A NOTE ON RH FOR CURVES AND HYPERSURFACES OVER
FINITE FIELDS

NICHOLAS M. KATZ

ABSTRACT. We give what is arguably a simple (though certainly not elemen-
tary, cf. [Sch]) proof of the Riemann Hypothesis for (projective, smooth, geo-
metrically connected) curves and hypersurfaces over finite fields, by an argu-
ment which reduces us to checking a few examples.

1. THE RULES OF THE GAME

We give ourselves some basic facts about f-adic cohomology. We then combine
them with an incarnation of Deligne’s breakthrough idea in his Weil I paper, his
transposition to the f-adic context of Rankin’s “squaring” method.

2. DELIGNE’S VERSION OF THE RANKIN METHOD

Let Uy/F, be an affine, smooth, geometrically connected curve. Ignoring base
points, the open curve Up has a profinite fundamental group, merith .= (Up), its
extension of scalars U/F, has a profinite fundamental group 7/’ := m;(U), and
we have a short exact sequence

1 — 7" — mrith 5 Gal(F,/F,) — 1.

An f-adic local system (also called a lisse Qg-sheaf) F on Uy is simply a continuous,

finite-dimensional Q-representation of 7¢ ",
For each closed point @ of Uy we have an element F'rob,, in merith el defined

up to conjugacy. So it makes sense to form the reversed characteristic polyno-
mial det(1 — T'Frob,|F) of its action in the given representation. The L function
L(Uy/Fy, F,T) is the element of 1 + TQy[[T]] defined by the Euler product

1
L(Uo/Fy, F,T) := H det(1 — Tdee(®) Frob,|F)

closed points p

Suppose now and henceforth that the prime ¢ is not the characteristic p of Fy.
Grothendieck’s theory allows one to speak of the cohomology groups H:(U, F), on
which Gal(F,/F,) operates. These are finite dimensional Q, vector spaces, which
vanish for ¢ outside the range [1,2]. Of the two possibly nonzero groups, we know
one of them exactly: H2(U, F) is the Tate twist (F)gaeom(—1) of the coinvariants

geom

(F ),,geom, the largest quotient of F on which 7{ acts trivially. What this means
concretely is that we have the formula

det(1 — TFrob|HZ (U, F)) = det(1 — T Frobg|(F)seom).
Grothendieck’s cohomological formula for the L function is
det(1 — T Frob,|H}
L(U()/]Fq,./—", T) _ € ( ro q‘ C(U7 ‘F))

~ det(1 — TFroby|H2(U, F))’
1
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cf. [Gr-Lef, Thm. 5.1], [Ka-GKM, 2.3.2].

The local systems we are interested in are the R’ := R’ f,Q, for proper smooth
morphisms f : X — Up. A fundamental compatibility for these R’ is this, cf.
[SGA 4, Exp. XV, Cor. 2.2]. Let p be a closed point of Uy. The residue field
F, at g is the field Fyn, with Np elements. The fibre of f over p is a proper
smooth scheme X ,/Fn, whose extension of scalars to Fy,, we denote X,. The
fundamental compatibility is that

det(1 — TFrob,|R") = det(1 — T Froby,|H (X, Qp)).

We now come to two notions due to Deligne. Given a field embedding ¢ : Q, < C,
an f-adic local system JF on Uj is said be t-pure of some integer weight w if, for
all closed points p of Uy, all the eigenvalues of Frob, on F have, via ¢, complex
absolute value Np®/2. An f-adic local system F is said to be t-real if, via ¢, for all
closed points p of Uy, the reversed characteristic polynomial det(1 — T'Frob,|F)
has coefficients in R, the field of real numbers.

By means of the identity

1/ det(1 — TFroby|F) = exp(z Trace(F'roby | F)T™ /n),
n>1
we see that c-reality is the condition that for each closed point g of Uy, and each
n > 1, «(Trace((F'rob}|F)) is real. The key point now is that if F i-real, then any
even tensor power F®2¥ of F is not only t-real, but each of its Euler factors

1/det(1 — Tng(W)Frob@U:@Qk) = exp(Z(Trace(Frobg\]:))%T” deg(p) /)
n>1
is a power series, via ¢, in 1 4+ TR>¢[[T]], i.e., it has constant term 1 and all its
coefficients are nonnegative real numbers.

Theorem 2.1. (Deligne, compare [De-Weil I, 3.2] and [De-Weil 11, 1.5.2]) Let F be
an L-adic local system on Uy which is t-real. Suppose that every even tensor power
FE2 of F satisfies the following condition: every eigenvalue [ar of Frob, on the
coinvariants ((]—')®2k)ﬂfeom has |¢(Bax)| < 1. Then for each closed point p, every
eigenvalue o; , of Frob, on F has |t(oe)| < 1.

Proof. From the Euler product expression for the L-function of F®%* we see that,
via ¢,
(1) The power series for the L-function has nonnegative real coefficients.
(2) The power series of each Euler factor 1/det(1 — T9°8(®) Frob, | F®2F) has
nonnegative real coefficients.
(3) The power series for the L-function dominates, coefficient by coefficient,
the power series of each Euler factor 1/ det(1 — T98(¥) Frob,,| F®2k).,
By the hypothesis on coinvariants, the denominator in the cohomological expression
of the L-function of F®2¥ namely

det(1 — qTFrobg|((F)®*") pgeom),

has all its reciprocal zeros of absolute value, via ¢, at most ¢q. So the L-function is
certainly, via ¢, holomorphic in |T| < 1/q.

Choose a closed point p of Uy. By the coefficientwise domination (3) above, it
follows that each Euler factor 1/ det(1 — 74¢(®) Frob,, | F®2*) must be holomorphic

in [T| < 1/g. This in turn means that each eigenvalue of Frob,|F®?* has, via
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1, absolute value < ¢°8(®). But if a is an eigenvalue of Frob,|F, then o* is an
eigenvalue of Frob,|F®?*. Thus we get the inequality |¢(a)?*| < ¢9°8(®) for each
k > 1. Thus we get
()] < qdeg(@)/%

for every integer k > 1. Letting k — oo, we get
)] < 1.
O

Corollary 2.2. Let F be an £-adic local system on Uy which is t-real. Suppose that
for some closed point pg, every eigenvalue o o, of Froby, on F has |t(a;p,)| < 1.
Then for every closed point p, every eigenvalue ; (, of Frob, on F has |t(a; ,)] < 1.

Proof. In view of the theorem, it suffices to show that for every tensor power
FO2F of F, every eigenvalue Sy of Frob, on the coinvariants ((F)®?*) geom has
|t(Ba2k)| < 1. For d := deg(po), B, is an eigenvalue of (Frob,)? on the coinvariants
(F )®2’“),rlyeom. Viewing these coinvariants as a quotient representation of (F)®2¥,
the action of (Froby)? is just the action of Frob,, on this quotient. In other
words, A4, is among the eigenvalues of Frob,, on (F)®2* cf. [De-Weil II, 1.4.4].
These last eigenvalues are 2k-fold products of eigenvalues of Frob,, on F, each
of which has absolute value, via ¢, < 1. Thus the same estimate holds for each
eigenvalue of Frob,, on (F)®2*. Since £, is among these, we get |¢(8%)] < 1,
hence |¢(Bar)] < 1. O

3. RH FOR CURVES

Fix a characteristic p > 0 and a genus g > 1. There are standard examples of
(projective, smooth, geometrically connected) curves of genus g over the prime field
F,, for which RH is “easy”, in the sense that, at least over a suitable finite extension
F,/F,, the Frobenius eigenvalues on H' are explicit Jacobi sums or Gauss sums,
which are well known to have the correct absolute value ¢'/2. For example, if p # 2,
we can take the (complete nonsingular model of the) hyperelliptic curve

y? = a2+

if p does not divide 2g + 1, or

y? = 22942 1,

if p does divides 2g + 1. These examples give rise to Jacobi sums. In characteristic
two, we have the (complete nonsingular model of) the curve

2 _ .2g+1
y -y =axT,
which gives rise to Gauss sums.

We have the following “connect by curves” lemma.

Lemma 3.1. Suppose given two (projective, smooth, geometrically connected) curves
of genus g > 1 over F,, say Cy and C1. Then there exists a finite extension E/F,,
an affine, smooth, geometrically connected curve Uy/E, a proper smooth morphism
[ C = Uy with geometrically connected fibres which are curves of genus g, and
two E-valued points ug,u1 € Up(E) such that the fibres Cy,/E, for i = 0,1, are
E-isomorphic to the given curves C; ®F, E/E.
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Proof. For genus one, choose an integer n > 4 prime to p. Extending scalars,
we may assume first that both of the given curves have a rational point. Then the
curves become groupschemes, with a chosen rational point as origin. Over a further
finite extension E/F,, we may choose a point of order n on each curve. Then we
use the modular curve Y;(n)/E as our Uy, and the universal family it carries as our
f :C — Up.

For g > 2, the moduli space HS /Fp classifying tricanonical embedded genus g
curves is quasiprojective, smooth and geometrically connected, cf. [De-Mum, &3]
and [Mum, Ch. 5,&2], and every genus g curve over an F, underlies an F,-valued
point of H g /Fp. Here it is enough to pull back the universal family over Hg /Fp to a
spacefilling curve 7 : Uy — Hg which is bijective on Fg-points, cf. [Ka-SFC, Thm.
8] and [Ka-SFC Corrections]. [We could instead use the moduli space M, 3x /I,
classifying genus g curves together with a basis of H(C, (Q')®3), which is a G,
bundle over Hg /Fp, sois itself quasiprojective, smooth and geometrically connected,
cf. [Ka-Sar, 10.6.5].]

O

Theorem 3.2. Let Cy/F, be a (projective, smooth, geometrically connected) curve
of genus g > 1 over F,. Then RH holds for Cy/F,,.

Proof. Choose a genus g curve C1/F, for which we know RH. Making a finite
extension of scalars if necessary, connect Cy to C; in a one parameter family f :
C — Uy over an affine, smooth, geometrically connected curve Up/q. We will prove
that the local system R!f,Q, on Uy is pure of weight one, i.e., that RH holds for
every curve in the family, in particular it holds for Cy. Choose a square root ¢'/?
of ¢ in Qy, so that we can speak of the one half Tate-twisted local system

F = R',Qu(1/2),
on which Frob, is now divided by (¢*/2)%9(®). For any ¢, F is t-real; indeed
forR' f,Qy the traces of all powers of all Frob, are integers. Because RH holds for
C4, Frob,, |F has all eigenvalues of absolute value one (via any ¢). So by Corollary
2.2, all eigenvalues of any F'rob,, have, via ¢, absolute value < 1. This means that on
R' f,Qy itself, all eigenvalues of any Frob,, have, via ¢, absolute value < N ©'/2. But
the functional equation tells us that @ — Np/« is an involution of the eigenvalues,

so in fact this inequality is an equality; R'f,Q; is t-pure of weight one for every
L. ([

4. THE PERSISTENCE OF PURITY
We have the following variant of Corollary 2.2.

Theorem 4.1. Let F be an {-adic local system on Uy which is t-real. Suppose that
for some closed point g, every eigenvalue o o, of F'rob,, on F has |t(w )| = 1.
Then for every closed point p, every eigenvalue ; (, of Frob, on F has |t(a; ,)] =1,
i.e., F is t-pure of weight zero as soon as some Froby, is t-pure of weight zero.

Proof. By Corollary 2.2, each F'rob, has all its eigenvalues of absolute value, via
t, < 1. So it will have all its eigenvalues of absolute value, via ¢, = 1, if and only
if det(Froby,) has, via ¢, absolute value = 1. So we are reduced to proving that
det(F) is t-pure of weight zero if det(Frob,,,) is. To prove this purity, we may
replace the rank one local system det(F) by any tensor power (det(F))®", n > 1,
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of itself. It then suffices to apply the following lemma to the rank one local system
det(F), and compute the t-absolute value of the « there. O

Lemma 4.2. Let L be an {-adic local system on Uy of rank one. Then some tensor

power LE™ of L is geometrically constant, i.e., there exists o € @X such that
Frob,|L%" = ade9(®)

Proof. Because we know RH for the complete nonsingular model of Uy, we know
that in H!(U,Qy), every eigenvalue of F' roby has absolute value < q'/? for every ¢.
By duality, every eigenvalue of F'rob, on H (U, Qy) has absolute value > ¢"/?. In
particular, 1 is not an eigenvalue of of Frob, on H'(U,Qy).

Now consider a rank one local system £ on Uy. It is a homomorphism from

merith .= 7 (Up) to the group (’)& of f-adic units in Q. Because its image is

compact, this homomorphism lands in (’)EA, for some finite extension Ey/Qy. The
residue field F of O, is finite, so replacing £ by its n’th tensor power for n = #F{,
we reduce to the case where the homomorphism in question takes values in the
group 1+ AOg, of principal units. Now raising to the £’th power, we reduce to the
case where our homomorphism takes values in the group 1+ ¢AOpg,. This group
is isomorphic, by the logarithm, to the additive group AOg, , which is a subgroup
of Ex C Q. Thus we have a homomorphism from 7¢7" := 7, (Uy) to Q. Its
restriction to 7{°’" := 7 (U) is then an element of H'(U, Q) which is fixed by
Froby. But as remarked above, there are no such nonzero elements. Therefore the
corresponding tensor power of our £ is trivial when restricted to 7“°™. This means
exactly that it is of the asserted form. O

5. RH FOR HYPERSURFACES

For Xy C P"*! a smooth hypersurface of degree d and dimension n > 1 over F,
and X/F, its extension of scalars to F,, we define Prim™(X, Q) to be H"(X,Qy)
if n is odd, and to be H"(X,Qy)/ < L™? >, for < L™? > the one-dimensional
span of the n/2 power of the hyperplane class L € H?(X,Qy).

One knows (weak Lefschetz for X < P"*1) that for i < n, the restriction
map gives an isomorphism H(P" Q,) = H*(X,Q,). Thus for i < n, we have
H'(X,Q) = 0 unless i is even, in which case H*(X,Q,) = Qu(—i/2), the one di-
mensional space on which F'rob, acts as ¢"/?. By Poincaré duality on X, these same
statements hold for H*(X,Qy) for i in the range n < i < 2n. So for Xo/F,, its Zeta
function has the form

P(T)/ (1 - qu)’ n Odda

—.

Il
o

?

1/P(T) | [(1 —¢'T), n even,

i

Q
Il
=]

with

P(T) = det(1 — T'Frobg|Prim™(X,Qy)).
From the formula for Zeta, we see that P(T') has integer coefficients. Thus RH for
Xo/F, is the assertion that Prim"(X,Qy), or equivalently H™ (X, Qy), is ¢-pure of
weight n (for some ¢, or equivalently for every ¢, since the only possible ambiguity
in what ¢ does to our characteristic polynomials is which square root of ¢ it chooses,
and even this is only a problem when n is odd). The functional equation asserts
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that o — ¢/« is an involution on the eigenvalues of Frob,, so RH is equivalent to
the assertion that every eigenvalue of F'rob, on Prim™(X,Qy), or equivalently on
H™(X,Qy), has t-absolute value < ¢"/2. If we extend scalars from F, to some Fge,
we simply replace F'rob, by its e’th power, so it is enough to prove RH after such
an extension of scalars.

From the point count formula

#Xo(Fyr) = #P"(Fyr) + (=1)"Trace((Froby)" | Prim™(X,Qy)),
we see the well known equivalence of RH for X /F, with the existence of an estimate
#Xo(Fyr) = #P"(Fyr) + O(q™/?)
as r > 1 varies.

Theorem 5.1. Given (p,d,n), suppose there exists a projective smooth hypersur-
face Xo/F, of dimension n and degree d for which RH holds. Then for every finite
extension Fy/IF,, and every projective smooth hypersurface X1 /F, of dimension n
and degree d, RH holds.

Proof. Say we wish to prove RH for X;/F;. Denote by X,/F, the extension of
scalars from F), to F, of the X(/F, for which we know RH. Choose homogeneous
equations Fj and F for these two hypersurfaces. Then use the one parameter family
tFo+ (1—1t)F} over the dense open set of the affine t-line where this equation defines
a nonsingular hypersurface, and apply Theorem 4.1 to its R"f,(Q¢)(n/2). O

6. EXAMPLE HYPERSURFACES WITH RH

When the degree d is prime to p, then as Weil showed, RH holds for the Fermat
hypersurface of equation Z?:f X¢ = 0. So Theorem 5.1 gives RH when the degree
d is prime to p.

Suppose now that p divides d. We first treat the special case d = 2, for which
p = 2 is the only problematic prime. If n is odd, then Prim™ vanishes, so there is
nothing to prove. If n = 2m is even, then Prim™ is one-dimensional. We take as
example the hypersurface of equation Z?j{l X Xm+1+: = 0, which over any finite
field F, is projective and smooth with #P?™(F,) + ¢™ rational points (i.e., Prim™
in this case is Q(—n/2), on which Frob, acts as ¢™ = ¢"/?).

Suppose now that d > 3 and that p divides d. Then Gabber’s hypersurface

n+1
X{+) Xixii =0
i=1
is nonsingular in characteristic F,, cf. [Ka-Sar, 11.4.6].

Proposition 6.1. If d > 3 and p|d, Gabber’s hypersurface over F,, satisfies RH.

We will prove this in the next two sections, using Delsarte’s method.

7. DELSARTE’S METHOD AND RH

Suppose we are given a homogeneous form F(Xj, ..., X,,+2) over F, whose van-
ishing defines a smooth hypersurface Hy in projective space P"*!'. Denote by
HT © A"*2 the affine hypersurface defined by the same equation. Then we have
the elementary relation, for each finite extension E/F,, with ¢ := #E,

#HT(E) =1+ (qp — 1)#Ho(E).
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As noted above, Hj satisfies RH if and only if, as E/F, varies over all finite exten-
sions, we have

#Ho(E) = #P"(E) + O(qy”).

or, equivalently, if and only if, as as E/F, varies over all finite extensions, we have
#Haﬂ( ) — q%ﬂ + O( (n+2) /2)

We will show that Gabber’s hypersurface X{ + Z"+1 X; Xflﬂl = 0 satisfies this
last estimate, and hence satisfies RH.

For this, we need some preliminaries. Fix an integer N > 1. Given an N-
tuple W = (wy, ..., wy) of nonnegative integers, we write X" for the N-variable
monomial Hfil X;"". We say that a nonempty collection of N-variable monomials
{XW+1, is linearly independent if the vectors {W,}, are linearly independent in
QV. [Notice that in both Gabber’s homogeneous form X¢ 4 S X, x4~ 47" and

the Fermat form Z?jlz X&in N = n + 2 variables, the monomials that occur are
linearly independent.]

Theorem 7.1. Let N > 1, and let X1, ..., X"~ be N linearly independent mono-
mials in N variables. Suppose that each variable X; occurs in at most two of these
monomials. Then for the affine hypersurface V of equation Y, XWi = 0 in AV,
and variable finite fields F,, we have

#V(Fy) = ¢V 1+ 0(¢V?).

We will prove this by counting, for each subset S C [1,2, ..., N], the points where
the variables X, s € S take nonzero values, and the other variables vanish. The
key result, essentially due to Delsarte [Dels], is this.

Theorem 7.2. (Delsarte) Let N > k > 0, and suppose given N — k linearly
independent monomials X1, ..., XN~k in N variables. Consider the hypersurface
VY, XWi =0 in AN. Denote by V* C V the open set of V where all variables
are invertible (i.e., V* is the hypersurface in GY defined by >, X"Wi = 0). Then
for variable finite fields Fy, we have
N
#viE) = ql) +0(0).

Granting the truth of Delsarte’s theorem, let us prove Theorem 7.1. Thus
XWi . XWnN are N linearly independent monomials in N variables. If we put
all but d > 1 of the variables to 0, say Xgy1,..., Xn, some of the monomials X"
will vanish (those in which any of X441, ..., X occurs), and the remaining ones (if
any), those which involved only X7, ..., X4, will be linearly independent monomials
in those d variables.

For each subset S C [1,..., N], we denote by V*(S)(F,) the set of points on V'
for which precisely the variables X, s € S take nonzero values.

Lemma 7.3. For each subset S C [1,..., N], we have
* q— 1 #5
#vis)E) = T

Proof. If S =0, V*(0)(F,) consists of one point, namely (0, ...,0), and the assertion
is trivially true with the O(¢g"V/?) term alone.

+O(qN/2).
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If 1 < #S < N/2, there are at most #S < N/2 variables, each of which assumes
at most ¢ — 1 values. So the assertion is trivially true with the O(¢""/?) term alone.

If #£5 > N/2, we have set fewer than half (namely N — #5) of the variables to
zero. As each variable occurs in at most two of the monomials, we have killed at
most 2(N —#5) variables, so we are left with at least N —2(N —#S) monomials, i.e.,
we have at least 245 — N monomials. The number of surviving monomials is thus
at least #S — (N —#5). Applying Theorem 7.2 (with its N and & now #S and k <
(N — #8), the error term O(¢N+%)/2) in Theorem 7.2 is now O(q#S+(N=#5))/2)
i.e. it is O(g™/?). O

With this lemma in hand, we prove Theorem 7.1. Indeed, we have

#V(F) = > #V(S)(F,) =

SC[1,2,...,N]
q—1)#
ST D = )
SC[1,2,...,N] q

The numerator of the sum is just the binomial expansion of ((¢ — 1) + 1),

8. PROOF OF DELSARTE’S THEOREM 7.2

We view the N — k linearly independent monomials X"+ in N variables as an
f.p.p.f. surjective homomorphism of split tori over Z,
¢:GN 5 GN7F X =(X1,..,Xy) = (XWX Wi,
We will prove the following (slightly more general) version of Theorem 7.2.

Theorem 8.1. Let N > k > 0, and suppose given an f.p.p.f. surjective homomor-
phism of split tori over Z,

¢:GN — GN-*.
Denote by

o:GN=F 5 pl
the function “sum of the coordinates”. Then for variable finite fields F,, we have
the estimate

o € GY(F,)|r(6(x)) = 0} = (qq”N Oy,

Proof. The homomorphism ¢ corresponds to the injective group homomorphism
¢V : ZN=F C ZN which sends the i’th basis vector of the source to W;. The kernel
Ker(¢) is the group whose character group is the cokernel of ¢V. This cokernel is
a finitely generated abelian group, say M, with M ® Q of dimension k. Thus M
sits in a short exact sequence

0 — Mygrs — M — M/Myors = ZF — 0,

with My, a finite abelian group. Dually, we have an f.p.p.f. short exact sequence
of groupschemes over Z

0= Gy, = Ker(¢) = sy, — 0,

with pg,,,.. := Hom(Mors, Gy) a finite flat groupscheme of multiplicative type.
The composite closed immersion

Gk c Ker(¢) c GY
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sits in a short exact sequence
0—- Gk -GN LGN~k 0.
By Hilbert’s Theorem 90, this gives a short exact sequence of F -valued points
0 — Gk (F,) — GN(F,) = GY=F(F,) — 0.

Our homomorphism ¢ : GY — GN = factors through this quotient map 7 as
GY — T G

@ _
N
GN—k
So
#{w € G (F)lo(d(x)) = 0} = (¢ — D) s#{x € G ™" (Fy)lo(é(x)) = 0}
It remains to treat the case of the f.p.p.f. surjective homomorphism
¢:GN-F _, GN-*

which is a “k = 0” case of the theorem. For then we will have
1)N7k

e € GEHEIo(B()) = 0} = L) 4 0[N 072,

and multiplying through by (¢ — 1)* gives the assertion.
Thus we are reduced to treating universally the case k = 0 of the theorem. In
this case, we have an f.p.p.f. short exact sequence

0= par,. = GY LGN o0,
which gives a four term exact sequence of finite groups
0= pas,,,. (Fy) = Gl (Fy) S G (F,) — H'(Gal(Fy/Fy), pas,,,. (Fy)) = 0.
We rewrite this simply as
0— Ker — GN(F,) % GN(F,) — Coker — 0.

In terms of coordinates (¢1,...,tx) on the target G (F,), we have
#{z € G (Fy)lo(¢(x)) = 0} =
= #Ker#{t € G (Fy)| > ti =0 and t € $(G}(F,))}.

We count the set {t € GN(F,)|>.;t; = 0 and t € ¢(GL(F,))} as follows. To
determine if a point t € GY(F,) lies in the image ¢(GX(F,)), i.e. to see if its
image in Coker vanishes, we sum all C*-valued characters of Coker over t; we
will get #Coker if t lies in the image, and zero otherwise. [We view characters of
Coker as characters of G2 (F,) which are trivial on the subgroup ¢(GX (F,)).] But

#Ker = #Coker, so we have
#{z € G (Fy)|o(g(x)) = 0} =

= > > X

tGG,,IX(]FqN Z, t;=0 x€CokerV
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For t € G(F,), we determine whether or not y_,¢; = 0 by choosing a nontrivial
C*-valued additive character ¢ of F,, and using the fact that ) acF, P(a,; t;) will

be ¢ if ), t; = 0, and zero if not. Thus our count is

=W X > xtule) t).

a€lFy x€CokerV teGN (Fy)

The a = 0 term is (1/q) X_\ ccorerv Dotecy (F.) x(t), and the innermost sum van-

ishes except for Y = 1. So the a = 0 term is (1/¢)(¢ — 1)"V. For each a # 0 term,
and each x, the sum } -, o~ ) X(£)¥(a 3, ¢i) is a product of N Gauss sums, some

N/2

possibly trivial, so this sum has absolute value at most ¢"*/¢. The number of such

summands is (¢ — 1)#Coker, so we get the explicit estimate
N _ (¢ — 1)N
[#{z € G, (Fg)lo((x)) =0} —

As #Coker = #Ker < #M;,s, we have the asserted uniform estimate.

| < 4 ; 1(#Coker)qN/2.
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