 is a
two-sided inverse for it. We just need to check that « is a natural transformation.
Given a (not necessarily commuting) square

a—T1 .

l“/\ LXB (2)

G
GrA —L, GrB
apply F to it to get the square
FA— FB
FocA=/3;jl lexB:/S;Bl
FGEf

FGFA ——— FGFB

which commutes by the naturality of B. In particular, this gives us the equality
F(apof)=FagoFf
= Brs o Ff
— FGFfo By,
= FGFfO FIXA = F(GFfO DCA)

Faithfulness of F then implies that ag o f = GFf oa 4, so in particular the square
(2) commutes. Hence, « is a natural transformation. O

Definition 1.23.

(a) A category C is skeletal if for any isomorphism f in C, dom(f) = cod(f);
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(b) By a skeleton of a category C, we mean a full subcategory C’ containing
exactly one object from each isomorphism class of C.

Note that by Lemma 1.22, if C’ is a skeleton of C then the inclusion functor
C’ — Cis part of an equivalence.

Remark 1.24. More or less any statement you make about skeletons of small
categories is equivalent to the (set-theoretic) axiom of choice, including each of
the following statements:

(a) Every small category has a skeleton;
(b) Every small category is equivalent to any of it’s skeletons;
(c) Any two skeletons of a given small category are isomorphic.

How do we discuss morphisms within a category being surjective and
injective? The correct category-theoretic generalization of these notions are
epimorphism and monomorphism.

Definition 1.25. A morphism f: A — B is a category C is

(a) a monomorphism, or monic, if, given any g, h: C — A with fg = fh, we
have g = k;

(b) an epimorphism, or epic, if given any k, £: B — D with kf = {f, we have
k=1¢.

We write f: A—— B to indicate that f is monic, and f: A —— B to indicate
that f is epic.

A category C is called balanced if every f € mor C which is both monic and
epic is an isomorphism.

Example 1.26.

(a) In Set, f is monic if and only if injective, and f is epic if and only if
surjective. Therefore, Set is a balanced category.

(b) In Gp, monomorphisms are injective and epimorphisms are surjective
(nontrivial to show that every epimorphism is surjective). So Gp is bal-
anced.

(c) InRings, every monomorphism is injective, but not all epimorphisms are
surjective. For example, the inclusion map Z —— Q is both monic and
epic, but clearly not an isomorphism.

(d) In Top, monic and epic are equivalently injective and surjective. But Top
isn’t balanced.

(e) In a poset, every morphism is both monic and epic, so the only balanced
posets are discrete ones.
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2 The Yoneda Lemma

2 The Yoneda Lemma

Remark 2.1. It may seem odd that we're devoting a whole few lectures to just
one lemma, but Yoneda’s Lemma is really much more. It’s an entire way of
thinking about category theory! In fact, it’s both much more and much less than
a lemma.

Remark 2.2. The Yoneda Lemma should probably not be attributed to Yoneda,
because he never wrote it down! It was discovered by many category theorists
in the early work on the subject, but who first wrote it down we don’t know. It’s
called the Yoneda lemma because Saunders MacLane attributed it to Yoneda in
his book, but the paper he cited doesn’t contain the lemma! In the next edition,
MacLane instead attributed it to private correspondence, which means Yoneda
told it to him once while they were waiting for a train.

Definition 2.3. We say a category C is locally small if, for any two objects A, B,
the morphisms A — B in C form (are parameterized by) a set C(A, B), which is
sometimes written Hom¢ (A, B).

Definition 2.4. Let C be a locally small category. Given A € ob C, we have a
functor C(A, —): C — Set sending B to C(A, B), and a morphism g: B — C to
the pullback function g4 : C(A, B) — C(A,C) given by g4«(f) = gf. This is func-
torial by associativity of composition in C. This is the covariant representable
functor.

Similarly we can make A — C(A, B) into a functor C(—, B): C°? — Set,
which is called the contravariant representable functor.

Lemma 2.5 (Yoneda Lemma). Let C be a locally small category, let A be an
object of C, and let F: C — Set be a functor. Then
(i) there is a bijection between natural transformations C(A,—) — F and
elements of FA; and
(ii) the bijection in (i) is natural in both F and A.

Remark 2.6. Note that we haven’t assumed that C is a small category! So the
content of Lemma 2.5 transcends set theory.

Proof of Lemma 2.5.

(i) We have to construct a bijection between the set FA and natural trans-
formations C(A, —) — F. To that end, given any natural transformation
a: C(A,—) — F, we define ®(«) = a 4(14), which is an element of FA.

Conversely, given x € FA, we define ¥(x): C(A,—) — F by

¥(x)g: C(A,B) —— FB
f o Ff(x)
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2 The Yoneda Lemma

(ii)

To verify that ¥ (x) is genuinely a natural transformation, let g: B — C be
a morphism in C, and then consider the diagram:

C(A,B) <48, c(a,0)

| @y [e0c 3)

F
FB—2% L FC

Let f € C(A, B). Then going around the diagram (3) clockwise,
¥ (x)c(C(A,8)(f)) = ¥(x)c(go f) = F(gof)(x)
and going around (3) counterclockwise,
F(g) o (Y (x)B(f)) = F(8) o F(f)(x) = F(g o f)(x).

This verifies that ¥(x) is a natural transformation, for each x € FA.
We should check that ¥ and @ are inverses. So:

OF(x) = ¥(x)(14) = F(14)(x) = 1pa(x) = .

forall Band f: A — B, so ¥(®(«)) = a. Therefore, ® and ¥ are inverse.

If C is small (so that [C, Set] is locally small) then we have two functors:

Cx [C,Set] —— Set
(A,F) —— FA

Cx[C,Set] —— Set
(A,F) —— [C,Set|(C(A,—),F)

where [C, Set](C(A, —), F) is a confusing notation for the set of natural
transformations between C(A, —) and F. The assertion of (ii) is that ® is a
natural isomorphism among these functors.

For naturality in A, suppose given f: A’ — A. We want to show that the
following square commutes:

[C, Set](C(A’,—),F) —2— [C,Set](C(A’,—),F)

l@ A lq:. A (4)

FA! £ FA
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2 The Yoneda Lemma

where O(x) = a0 C(f, —).

Suppose we are given a: C(A’,—) — F. We will chase the image of «
around the diagram (4) in two different ways, and show they are equal.
Going counterclockwise,

Ff(®(a)) = Ff(aar(1ar)) = aa(f)
and going clockwise,
D(O(a)) = (w0 C(f, ) = aa(C(f, —)a(la)) = aa(f)

This verifies that ® is natural in A.

To show that & is natural in F, suppose given a natural transformation
n: F — G. We want to show that the following diagram commutes:

[C, Set](C(A,—),F) —=— [C,Set](C(A,—),G)

o I ®
FA 14 GA

Once again, let a: C(A, —) — F and chase the diagram (5) around coun-
terclockwise

na(®r(a)) =na(ea(la))

and clockwise

Sg(7oa) = (oa)a(la) =nalaa(la))
to see that it commutes. Hence, @ is natural in F as well. O

Corollary 2.7. The functor Y: C°P — [C, Set] given by A — C(A, —) is full and
faithful. Hence, every locally small category is equivalent to a subcategory of a
functor category [C, Set].

Proof. Note that for f: B — A, Y(f) = C(f, —).

By Lemma 2.5(i), natural transformations C(A, —) — C(B, —) correspond
bijectively to elements of C(B, A). But it’s not clear that this bijection comes
from the map Y; if it does, then Y is full and faithful. So we want to show
that Y is the inverse of ®: [C, Set](C(A, —),C(B,—)) — C(B, A), where & is the
natural transformation as in Lemma 2.5

To thatend, let a: C(A, —) — C(B, —) be a natural transformation. Then

Y(®(a)) = Y(wa(1a)) = Claa(la), —)
is a natural transformation. Now forany g: A — C,

Y(®(a))c(8) = Claa(14),C)(g) = goaa(la). (6)
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2 The Yoneda Lemma

Because « is a natural transformation, the following square commutes.

C(A, A) -4 C(B, A)

b e

C(4,C) —= C(B,C)
Chasing this diagram starting with 1, in the top-left, we see that

goaa(la) =ac(gola) =ac(g)

Therefore, substituting into (6), we have

Y(P(a))c(8) = goaa(la) = ac(g)

This holds for any C and any g: A — C, so it follows that Y(®(«)) = #,s0 Yisa
left-inverse to .

Since @ is a bijection, this means that Y is a right-inverse to ® as well, and
therefore Y is also a bijection between C(B, A) and natural transformations
C(A,—) — C(B,—). O

Definition 2.8. We call this functor Y: C°P — [C, Set] the Yoneda Embedding.

This is not unlike the Cayley representation theorem in group theory, which
says that every finite group is a subgroup of a symmetric group. In fact, the
Cayley representation theorem is just a special case of the Yoneda embedding!

Definition 2.9. We say a functor C — Set is representable if it’s isomorphic to
C(A, —) for some A. By a representation of F: C — Set, we mean a pair (4, x)
with x € FA such that ¥ (x) is a natural isomorphism C(A, —) — F. We also call
x a universal element of F.

Corollary 2.10 (Representations are unique up to unique isomorphism). If (A, x)
and (B, y) are both representations of F, then there’s a unique isomorphism
f: A— Bsuchthat Ff(x) =

-1
Proof. The composite C(B, —) ), F T C(A, —) is an isomorphism, so
it's of the form C(f, —) for a unique isomorphism f: A — B by Corollary 2.7.
So the following diagram commutes.

cB,-) —U s c(a,-)

O

In particular, plug in B to this diagram

cB,B) —YP . cea,B)

oo
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2 The Yoneda Lemma

and chase 1p € C(B, B) around the diagram in two ways:
(¥(x)p o C(f, B))(1p) = ¥(x)p(lp o f) = ¥(x)(f) = Ff(x)

(Y(x)p o C(f, B))(1p) = ¥(y)s(18) = F(18)(y) = 1ra(y) = y
Therefore, Ff(x) = y. O

Often we will abuse terminology and talk about the representation of a
functor, but this is okay by Corollary 2.10, because any two representations are
uniquely isomorphic. Representable functors appear everywhere, as the next
example shows.

Example 2.11.
(a) The forgetful functor Gp — Set is representable by (Z, 1);
(b) The forgetful functor Ring — Set is representable by (Z[x], x);
(c) The forgetful functor Top — Set is representable by ({x}, =).

(d) The contravariant power-set functor P*: Set°? — Set is representable by
({0,1}, {1, }) since there’s a natural bijection between subsets A’ = A and
functions xy4: A — {0,1}.

(e) The dual-vector-space functor k-Mod°? — k-Mod, when composed with
the forgetful functor k-Mod — Set, is representable by (k, 1;).

(f) For a group G, the unique (up to representation) representable functor
G — Set is the left-regular representation of G, that is, G acts on the set
G with left-multiplication. This is the Cayley representation theorem of
group theory. Note that the endomorphisms of this object of [G, Set] are
just the right multiplications / — hk for some fixed k € G. So they form a
group isomorphic to GP.

Definition 2.12. Given two objects A, B of a locally small category C, we can
form the functor C(—, A) x C(—, B): C°P — Set. A representation of this functor
is a (categorical) product of A and B.

What does this look like? It consists of an object A x B and two maps 711 : A x
B — A, and mp: A x B — B such that, given any pair (f: C - A,g: C — B),
there’s a unique {f, ¢): C — A x B such that my{(f,¢) = f and m{(f,g) = &.

Definition 2.13. Given a parallel pair of maps A ——=< B, the assignment

E(C) ={h: C — A | fh = gh}. defines a subfunctor £ of C(—, A). A represen-
tation of &, if it exists, is called an equalizer of f and g: it consists of an object
E and a morphism e: E — A such that fe = ge such that every h: C — A with
fh = gh factors uniquely through e.

f
v A—B

S
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2 The Yoneda Lemma

Remark 2.14. If e: E — A is an equalizer of the two maps f,g: A — B, then
it’s necessarily monic, since any morphism #: C — A factors through e in at
most one way. In particular, given a,b: C — E such that ea = eb, we have that
ea factors through e in at most one way. One such way that it does factor is as
written: e o a. Another such way is e o b, but the way it factors must be unique
so it must be that a = b.

8
EéAigB

aUh /

Definition 2.15. We call a monomorphism f: A>—— B
(i) regular if it occurs as an equalizer;
(i) splitif thereis g: B — Awith gf = 14.
Lemma 2.16.
(i) A split monomorphism is regular monic.
(ii) A morphism which is epic and regular monic is an isomorphism.

Proof. (i) Let f be split monic with left-inverse g. Claim that f is the equalizer
of fgand 15. If gf = 14 then fgf = f14 = 1pf. And if h: C — B satisfies
fgh = 1ph, then h factors through f via gh. If h = fk is another such
factorization, then fgh = h = fk implies that k = gh because f is monic,
so the factorization is unique. Hence f is an equalizer.

fs
A>—>B*>B

ghT / T

(ii) Supposee: E — A is epic and an equalizer of the maps f,g: A — B. Then

ef = eg, which means that f = g because e is epic. We know that 14 is
another map such that f14 = gl4, so the map 14 factors through e as
ek = 14 for some map k: A — E. Therefore, ¢ has a right-inverse and so is
split epic.
The dual of statement (i) shows that a split epimorphism is a regular epi-
morphism, so ¢ is both monic and regular epic. The dual of the argument
in the previous paragraph then produces a left-inverse £: A — E such
that e = 1g, and moreover

0 =101y =lek =1k =k
so the inverses are equal. Hence, e is an isomorphism. O

Definition 2.17. Let C be a category and let G be a collection of objects in C.
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2 The Yoneda Lemma

(a) We say @ is a separating family if, whenever we have that f,g: A — Bin
Csuch that fh = ghforallh: G > AwithGe G, then f = g.

(b) We say @ is a detecting family if given f: A — B such that every mor-
phism h: G — B with G € G factors uniquely through f, then f is an
isomorphism.

(c) If G = {G} is a singleton, we call G a separator or detector for C, depend-
ing on which case we're in.

Remark 2.18. Here is an equivalent definition of separating and detecting
families for a locally small category C. A family G is separating if and only if the
collection of functors {C(G, —) | G € G} are jointly faithful and G is detecting if
and only if {C(G, —) | G € G} jointly reflect isomorphisms.

Lemma 2.19.
(i) If Chas equalizers, then every detecting family for C is separating.

(ii) If Cis balanced (mono + epi = iso), then every separating family is
detecting.

Proof.

(i) Suppose that G is a detecting family and we have maps f,g: A — B such
thatif fh = ghforallh: G — Aforall Ge G, then f = g. Lete: E — Abe
an equalizer of f and g; then every h: G — A with G € G factors uniquely
through e, so e is an isomorphism and therefore f = g.

(ii) Suppose G is a separating family and f: A — B satisfying the hypotheses
of Definition 2.17(b). If k, £: B — C satisty kf = {f, then kh = (h for all
h: G — Bwith G € G, so k = £. Hence, f is epic.
Similarly, if p,q: D — A satisfy fp = fq, then for any n: G — D we have
fpn = fqn, so both pn and gn are factorizations of fpn through f, and
hence equal. Because G is a separating family, this means in turn that
p = q. Hence, f is monic.

By the assumption that C is balanced, f is therefore an isomorphism. O
Example 2.20.
(a) obCis always both separating and detecting.

(b) If C is locally small, then {C(A, —) | A € obC} is both separating and
detecting for [C, Set].
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(c) Z is a separator and a detector for Gp. The functor that it represents is
the forgetful functor Gp — Set, and that functor is faithful and respects
isomorphisms.

(d) In all sensible algebraic categories, the free object on one generator is both
separator and detector.

(e) {}1is a separator, but not a detector, for Top. In fact, Top has no detecting
family since for any cardinal x, we can find a set X and topologies 71 & T
on X that agree on any subset of X with cardinality less than x. Also Top°P
has a detector, namely X = {x, y, z} with topology {X, &, {x, y}}.

Definition 2.21. We say an object P is projective in C if, whenever we're given

P
s
A, B

with e epic, then there is g: P — A with eg = f. Dually, P is injective if it’s
projective on C°F.

If the condition holds not for all epimorphisms e but for some class £ of epis,
we say that P is £-projective. (For example, if £ is the regular epimorphisms,
then P is regular-projective).

This definition generalizes the algebraic notion of projective objects.

Lemma 2.22. Representable functors are projective as elements of the functor
category. More precisely, for any locally small C, the functors C(A, —) are all
E-projective in [C, Set], where £ is the class of pointwise-surjective natural
transformations.

We can’t prove this for £ the set of all epimorphisms of [C, Set] yet, because
we don’t know what epimorphisms are in this category. But it will turn out that
they’re exactly the pointwise-surjective natural transformations, so what we
prove below suffices.

Proof of Lemma 2.22. Use the Yoneda lemma. Given the diagram

(4, -)

B LX

F—— G

let y € GA correspond to «. Then there is x € FA with B4(x) = y, and the
corresponding ¥ (x): C(A, —) — F satisfies fo ¥(x) = «. O

Making the analogy with algebra, this says that the functors C(A, —) are
kind of like the free objects of [C, Set] (insofar as free objects are projective).
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3 Adjunctions

This theory was first developed by D.M. Kan in the paper Adjoint Functors
which appeared in TAMS in 1958. The real difficulty in formalizing the idea
that had been around for a few years was finding the right level of abstraction:
maximally useful but sufficiently general. The definition we give is the one that
Kan gave in that paper.

Definition 3.1. Let C and D be categories and F: C — D, G: D — C be two
functors. An adjunction between F and G is a natural bijection between mor-
phism FA — B in D and morphisms A — GB in C, for all A € obC and
BeobD.

If C and D are locally small, this is a natural isomorphism between the
functors D(F(—), —) and C(—, G(—)). These are both functors C°P x D — Set.

Notice that the definition of adjunction has a definite direction: we say that
F is left-adjoint to G or that G is right-adjoint to F, and write F 4 G.

Example 3.2. Examples of Adjunctions

(@) The free group functor F: Set — Gp is left-adjoint to the forgetful functor
U: Gp — Set. For any set A and any group G, each function A — UG
extends to a unique homomorphism FA — G, and this correspondence is
natural.

(b) The forgetful functor U: Top — Set has a left adjoint D, where DA is A
with the discrete topology. Any function A — UX becomes continuous
as amap DA — X. U also has a right adjoint I, which is IA = A with
the indiscrete topology {4, &}. Any map into an indiscrete space is
continuous, so any map UX — A is continuous as a map X — IA. So we
have adjunctions D 4 U —H I.

(c) Consider the functor ob: Cat — Set. This has a left adjoint given by the
discrete category functor D : Set — Cat, where D A is the discrete category
with the objects same as elements of A; any mapping A — ob C defines a
unique functor DA — C. In particular, D — ob.

It also has a right adjoint I, which is the indiscrete functor. IA has objects
those elements of A with one morphism a — b for each (a,b) € A x A.
Again, a functor C — [ A is determined by its effect on objects. ob - I

D has a left adjoint the connected components functor 7y, where 77yC =
(obC)/ ~ is the smallest equivalence relation such that U ~ V whenever
there exists f: U — V in C. Any functor C — DA is constant on each
~-equivalence class, but any function 77pC — A can occur.

(d) Let Idem be the category whose objects are pairs (A, e), for some set A
and idempotent e: A — A, e> = e. The morphisms f: (A,e) — (A’,¢') in
this category are those functions satisfying ¢/ f = fe.
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Let G: Idem — Set be the functor sending (A, ¢) to {a € A | e(a) = a} and
amorphism f to its restriction f|;(, ). Let F: Set — Idem be the functor
sending A to (A,id ).

Now F H G since any morphism FA — (B, e) takes values in G(B, ¢). And

furthermore, G - F since any morphism (A4, e) Z, FB is determined by its
effect on G(A,e), since f(a) = f(e(a)) foralla € G(A,e).

(e) For any C, there’s a unique functor C — 1 (where 1 is the category with
one object and one morphism). A left adjoint for this specifies an object I
of C such that there’s a unique morphism I — A for any A, i.e. an initial
object of C. Dually, a right adjoint to C — 1 specifies a terminal object.

(f) Let A and Bbesetsand f: A — B. Then we have order-preserving maps
Pf: PA — PBand P*f: PB — PA and Pf - P*f since Pf(A’) = B if
and only if Vx € A’, f(x) € B’ if and only if A < P*f(B’).

(g) Suppose given two sets A, B and a relation R < A x B. We define order-
reversing maps

L: PB—PAbyL(B')={ac A|Vbe B, (ab)ecR}

R: PA— PBbyR(B) = {beB|Vae A, (ab) e R}
For any subsets A/, B’ we have A’ € L(B’) & A’ x B < R < B’ < R(A).
We say a pair (F, G) of contravariant C < D are adjoint on the right if
F:C—>D% 4 G: D° - C.

(h) The contravariant power-set functor P* is self-adjoint on the right, since
functions A — PB correspond to subsets R < A x B, and hence to func-
tions B — PA.

Given a functor G: D — C, we want to know if it possibly has a left adjoint.
To that end, we define a category (A | G) called the comma category (because it
was originally written (A, G) with a comma instead of an arrow)

Definition 3.3. The comma/arrow category (A | G) has objects all pairs (B, f)
with Be obD and f: A — GB. The morphisms (B, f) — (B/, f') are morphisms
g: B — B’ in D which make the diagram below commute.

A
f I
GB /G—g\> GB'

Theorem 3.4. Specifying a left-adjoint for G is equivalent to specifying an initial
object of (A | G) for each A€ obC.
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Proof. (=) Suppose F 4 G. Forany A, FA 1, FA corresponds to a morphism
a: A — GFA. I claim that (FA, 7 4) is initial in (A | G). Given an object (B, f)
in (A | G), the assertion that

A
N
GFA — % . GB

commutes is equivalent to saying that

) FA B
FA f
/ g \

FA——— B

commutes, where f corresponds to f under the adjunction. So the unique
morphism (FA,174) — (B, f) is f. O

Last time we were in the middle of proving Theorem 3.4. We proved one
direction last time, so let’s start by finishing the proof.

Proof of Theorem 3.4, continued. (<). Suppose given an initial object (B, 74)
in (A | G), for each A. Define FA = B4 for all objects A of C. To define F on
morphisms, let f: A — A’ in C. We define Ff: FA — FA’ to be the unique
morphism FA — FA’ making the following commute.

A4, GFA

If |ors

A GRAY

The uniqueness of this morphism comes from the fact that (FA,#,4) is initial.
This uniqueness ensures that F is functorial: if f': A’ — A”, then (Ff)(Ff’) and
F(ff') both fit into the same naturality square for 77, and so by the uniqueness
of morphisms that fit into this square, they’re equal.

Furthermore, by construction, this makes #7: 1 — GF a natural transforma-
tion.

Given a morphismy: A — GB, we know that there is a unique map x: FA —
B such that the following commutes:

Ay GEA

It

In particular, this gives a bijection between morphisms x: FA — B and mor-
phisms y: A — GB sending x: FA — B to ®(x) = (Gh)ya. To show this
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is natural in B, suppose given g: B — B’. We want to show the following
commutes.
D(FA,B) —2 C(A,GB)

lgof J{Ggof

D(FA,B) —2— C(A,GB)

But this follows because for any h: FA — B, we have

D(gh) = G(gh)ia = (Gg)(Gh)ia = (Gg)D(h).

Naturality in A follows from the fact that # is natural. More precisely, given
f: A’ - A, we want to show that the following commutes

D(FA,B) —2 C(A,GB)

Lo |

D(FA/,B) —2 C(A’,GB)
But this is true because for any h: FA — B, we have
O(o Ff) = G(ho Ff)ona = G(h) o GE(f) s = G(h) o0 f = B()o f.
O

This way of thinking about adjoints turns out to be quite useful.

Corollary 3.5. If F and F’ are both left adjoints for G, then F is naturally isomor-
phic to F'.

Proof. Let 174 be the map A — GFA that corresponds to idps: FA — FA, and
likewise let 1/, be the map A — GF’A that corresponds to idp 4: FFA — F'A.
Then (FA,n4) and (F'A, 1)) are both initial in (A | G), which means that
they must be isomorphic as objects in this category. hence, there is a unique
isomorphism a4 : (FA,174) — (F'A,1’y) that is natural in A: given f: A — A/,
then there two ways around the naturality square

FA A L F'A

|Fs i

FA! 24 pra

are both morphisms (FA,74) — (F'A’,G(aa)onaro f)in (A | G), and this
morphism is unique because (FA, 174) is initial. O

Lemma 3.6. Given functors

F H
Cr—D——E

with F 4 G and H H K, we have HF - GK.
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Proof. Given A € obC, C € ob E, we have bijections E(HFA, C) «—— D(FA, KC)
and D(FA, KC) «— C(A, GKC). Compose these bijections to get the result. [

Corollary 3.7. Suppose given a commutative square of categories and functors

c-tsp

e

in which all the functors have left adjoints. Then the diagram of left-adjoints
commutes up to natural isomorphism.

Proof. The two ways round it are both left-adjoint to GF = KH by Lemma 3.6,
so they’re isomorphic by Corollary 3.5. O

Example 3.8. A functor with a right adjoint preserves initial objects, if they exist.
If F: C—> D - G: D — C, then the diagram below commutes.

p— ¢ cC

NS

But a left adjoint for C — 1 picks out an initial object of C by Example 3.2(e). So
F maps it to an initial object of D.

Theorem 3.9. Suppose given F: C — D and G: D — C. Specifying an adjunc-
tion F + G is equivalent to specifying two natural transformations #: 1¢ — GF
and ¢: FG — 1p such that

F -, rGr G "+ GFG
and 7
\;;\\\N Jes \;;\\\N e ?)
F G

both commute. # and ¢ are called the unit and counit of the adjunction, and the
two diagrams in Equation 7 are called the triangular identities.

Proof. (=). Given F - G, with a natural bijection ®4 p: D(FA, B) — C(A, GB),
define
a = Oara(lra) and ep = O p(1ca)

We want to show that both # and ¢ are natural in A and B, respectively. Note
that the definition of € is dual to 7, so it suffices to check that 7 is natural and
the naturality of ¢ will follow dually.

To check the naturality of 1, suppose given f: A — A’. We want to show
that

A" GFA

If | |ors

A GEA
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commutes. We can use the naturality of © to show this. In particular, consider
the following diagram

D(FA, FA) 22, C(A, GFA)

lF fo— lGF fo—

D(EA, FA") S ¢ (A, GFA')

which commutes by the naturality of ®. Chase 1r4 around the diagram starting
in the upper left to see that © 4 pa/ (Ff) = GF(f).

1pg ————— Oara(lpa) =14

1 1

Ffolpg /—— @ara(Ff) = GF(f)ona

Now what is @ 4 ra/(Ff)? To answer this question, consider the diagram

D(EA, EA') 24, ¢(a, GFA')

o]

D(EA’, EA") SXFX ¢ (A1, GEAY)

which again commutes by naturality of ®. Now chase 1r4/ around this diagram,
starting in the lower left.

lpar o Ff +——= Oqpa(Ff) =narof

1 1 g

Tpar ——— 4 = Ourpar(Lrar)
Therefore, combining (8) and (9), we get that # 4 is natural, because

narof =0pra(Ff) = GFfona.

Finally, it remains to check the triangular identities. We can only check one
of them; the other follows dually. Let g: B — B’ in D and let f: FA — B. By
commutativity the following diagram (which follows again from naturality of
0)

D(FA, B) —**, C(A,GB)

lgof Ggo—l

O,p
D(FA, B') —*¥, C(A,GB')

we can conclude that @(g o f) = Ggo®(f). In particular, for B = FGA, f = 1pa,
g =¢4: FGA — A, we conclude one of the triangular identities.

lgg = ©®(@ '(16p)) = O(ep) = O(eg o 1rcp) = Gep 0 @1, ., = Gepo1Gh
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The other one follows dually.

(«<=). Conversely, suppose given 7 and ¢ satisfying the triangular identities.
We need to establish a natural bijection between maps FA — B and A — GB for
A€ C,BeD.Givenh: FA — B, define ¢(h) = (Gh)yjs: A - GFA — GB, and
given k: A — GB, define y(k) = ep(Fk): FA — FGB — B. These are natural in
both A and B (check this!) and they’re inverse to each other by the triangular
identities:

yp(h) = eg(FP(h)) = ep(FGh)Fya = hepaBFn4 = h,

and similarly for ¢ o (k). O

F ~
Is every equivalence of categories C <T> D, with maps a: 1c — FG

and B: FG = 1p an adjunction? The answer to this question is yes-and-no,
assuming certain conditions.

Lemma 3.10 (Every Equivalence is an adjoint equivalence). Suppose given F, G, «, 3
as above. Then there exist isomorphisms a’: 1c — GF, f/: FG — 1p satisfying
the triangular identities. In particular, F 4 G and G - F.

Proof. Define &’ = a and let f’ be the composite

FGB ~

1
g FG L% " FGFG P

-1
%, G 5 1p.
Note that

FGEG =%, G

|$re ﬁ It

FG —"— 1p

commutes by the naturality of 8, and j is monic, so FGS = Brg. Now

FGBr)~'=B7d
B.Fa — F F pop FOP)_ =Prce, popgr Foor, pop i, p

We can rewrite this by

B! FGFa (Fagr)~'=(FGFa)~!

F P, rGr ESE PGEGE Pr

FGF — F,

and so everything cancels! Therefore, fFa = 1r.
To see the other way, Gp’ o af; is the composite

—1 —1
GBlals = G ¢, GFg \SFh), (CF0) ", g S,

(Gp)~!

GFGFG

-1
e GEG “<fs, GrGrG <t grG 2, G

=1c

O
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Lemma 3.11. Let G: D — C be a functor having a left adjoint F, with counit
¢: FG — 1p. Then

(i) Gisfaithful «< eis (pointwise) epic. (We say “(pointwise) epic” because
it will turn out that arrows in a functor category are epic iff they are
pointwise epic. But we don’t know that yet).

(ii) Gis full and faithful <= ¢ is an isomorphism.

Proof. (i) Let f: B — B’ be a morphism in D. The composite fep: FGB —
B — B’ corresponds under the adjunction to Gf: GB — GB'.

So ¢p is an epimorphism for all B <= for all B, B/, composition with ¢p
is an injection D(B, B’) — D(FGB, B') <= for all B, B/, application of G
is an injection D(B, B') — C(GB,GB’) <= G is faithful.

(if) Similarly, G is full and faithful <= for all B, composition with ep is a bi-
jection D(B, B') — D(FGB, B'). This clearly holds if ¢5 is an isomorphism
for all B.

Conversely, if G is full and faithful, then 1 = fep for some f: B — FGB.
By (i), we know that ep is epic and this shows that €5 is split monic. Hence,
ep is an isomorphism.

O

Definition 3.12.  (a) An adjunction (F 4 G) is called a reflection if G is full
and faithful.

(b) We say that a full subcategory C’ < C is reflective if the inclusion C' — C
has a left adjoint.

This comes with a caveat, that this terminology isn’t fully standard. Some
people don’t require that a reflective subcategory is full, but I think it makes
more sense to talk about reflective subcategories when they correspond to the
reflections.

Example 3.13.

(a) Ab is reflective in Gp: the left adjoint to the inclusion sends G to it’s
abelianization G/G'.

(b) An abelian group is torsion if all of its elements have finite order. In any
abelian group A, the elements of finite order form a subgroup called the
torsion subgroup A, and any homomorphism B — A where B is torsion
takes values in At. So A — Ar defines a coreflection from Ab to the full
subcategory Abr of torsion groups.

Similarly, A — A/Ar defines reflection to the subcategory of Ab that
consists of torsion-free groups.
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4 Limits and Colimits

(c¢) There many examples of this in topology, and the most important of
these is the Stone-Cech compactification. Let KHaus < Top be the full
subcategory of compact Hausdorff spaces. The inclusion KHaus — Top
has a left adjoint §, called the Stone-Cech compactification. Interestingly,
Stone and Cech gave different constructions of the compactification that
now has their name, and essentially the only way to show that these two
constructions are equal is to show that they are both left-adjoint to the
forgetful functor.

4 Limits and Colimits

To talk about limits, we need to formally define what a diagram is. We’ve been
drawing diagrams but we don’t quite yet know what they are.

Definition 4.1. Let J be a category (usually small, and often finite). A diagram
of shape J in Cis a functor D: J — C.

Example 4.2.

o If] = , then a diagram of shape J is a commutative square in C.

oe<— 0
e<— o

o If] = , then a diagram of shape J is a square in C that need not

Wyl /1

e<— o
o<— o

commute.

Definition 4.3. Given D: | — C, a cone over D consists of an object C € ob C
(the apex of the cone) together with morphisms A;: C — D(j) (the legs of the
cone) for each j € obJ such that

commutes for all a: j — j" in J.

If we write AC for the constant diagram of shape J sending all j € ob ]
to Cand all a: j — j’ to 1¢, then a cone over D with apex C is a natural
transformation AC — D. Then A is a functor C — [], C].

Definition 4.4.

(a) The category of cones over D is the arrow/comma category (A | D),
defined dually to Theorem 3.4.

(b) The category of cones under D is the arrow/comma category (D | A), as
defined in Theorem 3.4.

Lecture 9 29 28 October 2015



4 Limits and Colimits

Definition 4.5. By a limit for D: ] — C, we mean a terminal object of (A | D).
A colimit for D is an initial object of (D | A).

We say that C has limits (resp. colimits) of shape Jif A: C — [J,C] has a
right (resp. left) adjoint.

Example 4.6. (a) Suppose | = J. Then there’s a unique D: § — C, and
(A ] D) = C. So a limit (resp. colimit) for D is a terminal (resp. initial)
object of C.

In Set, 1 = {*} is terminal and (¥ is initial. Similarly in Top. In Gp, the
trivial group {1} is both initial and terminal, and in Ring Z is initial.

(b) Let] be the discrete category with two objects. A diagram of shape J is a
pair of objects (A1, Az), a limit for this is a product

A1 X A2
N
Aq Ap
and a colimit for J is a coproduct

Aq Ay

DN

A1+ A
In Set, Gp, Ring, Top, . . ., the product are cartesian products (with suitable
structure).
In Set and Top, corproducts are disjoint unions A; L Aj.
In Gp, coproducts are free products Gy * G;.

In Ab, finite coproducts coincide with finite products.

Last time we were talking about limits and colimits, and giving some exam-
ples. We saw the product of two objects, but we can also define the product of
many objects.

Definition 4.7.

(i) More generally, let ] be any (small) discrete category. A diagram of shape
J is a J-indexed family of objects (A; | j € J). A limit for it is a product
; i equipped with projections 7t;: ; i — A;. Dually, a coproduct
jey Aj q ipped with projecti jey Aj = Ai. Dually, prod
Z]-e] A] withv;: A; — Z]G] A]

(ii) Let]J be the category ¢ =3 e. A diagram of shape ] is a parallel pair A é B;
g

a cone over it looks like a diagram

Lecture 10 30 30 October 2015



4 Limits and Colimits

satisfying fA; = Ay = gAy; equivalently, it’s C LA satisfying fA = gA.
So a limit over | is an equalizer of f and g; dually a colimit over | is a

coequalizer.
L]
(iii) Let J be the category l . A diagram of shape J looks like
e ——— o
A
If
B—S55D

satisfying fh = ¢ = gk. A cone over it consists of C and the arrows as in
the diagram below

c-", A

5

Equivalently, this is a way of completing this diagram to a commutative

square

CLA

[l
B-—2.D

A limit for the diagram is called a pullback of the pair f, g.

(iv) Colimits of shape J°F are called pushouts; they can similarly be con-
structed from coproducts and coequalizers.

Example 4.8.

(i) Products / coproducts in Set are cartesian products / disjoint unions.
Likewise in Top. In algebraic categories like Gp, Ab, Ring, R-Mod, etc.
products are cartesian products but coproducts vary.

f .
(ii) In Set, the equalizer of A =3 B is the arrow A’ L A where A’ is the set
8

A" ={ae A| f(a) = g(a)} and i is the inclusion. The coequalizer of this
pair is B 5B / ~, where ~ is the smallest equivalence relation on B under
which f(a) ~ g(a), and q is the quotient map.

(iii) In Set (more generally, any category with binary products and equalizers)
we may construct it by first forming the product A x B and then the
equalizer P—> A x Bof fry: AxB— Dand grmg: Ax B — D.

(iv) LetJ = IN with it’s usual total ordering. A diagram of shape | is just a
sequence
Ag — Ay — Ay — A3 — -+
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the direct limit of this diagram is confusingly a colimit which is an object
Ay and maps A, — A for all n that commute with all of the maps
A; — Ajy1, and Ay is initial among such objects.

Ap Aq Ay Az ce
\ i

This is where the name limit comes from, because it looks like the limit of

this sequence.

Dually, a limit of shape IN°P is called an inverse limit.
Theorem 4.9 (Freyd).

(i) Suppose C has equalizers and all small products. Then C has all small
limits.

(ii) Suppose C has equalizers and all finite products. Then C has all finite
limits.

(iii) Suppose C has pullbacks and a terminal object. Then C has all small limits.

Proof. The proofs of (i) and (ii) are identical; just replace all occurances of “small”

with “finite.” So we'll do them simultaneously.
Let J be a small (resp. finite) category and let D: J — C be a diagram. Form

the products
P=T] D()
jeob |
and
Q= H D(cod ).
aemor |

Let f, g: P =3 Q be the morphisms defined by

Taf = Meoda: P — D(cod «)
g = D(a)tgoma: P — D(doma) — D(cod «)
and finally, let e: L — P be the equalizer of f and g, and set A; = 7je: L — D(j).

We claim that the A]- form a limit cone over D.
To see that the /\j form a cone over D, note that

D(a)Adoma = D(#)7Tdoma€ = Tage = Mafe = Meodal = Acoda
for all .
Now given any cone (C H, D(j)|jeob] |, we get a unique y: C — P

satisfying 71ju = p; forall j. And since the y; form a cone, we have 7 f it = 7T gp
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for all w, so fu = gu. And u factors uniquely as ev. Then v is the unique
morphism of cones

( K ‘ ) ( Aj ’ )
vi |C—D(j)|jeobj|] - |L—D()|jeob]

Finally, to prove (iii), we want to apply (ii). This means we have to construct
finite products and equalizers from the terminal object and pullbacks.

And given a terminal object 1 and pullbacks, we can form A x B as the
pullback of A — 1 « B. Note that we can construct [ [_; A; for any n > 3 as
the iterated product of the A;. Hence we have all finite products.

To form the equalizer of f,g: A =3 B, consider the diagram

A

Jaan
A a8 4l p

A cone over it consists of A < C 15 A satisfying 14h = 14k and fh = gk, or
equivalently, a map h: C — A satisfying fh = gh. So the pullback for this is an
equalizer for (f, g). Hence, we have all equalizers. O

Definition 4.10. We say a category C is complete (or dually, cocomplete) if it
has all small limits (dually, small colimits).

Example 4.11. Set, Gp, Ab, Top are all both complete and cocomplete.
Definition 4.12. Let F: C — D be a functor, J a diagram shape.

(a) We say that F preserves limits of shape ] if, given D: J — C and a limit
cone

Aj N
L2 D(j)|jeob]

in C, there is also a limit cone

EA; N

FL —> FD(j) | je ob]
in D.
(b) We say that F reflects limits of shape J, if given D: ] — C and a cone
Aj FA;

(L BN D(])) such that (FL —L FD(j) ‘ je ob]> is a limit cone in D, the
original cone is a limit in C.

(c) We say that F creates limits of shape J if, given D: ] — D and a limit cone
Hj N
(M L FD(j) ' j e])
A
for FD, there is a cone (L L D(j) ’ je ]) whose image under F is iso-

morphic to (M LNy D(j) ’ je ]> , and any such cone is a limit for D.
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4 Limits and Colimits

Remark 4.13. If F: C — D creates limits of shape ], then it preserves and reflects
them provided limits of shape | exist in D.

Moreover, in any of the three statements of Theorem 4.9, there words “C has’
can be replaced by either “C has and F: C — D preserves” or by “D has and
F: C — D creates.”

7

Example 4.14.

(@) The forgetful functor U: Gp — Set creates all small limits (in the strict
sense) but it doesn’t preserve colimits (e.g. coproduct of a pair of groups
is not the disjoint union as sets).

(b) The forgetful functor Top — Set preserves all small limits and colim-
its. We need only look at (co)equalizers and (co)products to see this by
Theorem 4.9. This doesn’t reflect limits, since the (co)limit in Set can be
equipped with topologies other that that which makes it a (co)limit in
Top.

(c) The inclusion functor Ab — Gp reflects binary coproducts, but it doesn’t
preserve them. The coproduct of two groups A and B is the free product
of groups, which is never abelian unless A or B is the trivial group 0, and

0->B<LBisa coproduct cone in both categories.

Let’s say we want to construct limits in a functor category [C, D]. It's enough
to have limits of this shape in D.

Lemma 4.15. The forgetful functor [C, D] — D€ creates all limits and colimits.
In particular, D has (co)limits of shape ] then so does [C, D].

Proof. Given a diagram D: J — [C, D], we can consider it as a curryed functor

A
C xJ — D. Suppose we're given, for each A € obC, a limit cone (LA SN
(A,j) | j € ob]) over the diagram D(A, —): J — D.

. . . Aaj - D)) '
For each f: A — Bin C, the composites LA —> D(A, j) — D(B,j) for

j € ob ] form a cone over D(B, —), since for any a: j — j’, the square

. D(fA)) .
D(4,j) —— D(B,j)

D(lA,zx)l lD(lB/”‘)

D(A,{ D(B,{
( ])W (B,j")

commutes as the image of the commutative square

(B, )

|sa)

(B,")

Aj) —
(A7) 70

L

Ay ——
(4,7") 71
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under the functor D(—, —), viewed as a curryed functor.
So there’s a unique Lf: LA — LB making

)LA/i .
LA —= D(A4,))

JLf [Py

Apj .
LB —— D(B,j)

Uniqueness ensures that f — Lf is functorial, and the A_ ; form natural trans-
A
formations L — D(—, j). Hence, (L —L D(—,j) | jeob J) forms a cone over D.
We want to show that L is actually the limit cone.
To that end, suppose given any cone (C ", p(, j)|j € ob]), each

HAaj

(CA = D(A,j)|j € ob]) factors uniquely as
A
<CAV—A>LAﬂ> (A,)) 'jeobj)

and any square
CA —25 LA
el
CB — LB
since the two ways around the diagram are factorizations of the same cone over
D(B, -).
So the A_ ; are a limit cone in [C, D]. O

Now we can finally fulfil the promise I gave earlier to prove that the monos

and epis in a functor category are precisely the pointwise monos and epis. This
follows from the following remark.

Remark 4.16. In any category, a morphism f: A — B is monic if and only if the
diagram

A2, a

llA lf

A L B

is a pullback. Hence, provided D has pullbacks (resp. pushouts), a morphism
«: F — G in [C, D] is monic (resp. epic) if and only if each a4: FA — GA is
monic (resp. epic). This is because functors preserve this diagram in a category.

4.1 The Adjoint Functor Theorems

Now that we’ve seen how functors interact with limits, we can see how adjunc-
tions interact with limits.

Theorem 4.17 (RAPL: Right Adjoints Preserve Limits). If G: C — D has a left
adjoint F: C — D, then G preserves limits.
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We'll give two proofs: a high-power conceptual one and an elementary one.

High Power proof of Theorem 4.17. Assume limits of shape J exist in both C and D.
Then composition with F and G induce functors Fyx (D) = FD and G«(D) = GD,

Fy

0.Cl = [0,

and it’s easy to see that Fyx - G.

The diagram

c—f b

[ [
J,C] —*= [1,D]
commutes, so

I,D] -5 [,

D% -cC

commutes up to isomorphism by Corollary 3.7. O

Elementary proof of Theorem 4.17. Suppose given D:J — D and a limit cone

A .
(L = D(j) | j € ob]J). Given a cone (C H, GD(j) | j € obJ) over GD in
C, the naturality of the bijection # —  ensures that there is a cone over D,

(FC 5 D(j) | j e ob]).

So there’s a unique FC Y, L such that AV =T, for all j, and then C %> GL is
the unique morphism such that (FA;)v = y; for all j. O

The ‘Primeval Adjoint Functor Theorem’ asserts that the converse of Theo-
rem 4.17 is morally true modulo some stupid set theory issues. If G preserves
all limits, then it should have a left adjoint.

Lemma 4.18. Suppose D has, and G: D — C preserves limits of shape J. Then
for any object A of C, the arrow/comma category (A | G) has limits of shape J
and the forgetful functor U: (A | G) — D creates them.

Proof. Suppose glven D ] — (A | G) and a limit cone (L — UD(j) | jeob])

over UD. Then (GL — GUD( /) | j € ob]) is a limit for GUD. But if we write
D(j) = (UD(j), f;), the f; form a cone over GUD with apex A, and therefore
induce a unique map f: A — GL such that

A—>GL

\ lG/\

GUD(j)
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commutes for all j.

A;
Hence, ((L, f) = (UD(j), fj) | j € ob J) form a cone over Din (A | G).
The proof that this is a limit cone in (A | G) is just like Lemma 4.15. O

Lemma 4.19. Let A be a category. Specifying an initial object of A is equivalent
to specifying a limit for the diagram 15: A — A.

Proof. (=). Let I be initial. The unique maps 14: I — A form a cone over
14, since for any f: A — B we have that fi4 = ip because the map I — B
is unique. Given any other cone (yg4: C — A | A € obA), the morphism
ur: C — 1 satisfies 144 = pa for all A, so yj is a factorization of the cone
(a | A€ obA)through (14 | A € obA). And it’s the only one, because if v is
any such factorization, then v = ;v = py, so (14 | A € obA) is a limit cone.
(«<). Suppose given a limit cone (14: I — A | A € obA) for 15. We know
that I is weakly initial in that there is a map I — A for every object of A, but
not that these maps are unique. If f: I — A is any morphism, then the diagram

below commutes:
I
LA
% I \

] —mM — A

In particular, 1411 = 14 for all A, so (7 is a factorization of the limit cone through
itself. Hence, 1 = 1, and hence f = 14 forall f: I — A. So [ is initial. O

Now combining Lemma 4.18 and Lemma 4.19 with Theorem 3.4, we've
proved the Primeval Adjoint Functor Theorem. However, there’s a catch. If
D has limits over all diagrams “as big as itself,” then it must be a preorder!
(Example sheet 2, question 6). There are also examples of applications of the
Primeval Adjoint Functor Theorem to ordered sets on the example sheet.

We desire a better version of the Adjoint Functor Theorem that are applicable
to all categories. To get other versions of this, we will cut down to small limits
and locally small categories.

Theorem 4.20 (General Adjoint Functor Theorem). Suppose D is complete and
locally small. Then G: D — C has a left adjoint <= G preserves all small
limits and satisfies the solution set condition: for any A € ob C, there is a set of
morphisms {f;: A — GB; | i € I} such that every map f: A — GB factors as

AL, B 8 GB
for some g;: B; — B.

Proof. (=). If G has a left-adjoint, then by RAPL (Theorem 4.17) it preserves

limits, and {A LLN GFA} is a singleton solution set for A € ob C, by Theorem 3.4.

(«<). By Lemma 4.18, the fact that G preserves all small limits indicates that
the arrow categories (A | G) are complete, and they inherit the local smallness
from D. So we need to show that if A is complete and locally small, and has
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a weakly initial set of objects {B; | j € J}, then it has an initial object. Then we
have an initial object in each (A | G), which is equivalent to specifying a left
adjoint to G by Theorem 3.4.

To this end, first form P = H]-E I B]- ; then there are morphisms T P—-B i for
each j, so P is weakly initial. Now form the limiti: I — P of the diagram

=1

whose edge are all the endomorphisms of P. Clearly, I is weakly initial: given
f,8: 1 — A, we can form their equalizer e: E — I and find a morphism
h: P — E. Now ieh and 1p are both endomorphisms of P, so iehi = i. But i is
monic (just like an ordinary equalizer) so ehi = 1;. Hence e is split epic, and
f = g. Therefore, I is initial.

Example 4.21.

(a) Consider the forgetful functor U: Gp — Set. Gp is complete and locally
small, and U preserves all small limits. To obtain a solution set for U at
A, observe that any f: A — UG factors as A —» UG’ — UG, where G’ is
the subgroup of G generated by {f(a) | a € A}, and the cardinality of G’ is
bounded by the max of Ny and the cardinality of A.

Fix a set B of this cardinality, and consider all subsets B’ = B and all
possible group structures on B’, and all possible functions A — B’. This is
the solution set for U.

Thereby, we say that U has a left adjoint, which is the free group functor.
But to get the cardinality bound on G/, we need to say something about
words in G’ And this is entirely useless to say anything about free groups.

(b) Here’s an example where the solution set condition fails. Consider the
forgetful functor U: CLat — Set, where CLat is the category of complete
lattices with all joins and meets, and the morphisms are functions that
preserve all joins and meets. Just like Gp, CLat is locally small and
complete, and U preserves (indeed creates) all small limits.

But A.W. Hales (1965) shows that the solution set can fail when A is just a
three-element set! He proved that for any cardinal «, there is a complete
lattice Ly with card(Lx) > x which is generated by a 3-element subset.
Given any solution set, there is no cardinal bound on the set of lattices
that you need, and so the solution set condition for U fails at A = {a, b, c}.

Therefore, there is no left adjoint.
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Definition 4.22. By a subobject of an object A in a category C, we mean a
monomorphism with codomain A, A’>"- A. The subobjects of A form a

preorder Subc(A) with (A’ "~ A) < (A” NN A) if m factors through m'.

Definition 4.23. We say that C is well-powered if, for every A, Subc(A) is
equivalent to a partially ordered set.

Remark 4.24. An equivalent definition of well-poweredness is as follows: C is

well-powered if there exists a set {A; s A | i € I} of subobjects of A such

that for each subobjects B >L> A of A thereisi e I such that f factors through
m;.

14

Morally, this is taking one object for each isomorphism class of subobjects.

f

Example 4.25. Set is well-powered, since Subc(A) ~ PA, the power set of
A. Set is also well-copowered, since Subggwr (A) is equivalent to the poset of
equivalence relations on A.

Lemma 4.26. Suppose given a pullback square

A8
b
c 24D

with f monic. Then k is also monic.

Proof. Suppose given {,m: E — A with kl = km, then gk¢ = gkm, but gk =
fh, so fht = fhm, Since f is monic, then h! = hm. Therefore, ¢ and m are
factorizations of the cone (h¢, k¢) through the limit. Hence, ¢ = m. Therefore, k
is monic. O

We're now ready to prove the special adjoint functor theorem.

Theorem 4.27 (Special Adjoint Functor Theorem (SAFT)). Let C be locally small
and let D be locally small, complete, and well-powered, with a coseparating set
of objects. Then G: D — C has a left adjoint if and only if G preserves all small
limits.

Proof. (=). is just the same as in the proof of Theorem 4.17.

(«<=). The converse is the interesting part. Let A € ob C. As in Theorem 4.20,
(A | G) inherits completeness and local smallness from D. It also inherits
well-poweredness: the subobjects of (B, f) are just the subobjects B’ —— B in
D for which f factors through GB’ ~—— GB; see Remark 4.24. (Note that the
forgetful functor (A | G) — D preserves and reflects monos by Remark 4.16.)
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It also inherits a coseparating set: if S is a coseparating set for D, then
{(S,f)|SeS, feC(A GS)}is acoseparating set for (A | G). This is because,

k
given a parallel pair (B,h) — (B/,h’) in (A | G) with k # ¢, we can always
l

find m: B' — S with mk # m¢. Then m is also a morphism (B, h’) — (S, (Gm)H’)

in(A]G).
e

R — > GS

So we’ve reduced the theorem to proving that if some category A (in our
case, the category (A | G)) is locally small, complete, and well-powered, and
has a coseparating set, then A has an initial object.

To thatend, let {S; | j € ]} be a coseparating set, and form P = [ [;; S;. Form
now the limit of the diagram

whose edges are a representative set of subobjects of P. By an easy extension
of Lemma 4.26, the legs I — P,g of the limit cone are monic, so the composite
I — P]i >—— P is also monic, and also a least element of Suby (P), that is, a least
subobject of P.

We claim that I is the initial object we seek. Let’s check uniqueness and
existence of these arrows from I — A in A.

f
For uniqueness, suppose we had I — < A in A; then the equalizer E>—— I
8

of f and g is a subobject of P contained in I —— P, so E — [ is an isomorphism
and thus f = g.

We now need the existence of I — A for each A € ob A. This is the hard part.
Fix A € ob A. Form the product

Q=[] s
jelf: A—s;

and leth: A — Q be defined by 7t sh = f. Since the S; form a coseparating set,
h is monic. Let g: P — Q be defined by 71 r¢ = 71, and form the pullback

LA

B
T

P-250
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Now m is monic by Lemma 4.26, so there’s a factorization

and ¢n: I — A is the desired map. So I has a map to each other object in A, and
is thus initial. O

Example 4.28 (Stone-Cech Compactification). Consider the inclusion functor

from compact Hausdorff spaces to all topological spaces, KHaus—l>Top.
Both categories are locally small, and KHaus has and [ preserves all small
products by Tychonoff’s Theorem. Similarly, KHaus has and I preserves all

f
equalizers, since the equalizer in Top of X —< Y with Y Hausdorff is a closed
8

subspace of X.
Next, KHaus is well-powered, since the subobjects of X correspond (up to
isomorphism) to closed subsets of X. Finally, [0, 1] is a coseparator for KHaus,

f
by Urysohn’s Lemma: given X — =Y with f # g, we can choose x € X with
8

f(x) # g(x), and then find h: Y — [0,1] with hf(x) = 0 and hg(x) = 1, so
hf # hg.

So I satisfies the conditions of SAFT (Theorem 4.27), so I has left-adjoint B.
Remark 4.29.

(a) Cech’s original construction of B is virtually identical to this. Given X, he

forms
p= [] [01]
f: X—[01]

and the map h: X — P defined by 71¢h = f. Then defines fX to be the
image of i, which has the appropriate universal property. But this is
the smallest subobject of the product of members of a coseparating set
for (X | I). It seems like the proof of Theorem 4.27 is modelled on this
construction.

(b) We could have constructed B using Theorem 4.20 to obtain a solution set
for I at X, because it’s enough to consider maps f: X — Y with Y compact
Hausdorff where im f is dense in Y. If X has cardinality «, then we can
show that Y has cardinality bounded by 22",

5 Monads

This is the last chapter of material that forms the core of the course. Suppose

F
we have an adjunction C =— D. How much of this structure can we recover
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from C, F, G without ever mentioning D? We know T = GF: C——C, and
we also have the unit of the adjunction, which is a natural transformation
77: 1c —— GF = T. We don’t know the counit € because it lives in D, but we
do have the natural transformation 4 = Gep: TT = GFGF—— GF =T.

Of course, these data satisfy certain identities inherited from the triangular
identities from 7 and e. In particular, the following diagrams commute; the one
of the left from the triangular identities and the one on the right by naturality of
€.

nr Ty
T —— TT +— T TTT ——

TT
1 T
T lu lm ly (10)
\ ; A T — T

We could also consider the dual notion, where we know D, F, G but not C. This
motivates the following definition.

Definition 5.1. By a monad in C, we mean a triple T = (T,#, ) where T: C —
Cisafunctorand #: 1¢ — T, u: TT — T are natural transformations satisfying
the three commutative diagrams in (10).

Dually, a comonad R = (R,¢,6) hase: R — 1c and 6: R — RR satisfying
the diagrams dual to (10).

Remark 5.2. The name “monad” is a long time coming. Originally, people
referred to these things as just “the standard construction,” which is really an
admission of defeat in naming conventions. Later, they were called “triples,”
but that requires that comonads had the awkward name “co-triples.” MacLane
popularized the term monad, but there are still some people who insist on
calling them triples. Mostly these people live in Montreal.

Recall the definition of Monads from (10). Let’s number the three equations
for ease of reference as

(1) ponr =17;
(12) poTy =17;

(13) popur = poTu.

T—" 7T

‘H (11)
17

T
Ty
TT +—— T
lu (12)
1r
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TTT 2 TT
(13)
J{#T , J{P‘

TT —— T

Before we continue, let’s talk a little more about examples.

F
Example 5.3. (a) The monad T on C induced by an adjunction C %’ D,

F 4 G, has T = GF, 7 is the unit of the adjunction, and y = Ger.

(b) Given a monad M, we can make A — M x A into a functor M x —: Set —
Set. This functor has monad structure, with 74: A — M x A defined by
na(a) = (1,a),and pig: M x M x A — M x A defined by p4(m,m’,a) =
(mm’, a).

(c) In any category C with binary products, given A € ob C, we can make
A x — into a functor C — C, and it has a comonad structure given by
€B=7T21AXB—>Band5B=<7T1,7T1,7T2)ZAXB—>A><A><B.

Given Example 5.3(a), we might ask “Does every monad arise from an
adjunction?” The answer is yes. Eilenberg-Moore (1965) observed that Exam-

F
ple 5.3(b) arises from the adjunction Set— [M, Set] where FA = M x A with
u

M action on the left-factor.

Definition 5.4. Let T = (T, 7, 4) be amonad on C. A T-algebra is a pair (A, )
where A e obCand a: TA — A satisfies

A4 TA

. (14)

TTA -, TA

lm la (15)

TA —% 5 A

A homomorphism of T-algebras f: (A, a) — (B, B) is a morphism f: A —
B making the following diagram commute.

TALTB
« (16)
bl

A—— B

The category of T algebras and T-algebra homomorphisms is denoted CT.
This is called the Eilenberg-Moore category.
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Lemma 5.5. The forgetful functor CT — C has left adjoint FT: C — CT and the
adjunction induces the monad T.

Proof. We define FTA = (TA,j4) and FT(A 1, B) = Tf, which is an algebra
by Equation 11 and Equation 13.

Clearly GTFT = T, and we have a natural transformation 77: 1c — GTFT.

We define e: FTGT — 1.1 by €(Aq) = &: TA — A. This is a homomorphism
by Equation 15, and natural by Equation 16.

We just need to check the triangular identities now. The composite (GTe)(#7r)
is the identity by Equation 14. And 77pr 4(F™574) = uaTa = 114 by Equa-
tion 12.

Finally, the multiplication GTepr of the induced monad is . O

So this was the Eilenberg-Moore approach to Monads. Kleisli instead took

F
a minimalist approach. If C ? D induces T, we may replace D by its full

subcategory D’ on objects of the form FA. So we may as well assume that F
is surjective on objects (up to equivalence, it may as well be bijective). Also,
morphisms FA — FB in D correspond bijectively to morphisms A — TB in C.
Kleisli’s idea was to take this as the definition.

Definition 5.6. Let T be a monad on C. The Kleisli Category Ct of T has
obCt = obC. Morphisrns ALB in Cr are morphisms A L TBincC. The
identity A—A in Cy is A — TA. The composite ALB—>C is A > f TB —=
TTC 'S TC.

Remark 5.7. To avoid confusion, since ob C = ob Ct, morphisms in Cr are
written in blue, while morphisms in C retain this lovely black color.

We should really verify that Cy is a category, so consider the diagrams

A L TB —— TTB TA —f> TTB ——

1\ J{P‘B 77A WTBT /
TB TB

A4>TB

f

Given A—>B§>CLD, consider the diagram

f

B —5, TTC ", TC
lTTh lTh

HTD

TTTD —— TTD

[0 |

TTD —2 4 TD

A

The upper way round is h(gf), and the lower way route is (hg)f.
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Fr
Lemma 5.8. There exists an adjunction C .—— Cy with Fyr H Gy, inducing T.
Gr

Proof. We define FrA = A and Fr(A IR B)=A IR B % TB. Clearly, Fr
preserves identities, and the diagram

A—L B ", B

b

c e, rc e, 1c
w‘: J{

Hc

TC

shows that Fr(gf) = FrgoFrf. (The composition is in Cr, which is why it’s
blue.)
f

Define GrA = TA and Gr(A—B) = TA I, TTB L2 TB. Again, this is
functorial: Gy(14) = 114 by Equation 12, and given AiBiC, consider the
diagram

B ", TB

TTg J{Tg

TA

HrC

TTTC —— TTC

J{TVC JP‘ c

TTC < TC

which shows that GpgoGrf = Gr(gf).

Once again, we have GrFr = T, and so 7 of T = (T,#, ) is a natural
transformation 1¢ — Gy Fr. This will be the unit of this adjunction. The counit
map FrGyA—Ais 1t4: TA — TA. The fact that the counit map is natural is
left as an exercise.

Let’s check the triangular identities to show that this is actually an adjunction.
(Grea)(1Gpa) is the composite

TA 4, 7TA 4, TA

is equal to 1r; 4. On the other hand, (er 4)(Fr74) is the composite

A4, TA T, TTA A TTA Ay, = 1p 4.
Finally, Grep 4 = Gr(174) = pa, s0 the induced monad is T. O

Last time we defined the Eilenberg-Moore and Kleisli categories for an
adjunction. We'll see shortly that they’re the two extreme categories of this sort.
First, we’ll need a few definitions.
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Definition 5.9. Given a monad T on C, let Adj(T) be the category whose objects

F
are adjunctions <C pa— D) inducing T, and whose morphisms
G

F F’
(ctn)— (ccen)
G G’

are functors H: D — D’ satisfying HF = F/ and G’'H = G.

Theorem 5.10. The Kleisli adjunction Fyr — Gr is initial in Adj(T) and the
Eilenberg-Moore adjunction FT - GT is terminal.

Proof. We'll do the case of Eilenberg-Moore first, because as always the Eilenberg-
Moore category is easier to work with.

F
Given C—— D with F 4 G, we define the (Eilenberg-Moore) comparison
G

functor K: D — CT by KB = (GB,Geg) and K(B 2> B') = Gg (which is a
homomorphism of T-algebras by naturality of €), where ¢ is the counit of the
adjunction F 4 G.

Note that Gep o g = 1¢p is one of the triangular identities for F - G, and

GSBGFG83 = GSB‘Z/IGB = GSBGEFGB

by naturality of e.
Clearly GTK = G and

KFA = (GFA,Gepp) = (TA, un) = FTA.

So GTK agrees with FTon objects, and

KF(A L A" = GFf = TF = FT,

so it also agrees on arrows. Therefore, K is a morphism from (F 4 G) to
(FT 4 GT) in Adj(T).

Now suppose H: D — CT is another such morphism. We want to show that
H = K, to demonstrate that (FT - GT) is terminal. Then HB = (GB, Bp) for
some structure map Bp: GFGB — GB and Hg = Gg. Moreover, we have that
;BFA =UA = GEFA forall A€ obC.

Now consider the square

GFGEGB <% GrGB

lHGB lﬁg

GFGB — <%, GB

this commutes becasue Gep is a T-algebra homomorphism H(FGB) — HB. But
this diagram would also commute with g replaced with Gep on the right, and
the top edge is split epic by a triangular identity.
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So Bp = Geg, so therefore H = K. Thus, FT 4 GT is terminal in Adj(T).

We should now show that the Kleisli category Cr is initial. To that end, we
define L: Cy — D by

LA = FA
L(ALB) = FA X, FGFB ‘%, FB

Note that Lf is the morphism corresponding to f under the adjunction (F 4 G),
and so is always full and faithful. Moreover, L(#4) = €p4, and Fyg = 1pa.

Now given Al 2,C, consider

A - e 58 rGRGEC 'S FGEC

lSFB lEFGFC EFC\L

FB —2%  FGFC —<  FC

This proves that L(fg) = (Lf)(Lg).
We also see LFf A = FA and

A - B 7, pGEB

LEr(A L B) = w [ers
FB
soLFy =F.

Additionally, GLA = GFA = TA = GrA and

GL(ALB) = GFA -, GFGFB 575, GFB = upTf = Guf
so L is a morphism of Adj(T).
Finally, suppose that H: Cp — D is any morphism from (Fr < Gr) to
(F 4 G). We want to check that H = L, that is, that (Fp < Gr) is initial.

Given this H, we know that HA = FA for all A, and H (TAlﬂn‘l) =

FGFA ™, FA. But for any ALB, we have that f = ALTBYEB, so
H(f) = epa(Ff) = Lf. This shows that H = L, so the Kleisli category is
initial in Adj(T). O

This is really the last time that we’ll see the Kleisi category in action, mostly
because it’s a huge pain to work with. Even if C has nice properties, it’s not
always the case that Cy has these properties. However, Cy inherits coproducts
from C, since Fr is bijective on objects and preserves colimits. In general, though,
it has few other limits or colimits. For example, the Kleisi category on Gp,
where T comes from the free - forgetful adjunction, is the category of all free
groups and homomorphisms between them. But the product of two free groups
need not be free, so it doesn’t have even binary products!

The Eilenberg-Moore category CT is much nicer to work with.
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Theorem 5.11. Let CT be the Eilenberg-Moore category for a monad T in C.

(i)
(if)

T
The forgetful functor CT £, C creates all limits which exist in C.

If T: C — C preserves all colimits of shape J, then GT: CT — C creates
them.

[Note: from now on we’ll write G = GT]

Proof.

(i)

(ii)

Suppose given D: J — CT and a limit cone (Aj: L > GD(j) | j € ob]) for
GD in C. Write D(j) = (GD(j),d;), where 6; is the T-algebra structure
map of GD(j). Now the composites

T)\j . (5/ .
TL— 5 TGD(j)—— GD())

form a cone over GD since the edges of GD are T-algebra homomor-
phisms. Therefore, these induce a unique A: TL — L such that Ajv =
6;(TA;) for all j. Moreover, A satisfies the equations for a T-algebra struc-
ture, since for example the associativity condition asserts the equality of
any two morphisms TTL —= L which are both factorizations of the limit
cone over GD.

So L has a unique T-algebra structure v making all the A; into homomor-
phisms of T-algebras.

Finally, we should check that given any cone (B;: (A, &) — D(j) | j € ob])
over D in CT, this factors through the limit cone corresponding to L. But
we know that there is a unique f: A — L in Csuch that A;f = g; for all j.
Once again,

Tg
TA —— TL

o b
AP

So (Aj: (L,A) — D(j) | j € ob]) is a limit cone in ct.

Simialrly, if D: J — CTand (Aj: GD(j) — L | j € ob]) is a colimit for
GD in C, then (TA;: TGD(j) — TL | j € ob]J) is also a colimit because T
preserves colimits, so the composites

N9 N A
TGD(j))——GD(j) — L

induce a unique A: TL — L. It's a good exercise to check that A is an
algebra structure using the fact that TTL is also a colimit, and the A; form
a colimit cone in CT.

O
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5.1 Monadicity Theorems

We saw that the Eilenberg-Moore category and the adjunction coming from
a monad was particularly nice to work with. We may want to know when
arbitrary adjunctions look like this particularly nice example.

F
Definition 5.12. Let C——" D be an adjunction inducing a monad T on C. We
G

say that (F - G) is monadic if the comparison functor K: D — C7 is part of an

equivalence of categories. We say D —%  Cis monadic if it has a left adjoint
and the adjunction is monadic.

Today, our goal is to prove the monadicity theorem which characterizes these
adjunctions. The “Primeval Monadicity Theorem” asserts that the Eilenberg-
Moore adjunction is characterized up to equivalence by the fact that

€FGB ep
FGFGB_—ZXFGB——B
FGEB

is a coequalizer for every object B of D.

Before we state these theorems, let’s give the key lemma. This is at the heart
of every monadicity theorem, but it’s not often stated on it's own. However, it it
quite useful by its own merit.

F
Lemma 5.13. Let C:—— D be an adjunction F 4 G inducing a monad T, and
G

suppose that for every T-algebra (A, «), the pair

F
FGEA— = FA
E€FA

has a coequalizer. Then K: D — CT has a left adjoint.

Proof. We will find a functor L: CT — D such that L — K. Define L(A, «) to be
the coequalizer of

F
FGFA=—FA— > L(A,u).
€FA

Given a homomorphism f: (A,«) — (A’,a’), we have

F
FGFA — = FA — L(A, )

€FA
FGFfi iFf lL f
F !’
FGFA' —— FA' — L(A', &)
Eral
commutes. Uniqueness implies L is functorial.

Now, given B € ob D, morphisms L(A,a) — B correspond bijectively to
morphisms f: FA — B satisfying f(Fa) = feps. But morphisms f: FA — B
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correspond bijectively to morphisms f: A — GB satisfying fa = Gf. But we
can also write f in terms of f as f = eg o Ff, so we see that

fa=Gf = G(ep o Ff) = Geg o GF(f).
This means that f is a T-algebra homomorphism f: (A, &) — KB = (GB, Gep)
inCT.

Check for yourself that this bijection is natural in (A, «) and in B as well, so
(L 4 K). O

Definition 5.14.

f
(a) We say a parallel pair A — < B is reflexive if there is some r: B — A such
that fr = gr = 1p.
(b) By a split coequalizer diagram in C, we mean a diagram
f h
A——=B——C
& R~
t s
satisfying hf = hg, hs = 1¢, gt = 1p and ft = sh.
Note that the pair (Fa, eg4) in the statement of Lemma 5.13 is reflexive, with

common splitting F7 4. Note also that reflexive coequalizers (i.e. coequalizers
of reflexive pairs) are colimits of shape J, where

d f
N
J= Qﬁ.
p\g/‘

satisfying fr =gr=1,rf =d, rg =e.
f
Noe that the equations of a split coequalizer imply that A—< B ko cis
8

a coequalizer: given k: B — D with kf = kg, then k = kgt = kft = ksh, so k
factors through h and the factorization is unique since # is split epic.

Note also that any functor preserves split coequalizers — this is the property
of an absolute colimit.

f
Definition 5.15. Given G: D — C, we say that a pair A—2 B in D is G-split
8

if there is a split coequalizer diagram

Gf
GA:;GBLC
.G » ~__~

t s
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Note that the pair in the statement of Lemma 5.13 is G-split, since

GF
GEGFA ———— GFA —* A
N
A
IGFA

is a split coequalizer diagram.
Now we're ready to give the Monadicity Theorems and prove them.

Theorem 5.16 (Precise Monadicity Theorem / Beck’s Theorem). A functor
G: D — Cis monadic if and only if

(i) G has a left adjoint;
(ii) G creates coequalizers of G-split pairs.

Proof. (—). Assume that G is monadic. Then by definition, G has a left adjoint
F, so it remains to show that G creates coequalizers of G-split pairs. Let T be
the monad induced by the adjunction F H G. To do this, it suffices to show
that GT creates coequalizers of GT-split pairs, since CT ~ D. So assume that
(A, o) —= (B, B) is a G-split pair, with a split coequalizer

f
A:;BLC
S8 ~ rR_

t s
in C. Then this split coequalizer is certainly preserved by T, since split co-
equalizers are preserved by any functor. Then by Theorem 5.11, GT creates the
coequalizer of this GT-split pair.

(«=). Assume that G has a left adjoint F and G creates coequalizers of
G-split pairs. Let T be the monad induced by F 4 G. We want to show that
D ~ CT, that is, we have to construct a weak inverse L to the comparison
functor K.

To define the functor L, first note that for any T-algebra (A, «), the parallel
pair

F
FGEA— = FA
€FA
is G-split, because
GFua «
GFGFA ————{ GFA — A 17)
Gepa ~__~
\_/ 1A
1IGFA

is a split coequalizer. Hence, Lemma 5.13 applies and there is a functor L: CT —
D left adjoint to K.

To show that L and K form an equivalence of categories, we need to show
that KL = 11 and LK = 1p.
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To see that KL — 1., let (A, &) be any T-algebra. Then KL(A,a) =
(GL(A, ), Geraq)), where L(A, a) is the coequalizer

F
FGFA—FA—2 S L(A, ). (18)

€FA

Note that

GF
GFGFA :;a GFA —5%5 GL(A, )

1IGFA

is a coequalizer because G creates (and therefore preserves) limits. But (17) is
also a coequalizer, and therefore GO = « and A =~ GL(A, «). It remains to show
that o = Gej (4 ,). To show this, it suffices to show that 0 = €14 4), since G6 = a.
But we have that

foFx =0o0¢epy by (18)
= €r(an) ©FGO naturality of e
=ep(aa °Fla) because & = G0

Then composing both sides on the right with Fr4, and using the fact that
wona =1u, we obtain that f = e; (4 ,). So KL = 1cr.

To see that LK = 1p, let B be an object of D. Then LK(B) = L(GB, Geg). We
know that

FGe
FGFGB——% FGB— L(GB, Gep)

€FGB

is a coequalizer diagram. But there is another coequalizer, namely

FGSB ep
FGFGB—XFGB——B.
€FGB

This is a coequalizer because FGeg, ergp is a G-split pair by (17). Since both are
coequalizers, then B =~ L(GB, Geg). So LK = 1p. O

Theorem 5.17 (Crude Monadicity Theorem). A functor G: D — Cis monadic if
(i) G has a left adjoint;
(ii) D has, and G preserves, reflexive coequalizers;
(iii) G reflects isomorphisms.

Proof. Assume (i), (ii), and (iii). This proof is very very similar to the (<)
direction for Theorem 5.16. To show that G is monadic, we have to show that G
has a left adjoint F and moreover that CT ~ D, where T is the monad induced
by the adjunction F H G.
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First, we want to find a functor L: CT — D that is a weak inverse to the
Eilenberg-Moore comparison functor K. By Lemma 5.13, it is enough to show
that each parallel pair

F
FGEA——FA (19)
€FA

has a coequalizer. This is true because the above pair is reflexive with splitting
Fn 4, and so there is a coequalizer by assumption (ii).

Hence, there is L.: CT — D such that L(A, «) is the coequalizer of (19). Now
we want to show that L is a weak inverse to K, meaning that KL =~ 1.r and
LK =~ 1p.

Let’s first show that KL = 1.r. For any T-algebra (A,a), we have that
KL(A,a) = (GL(A,a),Gep(a,)). We want to show that GL(A,a) = A and
moreover that Gey 4 ) = «. We know that both

GFu a
GFGFA—XGFA—— A
GSFA

and

GFu Go
GFGFA—XGFA——GL(A,«)
GEFA
are coequalizer diagrams, the latter since G preserves the coequalizer L(A, «) of
the reflexive pair (19). Hence, GO = « and GL(A, ) = A. So it remains to show
that Gep (4 4) = «. It suffices to show that 6 = €7 (4 4). To that end,

foFa =0o0¢epy 6 is coequalizer map of (19)
= €r(an) © FGO naturality of e
=€) ° F(a) because & = GO

Then compose both sides on the right by Fij4 to get 0 = € (4 4)-
Now let’s show that LK =~ 1p. For any object B of D, we have LKB =
L(GB, Gep). This is the coequalizer of the parallel pair

GFe
FGFGB——2% FGB— L(GB, Ge).

€FGB

We want to show that this is isomorphic to B. But the following is a (split)
coequalizer diagram

GPGEB GEB
GFGFGB ————— GFGB —— GB

1GB

"IGFGB

and therefore (because G preserves reflexive coequzlizers) we have that GL(GB, Gep) =~
GB. And G reflects isomorphisms, so L(GB, Gep) =~ B. O
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Last time we proved the monadicity theorems in two versions, so let’s looks
at some examples so that we understand what monadic functors look like.

Example 5.18.

(a) The forgetful functors Gp — Set, Ring — Set, R-Mod — Set, Lat — Set
are all monadic. We can prove this using Lemma 5.19.

Note that if we allow infinitary algebraic structures (that is, given by maps
Al — A for some infinite set I) the left adjoint needn’t exist (c.f. Exam-
ple 4.21(b)). Nevertheless, we can prove some things about monadicity
using the precise version of the theorem. If it does, then the forgetful
functor needn’t preserve reflexive coequalizers, but it can be shown to be
monadic using the precise version of the theorem.

fi f2
~ X hl > h2
Lemma 5.19. If A; «n— By —— C; and A +n— By —— C, are re-
~_ 7 ~_ 7
81 &2
flexive coequalizer diagrams in Set, so is
fixfa

T Iy x by

AlXAz(ﬁTleB24>C1XC2.

81%X82

Proof. Let S; = {(fi(a),gi(a)) | a € A;} < B; x B;, and let R; be the equivalence
relation generated by S;. This equivalence relations R; is reflexive because the
coequalizers are reflexive. We need to show that Ry x R, is the equivalence
relation generated by S1 x Sy. Note that (b;, b)) € R; if and only if there is a chain
(bi = x1,%2, ..., %, = b}) with each (xj,xj;1) € S; U S?P. Given two such chains
(b1 = x1,...,xy = b)) and (by = y1,...,ym = b)), we can link (b, by) to (b}, b5)
by the chain

(bl = xlrbZ)r (xZI bZ)/ ey (x'rl = bgrbz = yl)r (bgryZ)r sy (bi/ ym = bé)

where each adjacent pair is in (51 x Sp) U (S?p x Sgp). O

Example 5.20 (Continued from Example 5.18).

f
(b) So given a reflexive coequalizer A——<B LN C, where A, B have some
8
finitary algebraic structure and f, g are homomorphisms, then for any
n-ary operation «, we have

n

A ——3 gt M,

XA gf lIXB %Déc
A——B-—",C
8
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So C acquires a unique algebraic structure (e.g. group, ring, module, etc.)
making / into a homomorphism, and a coequalizer in the category of
these algebraic structures (e.g. Gp, Ring, R-Mod, etc.).

(c) Any reflection is monadic. This can be proved directly as in question 2 in
example sheet 3. But it can also be proved using Theorem 5.16. Suppose

f
D — Cis a reflective (full) subcategory and let A —= B be a parallel pair
8

in D with a split coequalizer

f
A——B-",C
8 R__~

t S

Then ¢ is in D, and hence so is the idempotent ft = sh: B — B.

Now s is an equalizer of sh and 1, so it (and hence also C and /) lives in
D (at least up to isomorphism).

F L
(d) Consider the composite adjunction Set.—— Ab " tfAb, where tfAB
u I

is the category of torsion-free abelian groups. This is not monadic, since
UILF = UF because the free abelian group is already torsion frree, and
the monad structure induced by LF - U is the same as that induced by
F4U.

(e) Consider the forgetful functor U: Top — Set. This has a left adjoint
given by the discrete space functor D that endows a set with the discrete
topology. (U also preserves all coequalizers, since it also has a right
adjoint). But UD = 1g¢, and the corresponding category of algebras is
Set.

(f) Consider the forgetful functor KHaus Y, Set. This has a left-adjoint gD,
where B is the Stone-Cech compactification functor and D is as in the
previous example. This is monadic; first proved by E. Manes directly but
we’ll prove it using Theorem 5.16.

t
N e

f
Suppose given X —< Y in KHaus and a split coequalizer X ——< Y iz
8 8

in Set. The quotient topology on Z (which makes / a coequalizer in Top is
compact, and it’s the only topology on Z that could possibly be Hausdorff
and make & continuous.

So we need to show that the quotient topology on Z is Hausdorff. Using
the result that if Y is compact Hausdorff, and R is an equivalence relation
on Y, then Y/R is Hausdorff <= R s closed in Y x Y, we reduce the
problem to showing that the equivalence relation generated by (f, g) is
closed. Suppose (y,1’) € R, then h(y) = h(y’) so

fH(Y) = sh(y) = sh(y') = ft(y').
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(8)

So (y,¥/) e R = I (x,x') € X with f(x) = f(x') and g(x) = y, and
¢(x") = y/. But because this is a split coequalizer, then the reverse is also
true.

Now S = {(x,x') e X x X | f(x) = f(x)} is closed in X x X and hence
compact, and R is the image of S under g x g, and hence closed in Y x Y.

Thus we have shown that the adjunction D + U satisfies the conditions
of Theorem 5.16, so it is monadic.

The contravariant powerset functor P*: Set’? — Set is monadic. This
can be proved using Theorem 5.17 (due to R. Paré). It has a left adjoint
P*: Set — Set°P (see Example 3.2(h)). It reflects isos, since if f: A — B
is such that f~1: PB — PA is bijective, then f~!(imf) = f~1(B) = A
implies f is surjective, and there is B with f~!(B’) = {a} foralla € A,
which implies f is injective.

To see that this preserves split coequalizers in sets, we need another
lemma.

Lemma 5.21. Suppose

is a pullback in Set. Then

P
PB —2 PC

e

PD -y pA

commutes.

Exercise 5.22. Prove this lemma.

Example 5.23 (Continued from Example 5.18).

(h)

f
So, given a coreflexive equalizer diagram C "B % A in Set,
we note that '
O
b
B4

is a pullback since fk = g¢ implies k = rfk = rgl = £. Therefore,

P Py
PA ¢ PB —— PC
I\P*f/ .~
Pg Ph

&
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satisfies P*h o Ph = 1pc and P*go Pg = 1pg, since g and h are monic,
and Ph o P*h = P*f o Pg from the lemma. In particular, the left-to-right
morphisms are a coequalizer.

F
Definition 5.24. Suppose given an adjunction C %’ D where D has reflexive

coequalizers. We can form the monadic tower

where T is the monad induced by F 4 G, K is the comparison functor (see
Theorem 5.10) and L H K (see Lemma 5.13). S is the monad induced by L — K.

We say that F 4 G has monadic length n if we arrive at an equivalence of
categories after n steps.

Example 5.25. The adjunction Example 5.18(c) has monadic length 2, but the
adjunction Example 5.18(d) has monadic length co.

6 Filtered Colimits

Definition 6.1. We say a category ] is filtered if every finite diagram in J has
a cocone (sometimes called a cone under the diagram). A filtered poset is
commonly called directed.

Lemma 6.2. ] is filtered if and only if
(i) Jis nonempty;
(ii) Given j,j' € ob]J, there is a diagram j — j" « j/;

(iii) Given j ﬁ j/inJ, there exists j/ - " with ya = .
p

Proof. (=). Each of the three conditions is a special case of having a cocone
under finite diagrams in J.
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(). Given D: I — | with [ finite (assume [ # (), by repeated use of (ii)
we can find j € obJ with morphisms D(i) 4, jforallie obl. The triangles

D(i) —
2

o]

D(i")

don’t necessarily commute, but by repeated use of (iii), we can find j £, j' such

that the arrows D (i) LN j' form a cone under D. O

Lemma 6.3. Suppose C has finite colimits and (small) filtered colimits. Then C
is cocomplete.

Proof. Since C has coequalizers, we need only construct coproducts > ;-; A;. Let
Pfl be the poset of finite subsets of I, ordered by set-theoretic inclusion. This
is clearly directed. For I’ € P¢I, let Ap be the coproduct » ;s Aj; when I < 17,

we have that Ap LNy i defined by fv; = v; for alli € I’, and a colimit for
this diagram of shape PsI given by the maps f: Ay — Ay has the universal

property of > . A;. O
Suppose now given a diagram D: I x ] — C, where C has limits of shape
I and colimits of shape ]. For each j € ob]J, there is a diagram D(—,j): I — C,

and so we can form lim; D(—, j). Now we can use the fact that D is natural in
both i and j to form maps lim; D(—,j) — lim; D(—,j'):

lim; D(—,j) —— D(i,j) — D(7,))

| |

lim; D(—,j") —— D(i,j’) —— D(i',j)

The limits themselves therefore form a diagram of shape J, so we can form
colimj lim; D,

lim; D(—, j) D(i,j) —————— D(7,])
lim; D(—, ) D(i,j') ————— D(,j")

l | |

colimjlim; D —— lim;j colimj D —— colimj D(i, —) —— colim; D(, —)

similarly, we can form lim; colim; D.
For all i the object colim; D(i, —) is the apex of a cocone under the diagram
consisting of the lim; D(—, j). Therefore there is a morphism colim; lim; D —
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colim; D(i, —) for each i, making colim; lim; D into a cone over the diagram of
the colim; D(i, —). Hence, we get a canonical morphism

colimjlim; D — lim; colim; D. (20)

We say that limits of shape I commute with colimits of shape | in C if this
morphism is always an isomorphism. Equivalently, if

colim;: [J,C] - C
preserves limits of shape I, or dually
li§n: [[,C]—>C

preserves limits of shape J.
Note that in Example 5.18(a) we showed that reflexive coequalizers commute
with finite product in Set.

Theorem 6.4. Let | be a small category. Then colim; commutes with all finite
limits in Set if and only if | is filtered.

Proof. (<=). Let’s get the hard part of the theorem out of the way first. Given a
diagram D: | — Set, its colimit is the quotient of [ [;c., ; D(j) by the smallest
equivalence relation identifying x € D(j) with D(a)(x) € D(j’') forany a: j — j/
in J. If ] is filtered, then

(@) x € D(j) is identified with x’ € D(j’) if and only if there are maps «, B,
i & 7 & i such that D(w)(x) = D(B)(x").
(b) Moreover if j = j/, then we can take & = .

Now we will prove that the comparison map in (20) is surjective. Suppose given
x € limjcolim; D. Its images x; € colimj(D(i, —)) must come from elements
xjj € D(i, j) for some j, and using Lemma 6.2(ii), we may assume j is independent
of i. Now for a: i — i in I, D(«, j)(x;;) and xy; needn’t be equal, but they have
the same image in colim; D(i’, —), so they have the same image under D(i’, B)
for some B: j — j' in ] by condition (b), above. Doing this for each morphism
of I, we arrive at j — j” such that the images x; » of x;; under D(i — j")
and D(j — j”) define an element xj» € lim; D(—,;"). The image of xj» in
colimj lim; D maps to x € lim; colim; D, so the canonical map is surjective.

Now we need to show that the map in (20) is injective. Let y, z € colimj lim; D
have the same image in limj colim; D. We therefore have elements y;, z; €
lim; D(—, j) for some j, mapping to y, z. Their images y; ;, z; ; in D(i,j) needn’t
be equal, but they have the same image in colim; D(i, —). So there are maps
j — j’ mapping them to the same element of D(i,j'). Doing this for each i, we
obtain j — j” such that y;» = z;» for all i. Hence, y;» = zj» in lim; D(—,j"). So
y = zin colim; lim; D.

(=). Given D: I — ], consider the functor E: [°P x | — Set defined by
E(i,j) = J(D(i),j). We have colimj E(i, —) = 1 for all i, so lim; colim; E = 1.
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Commutativity of limits with colimits says that colim; lim; E = 1, so lim; E(—, /)
nonempty for some j. But an element of this limit is a cone under D with apex j.
Therefore, | is filtered. O

Remark 6.5. Last time we proved the theorem about conditions under which
colimits and limits commute in Set. Here are a few remarks about that theorem.

(a) Limits always commute with limits: given D: I x | — C where C has lim-
its of shapes I and |, both lim; lim; D and lim; lim; D have the universal
property of limy,j D.

(b) Filtered colimits don’t commute with finite limits in Set°P: consider the
following diagram of shape IN°P x 2:

where s(n) = n+ 1. Applying limpop, we get a map & — 1, so limpop
doesn’t preserve epimorphisms, and hence it doesn’t preserve pushouts.

(c) There is an infinitary version of Theorem 6.4, which we’ll state but not
prove. Given an infinite regular cardinal x (cannot be written as the sum
of fewer than x cardinals), we say a category [ is x-small if the cardinality
of mor [ is less than x. We say that | is x-filtered if every x-small diagram
in | has a cone under it. Then the methods of Theorem 6.4 can be used to
show that | is « filtered if and only if colimits of shape | commute with all
x-small limits in Set.

We can, however, extend Theorem 6.4 to finitary algebraic catgories (e.g.
groups, sets, rings, modules, lattices, etc.) more-or-less without difficulty.

Definition 6.6. A is a a finitary algebraic category if the ojects of A are sets
equipped with certain finitary operations on their elements that satisfy equa-
tions like associative laws or commutative laws, and the morphisms are homo-
morphisms commuting with these operations.

Corollary 6.7. Let A be a finitary algebraic category. Then
(i) The forgetful functor A — Set creates filtered colimits.
(ii) Filtered colimits commute with finite limits in A.
Proof.

(i) Since filtered colimits commute with finite products in Set, (in particular
for the functor A — A" from Set — Set), this follows as in Example 5.18(a),
where we showed that these functors create reflexive coequalizers.

(ii) The forgetful functor A — Set preserves filtered colimits and finite limits,
and reflects isomorphisms. So this follows from Theorem 6.4.!

lalso “ridiculously easy”
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Definition 6.8.
(a) We say a functor F: C — D is finitary if it preserves filtered colimits.

(b) If Cis locally small and has filtered colimits, an object A of C is called
finitely presentable if C(A, —): C — Sets is finitary.

Example 6.9. These examples justify the choice of the names “finitary” and
“finitely presentable.”

(a) A finitary functor F: Set — D is determined by its restriction to the full
subcategory Setg, of finite sets, since we can write the set A as a directed
colimit (union) of its finite subsets, where the colimit is over the diagram
given by its finite subsets and inclusions between them.

More generally, if I: Setg,, — Set is the inclusion functor, then for any A
the arrow category (I | A) has finite colimits since Set; has them and |

preserves them, and A is the colimit of (I | A) 4, Sety L Set.

So given any F: Setg, — D where D has filtered colimits, we can extend
it to a functor F: Set — D by setting

F(A) = colim ((1 1 A) L Sety, & D) ,

that is, the colimit over the diagram FU. Of course, we should check that
this is actually a functor but that’s easy. Note that this does extend F, since
if A is finite then (I | A) has a terminal object (A, 14).

In fact, F is the left Kan extension of F along the inclusion I (as in question
9 on example sheet 2), and F — F is itself a functor [Sety,, D] — [Set, D],
left adjoint to the restriction G — Glset, -

In fact, one can show that the image of the functor F — F consists exactly
of the finitary functors Set — D.

(b) Let A be a finitary algebraic category. We say an object A of A is finitely
presented (not the same as finitely-presentable) if if it’s a quotient of a
finitely generated free algebra Fn (where n = {1,2,...,n}) by a finite
number of relations s = t where s and t are elements of Fn. For example,
group presentations.

Claim 6.10. A is finitely-presented if and only if it’s finitely presentable:

Proof. (—). Let A = (G; R) be finitely presented, and suppose given f: A —
colim; D, where ] is filtered and D: | — A. For each of the generators g1, ..., gn,
f(gi) is the image of D(j) — colimj D for some j. Since there are only finitely
many of these, we can choose some j such that all f(g;) are in the image of
D(j) — colimj D. For each relation s; = t;, the elements which are the images
of s; and t; in D(j) become equal in the colimit colim; D, and so are equal
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in D(j') for some map j — ;. Doing this for each relation in R, we arrive
at j” such that f factors through D(j”) — colim;D. So the canonical map
colimj A(A, D(—)) — A(A, colimj D) is surjective.

Now let’s prove injectivity. Given two homomorphisms f: A — D(j) and
g: A — D(j') which become equal in the colimit, we can reduce to a pair

!

A—=D(j"), and by working with the generators in turn, we get j// — j” such

8

that the two arrows A #; D(j") — D(j") are equal. Hence, f, ¢ represent the
8

same element of the colimit, and hence the canonical map is injective.

(«<=). Suppose A is finitely presentable. WE can find a presentation (G; R)
for A, and consider the set of pairs (G, R") where G’ < G is finite, and R’ = R
is finite and all relations in R’ involve only elements of G’. Ordering these
by inclusion in each factor, we get a directed poset P and a functor P — A
sending (G/, R’) to (G’; R’), whose colimitis (G,R) ~ A. So14: A — A factors
through one of these finite presentations (G’, R"), and A is retract of this finite
presentation. But any retract of a finitely presented algebra is finitely presented,
having a finite presentation

(GiR"U{g=e(g)|geC}),

where ¢ is the idempotent endomorphism of (G’; R") obtained from factoring
14 through (G’, R’). So this means that A is finitely presented. O

Last time we introduced finitary functors and finitary presentable objects.
The last thing we want to talk about in this chapter is finitary monads on
the category of sets, for which the categories of algebras are finitary algebraic
categories.

Lemma 6.11. Let T = (T, #,u) be a monad on Set. Then the elements of Tn
correspond bijectively to natural transformations G* — G, where G: Set! —
Set is the forgetful functor.

Proof. We can think of w € Tn as a map 1 — Thn, so it corresponds to a map
F1 — Fnin Set”, where F1 represents G: Set" — Set, and Fn represents G™.
So the result follows from Yoneda.

Explicitly, w corresponds to the natural transformation defined by

WAy (ar, ... an) = a(Ta(w)) 1)
where a: n — A is the map i — a;. O

Definition 6.12. A monad T = (T,#, ) is finitary if T is finitary, that is, pre-
serves filtered colimits.

Theorem 6.13. Finitary algebraic categories are, up to equivalence, exactly the
categories of finitary monads on Set.
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We won't go through the full proof of this theorem because it’s very very
boring, so instead we’ll just sketch.

Proof Sketch. If A is a finitary algebraic category, we saw in Example 5.18(a) that
G: A — Setis monadic. Also, we saw in Corollary 6.7(i) that G is finitary; hence
sois T = GF since F preserves all colimits.

Conversely, let T = (T, #, i) be a finitary monad. We know that for any A,
we have TA = [ J{TA' | A’ € PfA}, where PfA is the poset of finite subsets
of A. Essentially, knowing what T does on finite sets is enough to know it
everywhere.

We define a presentation for T-algebras by operations and equations by tak-
ing an n-ary operation w for each w € Tn, where n is the finite set corresponding
to some integer n > 0. Satisfying the two equations

walay, ..., an) = a; ifw=mnn(i)eIn

w0y = An WD)y x4,

if w = pn(x) wherex € TTn
satisfies x = T(x), where
x€Tmand ¢: m — Tn

We can show (although it’s very tedious to do so and we will avoid it)

(a) if the wy are obtained as in Lemma 6.11 from a T-algebra structure
«: TA — A, then they satisfy these equations;

(b) if A is equipped with operations satisfying these equations, then using
(21) to define « yields a T-algebra structure;

(c) afunction : A — B between underlying sets of algebras commutes with
the T-algebra structures if and only if it commutes with all the w’s.

In particular, we know that T-algebras satisfying these equations are the
same as algebras in (objects of) A. O

7 Abelian and Additive Categories

Abelian and Additive categories are those categories whose hom-sets are not
only sets, but also abelian groups. This is a special case of enriched categories.

Definition 7.1. Let E be a category equipped with a “forgetful” functor U: E —
Set. We say a locally small category C is enriched over E if the functor

C(—,—):CP xC — Set
(AB) +—— C(A,B)

factors through U.
We're interested in three particular cases: we say C is

(a) a pointed category if it's enriched over the category Set,. of pointed sets;
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(b) semi-additive if it’s enriched over the category CMon of commutative
monoids;

(c) additive if it’s enriched over the category Ab of abelian groups.

Thus, in a pointed category C, we have a distinguished element 0 € C(A, B)
satisfying f o0 = 0 = 0 o g whenever the composites are defined. In a semi-
additive category, we also have a binary operation + on C(A, B) which is
associative and commutative, has 0 as a unit element, and satisfies f(g + h) =
fg+ fhand g(h+ k) = gh + gk whenever the composites fg, fh, fh, gk are
defined. In an additive category, this binary operation has inverses —f such
that f + —f = 0.

Remark 7.2 (Warning!). This is not totally standard terminology. Some au-
thors use “semi-additive” for what we’ve called additive, and “additive” for a
category enriched over abelian groups with all finite products.

There may a priori be many ways to factor the functors C(—, —) through U,
so in principle many different enriched structures on a category C. But actually,
they will all coincide, and we’ll prove that. The first step is this lemma.

Lemma 7.3.
(i) In a pointed category, the following are equivalent:
(a) A isinitial;
(b) A is terminal;
() 14=0: A— A
(ii) Given three objects A, B, C in a semi-additive category, the following are
equivalent:

(a) there are 711: C — A, mp: C — B making C a product of A and B;
(b) therearev;: A — C,1p: A — C making C into a coproduct of A and
B;
(c) there are 711, 719, 11, Vo satisfying rrivy = 14, movy = 1, mva = Opga,
o1 = 04, and 11711 + 171 = 1.
Proof.
(i) It's enough to prove (a) <= (c), since (b) < (c)is dual.
To that end, if (a) holds, there’s only one morphism A — A which must
be both 14 and 04 4. Conversely, if (c) holds, then any f: A — B satisfies
f=f1a = fO4p = 04p. So there is a unique map A — B, namely 04p.
(ii) It's enough to prove (1) < (c), since (b) < (c)is dual.
To that end, if (a) holds, then given 711 and 7y, we define v; and v, by the

first four equations in (c). Now

7'[1(1/17'[1 +1/27T2) =M + mMVaTty = 1471 + 0game = 11 + 0 = 111
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and similarly 7rp (v1 711 + v2712) = M1, so vt + V271 = 1¢ by uniqueness
of factorizations through the product.

Conversely, assume (c). Then given D %, Aand D & B, consider the map
vih +1k: D — C. We have that

mi(vih+vk) =14 +0k =h

and also 7y (v1h + vpk) = k. Butif £: D — C satisfies m¢ = h, mpl = k,
then
{=1cl = (1/17'[15 + 1/27'[25) = v1h + k.

So the factorization is unique. O

Definition 7.4. An object which is both initial and terminal is called a zero ob-
ject and denoted 0. An object which is simultaneously a product and coproduct
of A and B is called a biproduct and denoted A ® B.

The previous lemma Lemma 7.3 has a partial converse in the following. We
want to say that if we products and coproducts coincide, then our category is
semi-additive.

Lemma 7.5.
(i) A category with a zero object is pointed.

(ii) In a pointed category C with finite products and coproducts, suppose that
the canonical map c: A+ B — A x B defined by

1a, ifi=j
7'[1'61/]' = 51] = Ai ] .
04, A otherwise

where A; = A, Ay = B, is an isomorphism. Then C has a unique semi-
additive structure.
Proof.

(i) We define the zero map A — B to be the unique composite from A —
0 — B. Note that any pointed structure on a category is unique, because if
there are two zero maps 0, and 0y, then 0, = 0,0, = 0,.

(ii) By convention, a morphism f: Z;”:l Aj — [[iZ; B; is represented by a
matrix (f;j) where f;j = 71;fv;. For example, c is represented by the matrix

14 0
0 13)°

f
So given A — < B, we define f +, g to be the compoiste
4

14
1
A A A4 a USp

Lecture 21 65 25 November 2015



7 Abelian and Additive Categories

and f +; g to be the composite

(6 - 15,1
A pxp<typypletip

We will show that these two notions of addition are the same.

It’s immediate that h(f +,g) = hf +,hg and (f +, )k = fk +, gk when
the composites are defined.

To show that f +,0 = f, consider the diagram

AxA - A+ A

1
V I an” w)
v
A A
14

f

B

Similarly, 0+, f = fand dually f +,0= f =0+, f.

Given f, g, h,k: A — B,Iclaim that (f +,8) +r (h+,k) = (f +rh) +4 (g ++
k), since both are the composite

(1),

Now apply the Eckmann-Hilton argument:

1 _ _
AV A ana <B4+ p

- puttingg =h=0,wegetf+,k=f+,k
- putting f =k=0,wegetg+h=h+g;
- puttingh =0, weget (f+¢g)+k=f+(g+k).

For the uniqueness, suppose +, is a semi-additive structure. The argument
of Lemma 7.3(ii) shows that ¢! must be v;71) 4, 1p71: A x B — A+ B,
so the definitions of f +, ¢ and f +, ¢ both reduce to f 4+, g. Hence, this
structure is unique. O

Corollary 7.6. Let C and D be categories with finite biproducts (and therefore
semi-additive). Then a functor F: C — D is semi-additive (satisfies FO = 0 and
F(f +g) = Ff + Fg) if and only if it preserves finite biproducts.

Proof. (=) is immediate from Lemma 7.3, and (<) comes from Lemma 7.5.
O

Remark 7.7. Note that a composite

by G

APB——COD——EQ®F

is given by the matrix product
t u\(f g\ _[(tf+uh tg+uk
r w)\h k) \of+wh ovg+uwk
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Definition 7.8. Let C be a pointed category, A L Ba morphism of C. By

a kernel of f, we mean an equalizer of A— < B. Equivalently, it's a map
0
k: K — A such that fk = 0k = 0, and is universal among such maps.

We say a mono in C is normal if it occurs as a kernel. Note that in an additive

f
category, every regular mono is normal, since an equalizer of A — = B has the
4

same universal property as the kernel of f — g.

We say that A L Bis pseudo-monic if its kernel is a zero map, i.e. fg =0
implies g = 0. Again, in an additive category, pseudo-monic <= monic since
fe=fh = f(g—h)=0.

Example 7.9.

(a) Consider Gp: in this category, all injective homomorphisms are regu-
lar monic, but not all subgroup inclusions are normal. For example,
Z./2Z —— S3 is a non-normal monomorphism.

But any surjective homomorphism G L H is normal epic, since it’s the
cokernel of ker f —— G.

(b) In Set., any injection (A’, x) —— (A, *) is a normal mono: it’s the kernel
of the map (A, *) — ((A\A’) U {«}, =) given by sending everything in A’
to * and everything outside of A’ to itself.

But not all (regular) epimorphisms are normal, since a normal epimor-
phism is bijective on elements not sent to the basepoint.

Also, not all pseudo-monos are monic: f is pseudo-monic if and only if

fH) = {=}

Lemma 7.10. If C is a pointed category with kernels and cokernels, then A /B
is normal monic if and only if it’s the kernel of its own cokernel.

Proof. («<=). This is trivial, because if f is the kernel of its own cokernel, then f
is the kernel of something and hence normal monic.
(=). Suppose f is the kernel of B 2, C. From the diagram

KXByC
A/ xQ

where g = coker f and k = kerg. Then there is a map h: Q — Csince gf = 0
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and £: A—>Ksinceqf:0.
C

% \
We get a map m: K — A since gk = hgk = 0, so k factors through f = kerg.
K C
NS
Lf|m B h
27N
A Q

Now m, { are inverse isos, since f and k are monic. Hence, A ~ K and f is the
kernel of its own cokernel. O

Remark 7.11 (First Isomorphism Theorem). Note that under the hypotheses
of Lemma 7.10, there’s a bijection between isomorphism classes of normal
subobjects and normal quotients of any object.

Definition 7.12. By an image of f: A — B in any category C we mean a

factorization A 5> "B of f, where m is the least among subobjects of
B through which f factors.

Remark 7.13 (“A fact so obvious that I won’t bother to number it.”). If C is
pointed with kernels and cokernels, and all monos in C are normal, then every
f has an image, namely the kernel of the cokernel of f. We have a factorization

A—>B

\ A‘ coker f

Proof. Let A—— B’ =" B be another factorization of f. Since m is monic,
then m is the kernel of some g: B — C because all monos are normal. We
have that gm = 0, and therefore g factors through the cokernel g of f, say via
h: Q — C satisfying hg = g. Then gk = hgk = 0, hence k factors through
ker g = m.

A f B2, C
\I/ xgh
b
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O

Given a morphism A L Bina pointed category C with kernels and coker-
nels, we can form the diagram

A f B

l
coker kew coker f
Q——=K

1

where [ is the image of f, and Q is the coimage of f. If C is nice enough, the
coimage and image coincide.

Lemma 7.14.
(a) if all monos in C are normal, then i is pseudo-epic;
(b) if all epis in C are normal, then i is pseudo-monic;

Proof. We will prove only (a), because (b) is dual. The map ¢ exists because
(coker f)f = 0 implies that f factors through ker coker f. Then

(kercoker f)ofo (ker f) = fo(kerf) =0,

which implies that ¢ o (ker f) = 0 since (ker coker f) is monic. This means that
¢ factors through coker ker f, and thus constructs the map i.

Now take the image factorization of i, i = (ker coker i) o s. Since ker coker i
is monic, then so too is ker cokeri o ker coker f as the composition of monos.
Hence, ker coker i o ker coker f is the kernel of some g: B — C. Then we know
that

gf = go(kercoker f)o/
= g o (kercoker f) oiocokerker f

= g o (ker coker f) o (ker cokeri) os o (cokerker f)
=0

because ker coker f o ker cokeri is the kernel of g. Hence, g factors through
coker f, via some t, g = t o coker f. Thus,

g o (kercoker f) = t o (coker f) o (ker coker f) = 0.

Therefore, (kercoker f) factors through kerg = (kercoker f) o (ker cokeri).
Thus, we get some v such that

(ker coker f) = (ker coker f) o (ker cokeri) o v.

But (ker coker f) is monic, so this means that (ker cokeri) o v = 1k. Therefore,
ker coker i is split epic as well as monic, and therefore an isomorphism. So the
kernel of the cokernel of i is an isomorphism, and therefore cokeri = 0. Hence,
i is pseudo-epic. O
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Note that either hypothesis in Lemma 7.14 implies that C is balanced, since
epi & normal mono implies iso, and dually mono & normal epi implies iso.

Hence if both hypotheses (a) and (b) hold, and C is additive, then i an
isomorphism. That is, the image and coimage factorizations of f exist and
coincide.

Definition 7.15. We say a category A is abelian if
(a) A isadditive;

(b) A has all finite limits and colimits (equivalently, it suffices to have finite
biproducts, kernels, and cokernels);

(c) Every mono and every epi in A is normal (= regular, but we use different
terminology because it’s slightly different).

Example 7.16. (a) Ab is abelian.
(b) For any ring R, Modp is abelian (R need not be commutative).

(c) For any small category C and abelian category A, then [C, A] is abelian
with everything defined pointwise.

(d) If Cis asmall additive category and A is abelian, then the full subcategory
Add(C,A) c [C, A] of additive functors is abelian.

(e) An additive category on one object is a ring R, and therefore example (d)
contains example (b), in the case that C is an abelian category with one
object. Notice that Modg =~ Add(R, Ab).

Recall from Remark 4.16 that pullbacks of monos are monic, and dually
pushouts of epimorphisms are epic. In an abelian category, we also have that
pullbacks of epis are epic. To prove this, we need the lemma

Lemma 7.17. Suppose given a (not necessarily commutative) square

ALB

b b

C —— D

in an additive category with finite biproducts. Then

(o8 -
(i) the square commutes if and only if the composite A > B®C (h), D

is zero (We call this the flattening of this square).
(ii) The square is a pullback if and only if (é) = ker(h, —k).

(iii) The square is a pushout if and only if (h, —k) = coker (]g() (Notice that this
isn’t quite dual to (ii) because of the minus sign!)

Proof.
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(i) The composite (1, —k) (i;) = hf — kg, so this is zero if and only if hf = kg.

(ii) This holds since ker(h, —k) has teh universal property of a pullback of

(h, k).
(iii) Similar to (ii). O
Corollary 7.18. Let
A L B
[+ b
c—*»p

be a pullback square in an abelian category, with  epic. Then

(i) The square is also a pushout.
(i) gis epic.
Proof.
(i) By Lemma 7.17(i), we have (Jg() = ker(h, —k). But h is an epimorphism, so
(h, —k) is epic as well. Since we’re in an abelian category, (1, —k) is normal

epic, so (h, —k) = coker (g) by Lemma 7.10. Then by Lemma 7.17(iii), it's
a pushout.

(ii) To show that g is epic, it’s enough to show that g is pseudo-epic, since
we're in an abelian category (which is in particular additive). So suppose
given C > E with xg = 0. Then x together with B % E forms a cone

under (f,g). Therefore, x factors through the pushout, say by D Y% E.
Now yh = 0 and h is epic, so y = 0. Hence, x = yk = 0. So gis epic. =~ [

Corollary 7.19. In an abelian category, image factorizations are stable under
pullback.

7.1 Homology

Definition 7.20. Given a sequence of objects and morphisms

An_l fn—l An fn

Ans — -+

in an abelian category, we say the sequence is exact at A, if ker f, = im f,_1, or
equivalently, coker f,,_1 = coimagef;.

We say that the sequence is exact if it is exact at every vertex (except possibly
the end vertices, if it does end).

We say that a functor F: A — B is exact if it preserves exact sequences.

Remark 7.21. (a) Note that(0 — A 7, Bisexactif and only if f is monic.

(b) Dually, A 1, B - 0is exact if and only if f is epic.
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(©) 0> AL B2 Cisexactif and only if f = kerg.

1 . . .
d) A 2, B 1%, Bis exact if and only if f = 0. So an exact functor F preserves
zero morphisms, and hence the zero object. Hence it also preserves kernels
and cokernels; F also preserves finite biproducts since

©) (01)

0 A A®B B 0

is exact, and A @ B is characterized by the existence of such a sequence
with (§) split monic and (0, 1) split epic.

(e) If F is additive and preserves kernels and cokernels, then it preserves
images and coimages, so preserves all exact sequences.

Definition 7.22. We say F is left-exact if it’s additive and preserves kernels
(equivalently, preserves finite limits). Note that F is left-exact if and only if F
preserves exact sequences of the form0 - A — B — C.

F is right-exact if it's additive and preserves cokernels (equivalently, pre-
serves finite colimits), or equivalently preserves exact sequences of the form
A—-B—-C—0.

Lemma 7.23 (The Five Lemma). Suppose given a commutative diagram

a1 a as ay

Aq Ay Az Ay As
lf 1 lfz lfs lfzx lfs
By d B, 2 Bs b B, & Bs

whose rows are exact. Then
(i) f1 epicand f, f4 monic = f3 monic.
(i) f» and f4 epic, fs monic = f3 epic.

Proof. This is not too different from chasing elements around a diagram. Notice
that (i) and (ii) are dual, so we need only prove (i).
So suppose given C = A3 with f3x = 0. Then

f4a3x = b3f3x =0.

Therefore azx = 0 since f4 is monic. So x factors through keraz = ima,. So if
we form the pullback

D—Z*25C

bl

A2L>A3

with z epic because it’s a pullback of coimage a;. Now

bafoy = famy = faxz =0
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since fz3x = 0, so fpy factors through ker b, = im by. Since f; is epic, we also
know that im by = im(b; f1). Form another pullback

E—23D

lu J{fzy
X o0 g,

and note that v is epic. Now

fomu = by fru = fryv,
but f, is monic so aju = yv. So

xXzv = ayv = axaiu =0

because a2a; = 0. However, z, v are both epic, so from this we conclude that
x = 0. This establishes that f3 is monic, since f3x =0 — x = 0. O

Lemma 7.24 (Snake Lemma). Suppose given the diagram

0 0 0

Lk )

b

B, -, B, %247B, 0
lvl v2 lv3

G G Cs

w1 lwl lwl

k k
D]%DZ*Z>D3

I

0 0 0

in an abelian category A with exact rows and columns (the diagram in black).
Then there are exact morphisms f, f2,s, k1, k (in blue) forming an exact se-
quence. In addition, if 0 — By — B, (resp. C; — C3 — 0) is exact, then so is
0— Al i A2 (resp. DZ - D3 - 0)

Proof. (NON-EXAMINABLE). See handout. For the last assertion, observe that
g1 monic = U = upf; monic = f; monic and dually. O
Definition 7.25. By a (chain) complex in an abelian category A, we mean a

sequence

>An-&-l Jun An Jn An—l

satisfying f, f,+1 = O for all .
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Complexes in A form a category, which is a full subcategory of the functor
category [Z°P, A]. (In fact, it's Add(Z, A), where Z is a small additive category
whose objects are integers). So the category of complexes in A is abelian, with
all structure defined pointwise.

Exercise 7.26. Figure out what the category Z is.

If we have a complex, we might wonder when it’s exact. The homology of a
complex measures it’s failure to be exact.

Definition 7.27. Given a complex A = (--+ = A1) = Ay = Apyg — --4),
we define it’s n-th homology object H;;(A.,) as follows:

fn+l

fn
An+l

N L
In/ \Hn/ \I

form Z,, —— A, = ker f, and (I, —— A;) = im f;,11. Then

Anfl

(Z,— Hy) = coker(l, —— Z,)
and H,, is the n-th homology object.

Remark 7.28. If we do the dual thing, it’s symmetric and gives the same def-
inition. We could define H,, symmetrically as the image of Z, — A, — Qy,
then

Zy — Hy = cokerker(Z, — Qy) = coker(I, — Zy),

and
H, —— Q, = ker coker(Z, — Q) = ker(Q, — I,,_1).

Remark 7.29. Clearly, a morphism of complexes A, — B, induces morphisms
Zn(AO) - Zn(BO)/ Qn(AO) - Qn(BO)/ In(AO) - In(BO) and Hn(AO) - Hn(BO)
for all n.

So we can regard H, as a functor Add(Z, A) — A.

Theorem 7.30 (Meyer-Vietoris). Suppose given an exact sequence
0—>A¢ > Be—>Co—0

of chain complexes. Then there exists an exact sequence

s Hn(AO) - Hn(B') - Hn(c') - anl(A°) - anl(BO) - anl(CO) —
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Proof. This follows from the Snake Lemma (Lemma 7.24). We have a diagram
in black with exact rows and columns, so we get a blu exact sequence.

| i

N

0
|
0 —— Zy(Ae) —— Zy(Bs) —— Zy(Ca)
I
A B Cy 0
|

Now that we have this exact sequence, consider the new diagram below in black
with exact rows an columns. By the Snake Lemma (Lemma 7.24), we again get
an exact sequence in blue as indicated.

Moreover, the maps H,(As) — Hy(Bs) — Hy;(C,) are exactly H,(Ae — B.)
and H, (Bs — C,), so these sequences fit together. O

f.
Definition 7.31. Let A, and B, be complexes and A, —=< B, be two mor-
Se

phisms of complexes. By a homotopy from f. to go, we mean a sequence of
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morphisms hy,: Ay, — Byy1

a
Ay —— Ay

&l A

Bi’l-‘rl T} Bl’l
n+1

satisfying f, — gn = byy1hy + hy—1a4: Ay — By, for all n.

Remark 7.32. Homotopy is an equivalence relation f ~ f by the zero homotopy;
ifh: f~gthen —h: g~ f;ifh: f~gandk: g~ {,thenh+k: f ~ /.

And moreover, it’s compatible with composition, so it's a congruence on
Add(Z, Ab).

Lemma 7.33. Homotopic maps of chain complexes induce the same morphisms
on homology.

Proof. Suppose h: f ~ g. The composite

Za(Ad) — Ay L5 B,
is equal to
hy by
Zy (A.) - Ay = Bn+1 — By,

since Z,(As) = Ay —> Ay—1 =0.
And moreover, the composite Z,(As.) — Ay — By4+1 — Hu(B.) is zero,
since (B, 41 — Hyu(Be)) = 0. So Hy(fe) = Hu(ge)-

b

™ e
~.

hil
Zu(As) — Ay —— B, 1 By,

I1(Be) —— Z,(B)

Hy(Be)

O

Definition 7.34 (Recall from Definition 2.21). An object A € obC is called
projective if the functor C(A, —): C — Set preserves epis.

Remark 7.35. A functor of the form C(A, —) preserves any limits which exist in
C because limits are computed on the domain. If C is abelian, then C(A, —) isa
left-exact functor C — Ab. So A projective <= C(A, —) is exact.

Definition 7.36. We say that C has enough projectives if, for every A € obC,
there exists P—— A with P projective.
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Example 7.37. The category Mody has enough projectives, since free modules
are projective and every module is a quotient of a free module. The functor (—)*
is represented by the free-module FX on the set X, and this functor preserves
epis.

Modp, also has enough injectives, but identifying injective modules is harder.

Definition 7.38. By a projective resolution of an object A in an abelian category
A, we mean an exact sequence

P Py Py A 0
with all P, projective.

Remark 7.39. Equivalently, we can think of a projective resolution as defining
a complex with P_, = 0 for all n; it will no longer be exact at zero, but the
homology of this complex at Py will be A. More precisely, we can also define a
projective resolution as a complex P, satisfying

(a) Py is projective for all ;
(b) P, =0foralln <0
(c) Ho(Ps)A, Hy(Ps) = 0 for n # 0.

Remark 7.40. If A has enough projectives, then any object has a projective
resolution: given A, chose Py —» A with Py projective and kernel Ko —— Py,
say, then chose P — Ky with P; projective, and so forth.

Lemma 7.41. Suppose given projective resolutions P., Q. of objects A, B. Then
any map a: A — B induces a map of complexes fo: Ps — Qo with Hy(fe) = a.
Moreover, any such map is unique up to homotopy.

Proof. We have the following diagram a priori

P2 P1

P4 A

gl

Py

92 n

Q1 Qo —

Because P is projective, there is fo with efy = ad:

p2 P, P1 P, d A
o
P Qo Qo B

Now efop; = adp; = 0, so fy factors through kere = im g7, and there must be a
map f12 P1 s Q1 with qlfl = fOP1~

P2 P, P1 P d A
J{f 1 J{f 0 i’l
12 Ql n QO e B
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and so on. This settles existence.
To see uniqueness up to homotopy, suppose we had another such g,: Pe —

Q..

Then e(fy — o) = ad —ad = 0, so fp — go factors through kere = im g;. So there
is some hy: Py — Qq with g1hy = fy — go by the projectivity of Py

PO*»A

2l

Q —77> Q — B
Now

q1(f1 — & —hop1) = q1f1 — 4181 — q1hop1
= fop1 —&op1 — q1hop
= (fo— 8o —qiho)pr =0,
so there is iy : Py — Qp with gohy = fl — g1 — hop1 by the projectivity of P;.

5 A
/augl . fougo }
92 q e B
Continuing in this manner we obtain the desired homotopy maps. O

Remark 7.42. Lemma 7.41 says that any two projective resolutions of a given
object A are homotopy equivalent. So we can regard a choice of projective
resolutions as a functor A — Add(Z,A)/ ~.

Definition 7.43. Let F: A — B be an additive functor between abelian cate-
gories, and suppose that A has enough projectives. The left derived functors
L"F for (n = 0) are defined by L"F(A) = H,(F(P,)), where P, is any projective
resolution of A.

Note that this is well-defined, by Lemma 7.41 and Lemma 7.33; and L"F is a
functor A — B.

Remark 7.44. Note also that FP; — FPy — LYFA — 0 is exact, so there’s a
canonical natural transformation L°F — F, which is an isomorphism if F is right
exact.

Lemma 7.45. Suppose given an exact sequence 0 — A > B % c - o0and
projective resolutions P, Re of A and C. Then there is a projective resolution
Q. of B such that Q, = P, ® R,, and

1
P, b, @R, - R,
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are maps of complexes.

Remark 7.46 (Warning!). In general, Qo % Pe ® Re, and g,: Q, — Q1 has
the form [po” i: ] with s, # 0 in general.

Proof of Lemma 7.45. Again, we construct the first few maps and induct up-

wards.

Pp—L A

.

P@Ry ), p_x . p
(0,1)J / lb /
Ry —* C

The map ¢’ exists by the projectivity of R). The two right-hand squares commute,
and (ad, ¢’) is epic: suppose that x(ad,e’) = 0. Then xad = 0so xa = 0. So x
factors as x’b. Now 0 = xe’ = x’be’ = x’e. So x' = 0, which means x = 0.

Now form the kernels Ko, Ly, Mp; 0 — Ko — Ly — My — 0 is exact by
Lemma 7.24. Now proceed as before to get an epi P} ® Ry — Ly, and so on.

0
d
P, Ko Py A
| o] |
(ade’) X
Pi® R, Lo Py ® Ry B D
J{ / (O,l)J( 2 b /
Ry My Ro ¢ C
0

O

Theorem 7.47. Let F: A — B be an additive functor between abelian categories,

where A has enough projectives. Let 0 — A > B L, € - 0be an exact sequence
in A. Then there exists an exact sequence

L1Fa Fb LOFq Fb

1 0
. — SI2FC - L'FA L'FB LY [1FrC — LOFA LOFB LE% [0pC S 0

Proof. Choose projective resolutions Ps, Re of A and C, respectively, and define
Q. as in Lemma 7.45. F preserves the exactness of the sequences

1
0——P—250, %R, — 0
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So we can apply the Meyer Vietoris Theorem (Theorem 7.30), which constructs
this sequence for us. O

Remark 7.48. In particular, if F is right exact, then then the seqeunce of Theo-
rem 7.47 extends the sequence FA — FB — FC — 0. If F is exact, then L"F = 0
foralln > 0.
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