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Preface

Algebraic topology is a fundamental and unifying discipline. It was the birthplace of many ideas
pervading mathematics today, and its methods are ever more widely utilized.

These notes record lectures in year-long graduate course at MIT, as presented in 2016–2017.
The second semester was given again in the spring of 2020. My goal was to give a pretty standard
classical approach to this subject, but with an eye to more recent perspectives. I wanted to introduce
students to the basic language of category theory, homological algebra, and simplicial sets, so useful
throughout mathematics and finding their first real manifestations in algebraic topology. On the
other hand I barely touched on some important subjects. I did not talk about simplicial complexes
at all, nor about the Lefschetz fixed point theorem. I gave only a brief summary of the theory of
covering spaces and the fundamental group, which are regarded as prerequisites for this course.

In the first part, I especially wanted to give an honest account of the machinery – relative cap
product and Čech cohomology – needed in the proof of Poincaré duality. The present document
contains a bit more detail on these matters than was presented in the course itself. The 2020 course
was disrupted by the COVID-19 pandemic, and the entire simplicial development of classifying
spaces, Lectures 57–59, were consequently omitted. The pace picked up speed as the course went
along, and we ended with a cursory treatment of Thom’s work on cobordism. In this second half, I
probably didn’t cover quite as much in the lectures as is written in this text.

This is a volume of lecture notes, not a textbook! (There are good ones: [72, 69, 10, 15, 24, 36, 50]
for example.) I have been inspired by the admirable examples set by the authors of [14] and [59]. I
have opted for variety rather than completeness. Most lectures conclude with a series of exercises,
most of which were actually assigned as part of the course. They vary widely in difficulty.

I was lucky enough to have in the audience a student, Sanath Devalapurkar, who spontaneously
decided to liveTEX the entire course. This resulted in a remarkably accurate record of what happened
in the classroom – right down to random alarms ringing and embarrassing jokes and mistakes on the
blackboard. Sanath’s TEX forms the basis of these notes, and I am grateful to him for making them
available. The attractive drawings in the first half were provided by another student, Xianglong
Ni, who also carefully proofread the manuscript. Chapters 4–8 reflect the 2020 class and so depart
more from the original notes.

In addition to Sanath and Xianglong, I am delighted to thank the generations of students who
have kept me on track and honest over several decades of teaching this subject. I owe a particular
debt to Manuel Rivera, Calder Morton-Ferguson and Timothy Ngotiaoco, each of whom pointed
out errors in the text and suggested corrections. Of course many inaccuracies are guaranteed to
remain, a reality for which I apologize.

Newton, MA
December, 2020
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Chapter 1

Singular homology

1 Introduction: singular simplices and chains

This is a course on algebraic topology. The objects of study are of course topological spaces, and
the machinery we develop in this course is designed to be applicable to a general space. But we are
really mainly interested in geometrically important spaces. Here are some examples.

• The most basic example is n-dimensional Euclidean space, Rn.

• The n-sphere Sn = {x ∈ Rn+1 : |x| = 1}, topologized as a subspace of Rn+1.

• Identifying antipodal points in Sn gives real projective space RPn = Sn/(x ∼ −x), i.e. the
space of lines through the origin in Rn+1.

• Call an ordered collection of k orthonormal vectors in a real inner product space an orthonor-
mal k-frame. The space of orthonormal k-frames in Rn, topologized as a subspace of (Sn−1)k,
forms the Stiefel manifold Vk(Rn). For example, V1(Rn) = Sn−1.

• The Grassmannian Grk(Rn) is the space of k-dimensional linear subspaces of Rn. Forming
the span gives us a surjection Vk(Rn)→ Grk(Rn), and the Grassmannian is given the quotient
topology. For example, Gr1(Rn) = RPn−1.

All these examples are manifolds; that is, they are Hausdorff spaces locally homeomorphic to Eu-
clidean space. Aside from Rn itself, they are also compact. Such spaces exhibit a hidden symmetry,
which is the culmination of the first half of this course: Poincaré duality.

Simplices and chains

As the name suggests, the central aim of algebraic topology is the usage of algebraic tools to study
topological spaces. A common technique is to probe topological spaces via maps to them from
simpler spaces. In different ways, this approach gives rise to singular homology and homotopy
groups. We now detail the former; the latter takes the stage in the second half.

Definition 1.1. For n ≥ 0, the standard n-simplex ∆n is the convex hull of the standard basis
{e0, . . . , en} in Rn+1:

∆n =
{∑

tiei :
∑

ti = 1, ti ≥ 0
}
⊆ Rn+1.

Each ei is a vertex of the simplex (plural “vertices”). The ti are called barycentric coordinates.

1



2 CHAPTER 1. SINGULAR HOMOLOGY

The word “simplex” comes from the Latin, and should suggest “simple” in the sense of “not
compound.” In mathematics its plural is always “simplices.” There is a well-developed theory
of simplicial complexes, appropriately organized unions of simplices, which however we will not
develop in these lectures. Here the word “complex” is used, as it is in “complex number,” not to
denote complexity but rather “compound” (of real and imaginary parts, in the case of numbers).

The standard simplices are related by face inclusions di : ∆n−1 → ∆n for 0 ≤ i ≤ n, where di is
the affine map that sends vertices to vertices, in order, and omits the vertex ei.

11

2

0 1

0

1

0

1

0 1

Definition 1.2. Let X be any topological space. A singular n-simplex in X is a continuous map
σ : ∆n → X. We will often drop the adjective “singular.” Denote by Sinn(X) the set of all
n-simplices in X.

This seems like a rather bold construction to make, as Sinn(X) is huge. But be patient! For
the moment, notice the peculiar use of the word “singular.” It derives from the notion that the
image of the map σ might have cusps or kinks or other kinds of “singularities” – another specialized
mathematical term, indicating that these points are unusual and special.

For 0 ≤ i ≤ n, precomposition by the face inclusion di produces a map di : Sinn(X)→ Sinn−1(X)
sending σ to σ ◦ di. This is the “ith face” of σ. This allows us to make sense of the “boundary” of a
simplex.

For example, if σ is a 1-simplex that forms a closed loop, then d1σ = d0σ. We would like
to re-express this equality as a statement that the boundary “vanishes” – we would like to write
“d0σ − d1σ = 0.” Here we don’t mean to subtract one point of X from another! Rather we mean
to form a “formal difference.” To accommodate such formal sums and differences, we will enlarge
Sinn(X) still further by forming the free abelian group it generates.

Definition 1.3. The abelian group Sn(X) of singular n-chains in X is the free abelian group
generated by n-simplices,

Sn(X) = ZSinn(X) .

So an n-chain is a finite linear combination of n-simplices,

k∑
i=1

aiσi , ai ∈ Z , σi ∈ Sinn(X) .

If n < 0, Sinn(X) is declared to be empty, so Sn(X) = 0.
We can now define the boundary operator

d : Sinn(X)→ Sn−1(X) ,
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by

dσ =
n∑
i=0

(−1)idiσ .

This extends to a homomorphism d : Sn(X)→ Sn−1(X) by additivity.
We use this homomorphism to obtain something more tractable than the entirety of Sn(X).

First we restrict our attention to chains with vanishing boundary.

Definition 1.4. An n-cycle in X is an n-chain c with dc = 0. An n-chain is a boundary if it is in
the image of d : Sn+1(X)→ Sn(X). Notation:

Zn(X) = ker(d : Sn(X)→ Sn−1(X)) ,

Bn(X) = im(d : Sn+1(X)→ Sn(X)) .

For example, a 1-simplex is a cycle if its ends coincide. More generally, a sum of 1-simplices is
a cycle if the right endpoints match up with the left endpoints. Geometrically, you get a collection
of loops, or “cycles.” This is the origin of the term “cycle.”

Every 0-chain is a cycle, since S−1(X) = 0.

Singular homology

It turns out that there’s a cheap way to produce cycles:

Theorem 1.5. Any boundary is a cycle; that is, d2 = 0.

We’ll leave the verification of this important result as a homework problem. What we have
found, then, is that the singular chains form a “chain complex,” as in the following definition.

Definition 1.6. A graded abelian group is a sequence of abelian groups, indexed by the integers. A
chain complex is a graded abelian group {An} together with homomorphisms d : An → An−1 with
the property that d2 = 0.

We have just defined the singular chain complex S∗(X) of a space X.
The chains that are cycles by virtue of being boundaries are the “cheap” ones. If we quotient by

them, what’s left is the “interesting cycles,” captured in the following definition.

Definition 1.7. The nth singular homology group of X is:

Hn(X) =
Zn(X)

Bn(X)
=

ker(d : Sn(X)→ Sn−1(X))

im(d : Sn+1(X)→ Sn(X))
.

We use the same language for any chain complex: it has cycles, boundaries, and homology
groups. The homology forms a graded abelian group. Two cycles that differ by a boundary are said
to be homologous. (The word “homology” arose first in biology to indicate a shared evolutionary
origin.)

Both Zn(X) and Bn(X) are free abelian groups because they are subgroups of the free abelian
group Sn(X), but the quotient Hn(X) isn’t necessarily free. While Zn(X) and Bn(X) are uncount-
ably generated, Hn(X) turns out to be finitely generated for the spaces we are interested in! If T is
the torus, for example, then we will see that H1(T ) ∼= Z⊕ Z, with generators given by the 1-cycles
illustrated below.
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We will learn to compute the homology groups of a wide variety of spaces. The n-sphere for
example has the following homology groups:

Hq(S
n) =


Z if q = n > 0

Z if q = 0, n > 0

Z⊕ Z if q = n = 0

0 otherwise .

There is an interesting n-cycle, that, roughly speaking, covers every point of the sphere exactly once.
Any q-cycle with q different from 0 and n is a boundary, so it doesn’t contribute to the homology.

Exercises

Exercise 1.8. (a) Let [n] denote the totally ordered set {0, 1, . . . , n}. Let φ : [m] → [n] be an
order preserving function (so that if i ≤ j then φ(i) ≤ φ(j)). Identifying the elements of [n]
with the vertices of the standard simplex ∆n, φ extends to an affine map ∆m → ∆n that we
also denote by φ. Give a formula for this map in terms of barycentric coordinates: If we write
φ(s0, . . . , sm) = (t0, . . . , tn), what is tj as a function of (s0, . . . , sm)?
(b) Write dj : [n − 1] → [n] for the order preserving injection that omits j as a value. Show that
an order preserving injection φ : [n− k]→ [n] is uniquely a composition of the form djkdjk−1 · · · dj1 ,
with 0 ≤ j1 < j2 < · · · < jk ≤ n. Do this by describing the integers j1, . . . , jk directly in terms of
φ, and then verify the straightening rule

didj = dj+1di for i ≤ j

(c) Show that any order preserving map φ : [m] → [n] factors uniquely as the composition of an
order preserving surjection followed by an order preserving injection
(d) Write si : [m+ 1]→ [m] for the order-preserving surjection that repeats the value i. Show that
any order-preserving surjection φ : [m] → [n] has a unique expression si1si2 · · · sik with n ≥ i1 ≥
i2 ≥ · · · ik ≥ 0 Do this by describing the numbers i1, . . . , ik, directly in terms of φ, and finding a
straightening rule of the form sisj = · · · for i < j.
(e) Finally, implement your assertion that any order preserving map factors as a surjection followed
by an injection by establishing a straightening rule of the form sidj = · · · .

Recall the notation Sinn(X) for the set of continuous maps from ∆n to the space X. The affine
extension φ : ∆m → ∆n of an order-preserving map φ : [m] → [m] induces a map φ∗ : Sinn(X) →
Sinm(X). In particular, write

di = (di)∗ sj = (sj)∗ .

The di’s are face maps, the si’s are degeneracies.
(f) Write down the identities satisfied by these operators, resulting from the identities you found
relating the di’s and sj ’s.
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A simplicial set is a sequence of sets K0,K1, . . ., with maps di : Kn → Kn−1, 0 ≤ i ≤ n, and
si : Kn → Kn+1, 0 ≤ i ≤ n, satisfying these identities. The elements of Kn are the “n-simplices”
of K; when n = 0 they are the “vertices” of K. For example, we have the singular simplicial set
Sin∗(X) of a space X.

(g) Use the relations among the di’s to prove that

d2 = 0 : Sn(X)→ Sn−2(X) .

2 Homology

In the last lecture we introduced the standard n-simplex ∆n ⊆ Rn+1. Singular simplices in a space
X are maps σ : ∆n → X and constitute the set Sinn(X). For example, Sin0(X) consists of points
of X. We also described the face inclusions di : ∆n−1 → ∆n, and the induced “face maps”

di : Sinn(X)→ Sinn−1(X) , 0 ≤ i ≤ n ,

given by precomposing with face inclusions: diσ = σ ◦ di. For homework you established some
quadratic relations satisfied by these maps. A collection of sets Kn, n ≥ 0, together with maps
di : Kn → Kn−1 related to each other in this way, is a semi-simplicial set. So we have assigned to any
space X a semi-simplicial set S∗(X). (You actually get a simplicial set; but, while the “degeneracies”
will ultimately play an important role, they do not enter into the definition of singular homology.
Simplicial sets were originally called “complete semi-simplicial complexes”; “semi-simplicial” because
they weren’t necessarily simplicial complexes, and “complete” because they included degeneracies.
Current usage recycles the “semi-” to mean that only the face maps are used, not the degeneracies.)

To the semi-simplicial set {Sinn(X), di} we then applied the free abelian group functor, obtaining
a semi-simplicial abelian group. Forming alternating sums of the dis, we constructed a boundary
map d which makes S∗(X) a chain complex – that is, d2 = 0. We capture this process in a diagram:

{spaces}

Sin∗
��

H∗ // {graded abelian groups}

{semi-simplicial sets}

Z(−)
��

{semi-simplicial abelian groups} // {chain complexes}

homology

OO

Example 2.1. Suppose we have σ : ∆1 → X. Define φ : ∆1 → ∆1 by sending (t, 1− t) to (1− t, t).
Precomposing σ with φ gives another singular simplex σ which reverses the orientation of σ. It is
not true that σ = −σ in S1(X).

However, we claim that σ ≡ −σ mod B1(X). This means that there is a 2-chain in X whose
boundary is σ+σ. If d0σ = d1σ, so that σ ∈ Z1(X), then σ and −σ are homologous cycles, so that
[σ] = −[σ] in H1(X).

To construct an appropriate “homology” – a 2-chain τ with the property that dτ = σ + σ –
consider the projection map π : ∆2 → ∆1 that is the affine extension of the map sending e0 and e2

to e0 and e1 to e1. (Incidentally this is not a degeneracy since it is not order-preserving.)
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2 0

1 1

0

We’ll compute d(σ ◦ π). Some of the terms will be constant singular simplices. Let’s write

cnx : ∆n → X

for the constant map with value x ∈ X. Then

d(σ ◦ π) = σπd0 − σπd1 + σπd2 = σ − c1
σ(0) + σ .

The constant simplex c1
σ(0) is an “error term,” and we wish to eliminate it. To achieve this we can

use the constant 2-simplex c2
σ(0) at σ(0); its boundary is

c1
σ(0) − c

1
σ(0) + c1

σ(0) = c1
σ(0) .

So
σ + σ = d(σ ◦ π + c2

σ(0)) ,

and σ ≡ −σ mod B1(X) as claimed.

Let’s compute the singular homology of the very simplest spaces, ∅ and ∗. For the first,
Sinn(∅) = ∅, so Sn(∅) = 0. Hence S∗(∅) is the zero chain complex. This means that Z∗(∅) =
B∗(∅) = 0. The homology in all dimensions is therefore 0.

For ∗, we have Sinn(∗) = {cn∗} for all n ≥ 0. Consequently Sn(∗) = Z for n ≥ 0 and 0 for n < 0.
Suppose n > 0. For each i, dicn∗ = cn−1

∗ , so the boundary maps d : Sn(∗) → Sn−1(∗) in the chain
complex depend on the parity of n as follows:

d(cn∗ ) =

n∑
i=0

(−1)icn−1
∗ =

{
cn−1
∗ for n even, and

0 for n odd.

This means that our chain complex is:

0← Z 0←− Z 1←− Z 0←− Z 1←− · · · .

The boundaries coincide with the cycles except in dimension zero, where B0(∗) = 0 while Z0(∗) = Z.
Therefore H0(∗) = Z and Hi(∗) = 0 for i 6= 0.

Induced maps

We’ve defined homology groups for each space, but haven’t yet considered what happens to maps
between spaces. A continuous map f : X → Y induces a map f∗ : Sinn(X)→ Sinn(Y ) by composi-
tion:

f∗ : σ 7→ f ◦ σ .
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We claim that f∗ is a map of semi-simplicial sets; that is, it commutes with face maps: f∗◦di = di◦f∗.
The four maps involved in this equality form the arrows in the diagram

Sinn(X)
f∗ //

di
��

Sinn(Y )

di
��

Sinn−1(X)
f∗ // Sinn−1(Y )

which also displays their sources and targets. A diagram like this is said to “commute” or to “be
commutative” if any two directed paths with the same source and target are equal. So we want to
see that this diagram is commutative.

Well, dif∗σ = (f∗σ)◦di = f ◦σ ◦di, while f∗(diσ) = f∗(σ ◦di) = f ◦σ ◦di. The diagram remains
commutative when we pass to the free abelian groups of chains.

If C∗ and D∗ are chain complexes, a chain map f : C∗ → D∗ is a collection of homomorphisms
fn : Cn → Dn such that the following diagram commutes for every n:

Cn
fn //

dC
��

Dn

dD
��

Cn−1
fn−1 // Dn−1

For example, we just showed that if f : X → Y is a continuous map then f∗ : S∗(X) → S∗(Y ) is a
chain map.

A chain map induces a map in homology, f∗ : Hn(C) → Hn(D). The method of proof is a
“diagram chase” and it will be the first of many. We check that we get a map Zn(C)→ Zn(D). Let
c ∈ Zn(C), so that dCc = 0. Then dDfn(c) = fn−1dCc = fn−1(0) = 0, because f is a chain map.
This means that fn(c) is also an n-cycle, i.e., f gives a map Zn(C)→ Zn(D).

Similarly, f∗ sends Bn(C) to Bn(D): Let c ∈ Bn(C), so that there exists c′ ∈ Cn+1 such that
dCc

′ = c. Then fn(c) = fndCc
′ = dDfn+1(c′). Thus fn(c) is the boundary of fn+1(c′), and f gives

a map Bn(C)→ Bn(D).
We have another commutative diagram! –

Bn(C)� _

��

f∗ // Bn(D)� _

��
Zn(C)

f∗ // Zn(D) .

Forming the quotients gives us a map on homology: f∗ : Hn(X)→ Hn(Y ).

Exercises

Exercise 2.2. Write down a singular 2-cycle representing the “fundamental class” of the torus
T 2 = S1×S1. We will give a precise definition of the fundamental class of a manifold later, but for
now let’s just say that this cycle should be made up of singular 2-simplices that together cover all
but a small (e.g. nowhere dense) subset of T 2 exactly once.

Exercise 2.3. Construct an isomorphism

Hn(X)⊕Hn(Y )→ Hn(X q Y ) .



8 CHAPTER 1. SINGULAR HOMOLOGY

3 Categories, functors, and natural transformations

From spaces and continuous maps, we constructed graded abelian groups and homomorphisms. We
now recast this kind of construction in the more general language of category theory. This is a very
general framework for discussing relationships between mathematical structures. It was formalized
by Samuel Eilenberg and Saunders Mac Lane in 1945. Both did much to establish the foundations
of algebraic topology. Mac Lane (1909–2005) founded a school of topology at the University of
Chicago. Born in Poland, “Sammy” Eilenberg (1913–1998) worked at Columbia University and in
addition to his work with Mac Lane he collaborated with Norman Steenrod to write the founding
document [18] in modern algebraic topology and, with Henri Cartan, an equally definitive book [13]
on homological algebra.

Our discussion of category theory will be interspersed throughout the text, introducing new
concepts as they are needed. Here we begin by introducing the basic definitions.

Definition 3.1. A category C consists of the following data.

• a class ob(C) of objects;

• for every pair of objects X and Y , a set of morphisms C(X,Y );

• for every object X an identity morphism 1X ∈ C(X,X); and

• for every triple of objects X,Y, Z, a composition map C(Y,Z) × C(X,Y ) → C(X,Z), written
(g, f) 7→ g ◦ f .

These data are required to satisfy the following two properties:

• For ∈ C(X,Y ), 1Y ◦ f = f and f ◦ 1X = f .

• Composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f).

Note that we allow the collection of objects to be a class. This enables us to talk about a
“category of all sets” for example. But we require each C(X,Y ) to be set, and not merely a class.
Some interesting categories have a set of objects; they are called small categories.

We will often writeX ∈ C to mean thatX is an object of C, and f : X → Y to mean f ∈ C(X,Y ).

Definition 3.2. If X,Y ∈ C, then f : X → Y is an isomorphism if there exists g : Y → X with
f ◦ g = 1Y and g ◦ f = 1X . We may write

f : X
∼=−→ Y

to indicate that f is an isomorphism.

It’s easy to see that g is unique if it exists; it’s the “inverse” of f .

Example 3.3. Many common mathematical structures can be arranged in categories.

• Sets and functions between them form a category Set.

• Abelian groups and homomorphisms form a category Ab.

• Topological spaces and continuous maps form a category Top.

• Chain complexes and chain maps form a category chAb.
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• A monoid is the same as a category with one object, where the elements of the monoid are
the morphisms in the category. It’s a small category.

• The totally ordered sets [n] = {0, . . . , n} for n ≥ 0 together with weakly order-preserving
maps between them form the simplex category ∆, another small category. It contains as a
subcategory the semi-simplex category ∆inj with the same objects but only injective order-
preserving maps.

• A partially ordered set or “poset” forms a category in which there is a morphism from x to y
iff x ≤ y. A small category is a poset exactly when (1) there is at most one morphism between
any two objects, and (2) the only isomorphisms are identities. This is to be distinguished
from the category of posets and order-preserving maps between them, which is “large.”

A subcategory of a category C consists of a collection of objects and morphisms such that the
structure maps of C restrict to give a new category. A subcategory D ⊆ C is full if whenever
X,Y ∈ D, D(X,Y ) = C(X,Y ). For example, finite sets form a full subcategory of Set.

Functors

Categories may be related to each other by rules describing effect on both objects and morphisms.

Definition 3.4. Let C,D be categories. A functor F : C → D consists of the data of

• an assignment F : ob(C)→ ob(D), and

• for all X,Y ∈ ob(C), a function F : C(X,Y )→ D(F (X), F (Y )).

These data are required to satisfy the following two properties:

• For all X ∈ C, F (1X) = 1F (X) ∈ D(F (X), F (X)), and

• For all composable pairs of morphisms f, g in C, F (g ◦ f) = F (g) ◦ F (f).

We have defined quite a few functors already:

Z : Set→ Ab , (−)n : chAb→ Ab ,

Sinn : Top→ Set , Sn : Top→ Ab , Hn : Top→ Ab ,

for example. The map F (f) induced by f is often denotes simply f∗, since the name of the functor
tends to be already present. So a map of spaces f : X → Y induces a homomorphism f∗ : Hn(X)→
Hn(Y ).

We also have defined, for each X, a homomorphism d : Sn(X)→ Sn−1(X). This is a “morphism
between functors.” This property is captured by another definition.

Definition 3.5. Let F,G : C → D be two functors. A natural transformation or natural map
θ : F → G consists of maps θX : F (X) → G(X) for all X ∈ ob(C) such that for all f : X → Y the
following diagram commutes.

F (X)

F (f)

��

θX // G(X)

G(f)

��
F (Y )

θY // G(Y )
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So for example the boundary map d : Sn → Sn−1 is a natural transformation of functors Top→
Ab.

Example 3.6. Suppose that C and D are two categories, and assume that C is small. We may
then form the functor category Fun(C,D). Its objects are the functors from C to D, and given two
functors F,G, Fun(C,D)(F,G) is the set of natural transformations from F to G. We let the reader
define the rest of the structure of this category, and check the axioms. We assumed that C is small
in order to guarantee that there is no more than a set of natural transformations between functors.

For example, let G be a group (or a monoid) viewed as a one-object category. An object
F ∈ Fun(G,Ab) is simply a group action of G on F (∗) = A, i.e., a representation of G in abelian
groups. Given another F ′ ∈ Fun(G,Ab) with F ′(∗) = A′, a natural transformation from F to F ′

is precisely a G-equivariant homomorphism A→ A′.

Exercises

Exercise 3.7. Write π0(X) for the set of path-components of a space X. Construct an isomorphism

Zπ0(X)→ H0(X) .

Exercise 3.8. Say what it means to assert that the isomorphisms you constructed in Exercise 2.3
and in Exercise 3.7 are natural, and make sure that they are.

4 Categorical language

Let Vectk be the category of vector spaces over a fixed field k, and k-linear transformations between
them. Given a vector space V , you can consider the dual V ∗ = Hom(V, k). Does this give us a
functor? If you have a linear transformation f : V → W , you get a map f∗ : W ∗ → V ∗ by sending
ϕ : W → k to ϕ ◦ f : V → k. This is like a functor, but the induced map goes the wrong way. This
operation does preserve composition and identities, in an appropriate sense. This is an example of
a contravariant functor.

I’ll leave it to you to spell out the definition, but notice that there is a universal example of
a contravariant functor out of a category C: C → Cop, where Cop has the same objects as C, but
Cop(X,Y ) is declared to be the set C(Y,X). The identity morphisms remain the same. To describe
the composition in Cop, I’ll write fop for f ∈ C(Y,X) regarded as an element of Cop(X,Y ); then
fop ◦ gop = (g ◦ f)op.

Then a contravariant functor from C to D is the same thing as a (“covariant”) functor from Cop
to D.

Let C be a category, and fix Y ∈ C. Define a functor Cop → Set by sending X to C(X,Y ), and
a map f : W → X to the map C(X,Y ) → C(W,Y ) sending ϕ : X → Y to ϕ ◦ f This is called the
functor represented by Y . It is very important to note that C(−, Y ) is contravariant, while, on the
other hand, for any fixed X, C(X,−) is a covariant functor (and is said to be “corepresented” by
X). C(−,−) is a “bifunctor,” contravariant in the first variable and covariant in the second.

Example 4.1. Recall from Example 3.3 that the simplex category ∆ has objects the totally ordered
sets [n] = {0, 1, . . . , n}, n ≥ 0, with order preserving maps as morphisms. The “standard simplex”
gives us a functor ∆: ∆→ Top. Now fix a space X, and consider

[n] 7→ Top(∆n, X) .
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This gives us a contravariant functor ∆ → Set, or a covariant functor ∆op → Set. This functor
carries in it all the face and degeneracy maps we discussed earlier, and their compositions. Let us
make a definition.

Definition 4.2. Let C be any category. A simplicial object in C is a functorK : ∆op → C. Simplicial
objects in C form a category with natural transformations as morphisms. Similarly, semi-simplicial
object in C is a functor ∆op

inj → C.

So the singular functor Sin∗ gives a functor from spaces to simplicial sets (and so, by restriction,
to semi-simplicial sets).

I want to interject one more bit of categorical language that will often be useful to us.

Definition 4.3. A morphism f : X → Y in a category C is a split epimorphism (“split epi” for
short) if there exists g : Y → X (called a section or a splitting) such that the composite Y g−→ X

f−→ Y
is the identity.

Example 4.4. In the category of sets, a map f : X → Y is a split epimorphism exactly when, for
every element of Y there exists some element of X whose image in Y is the original element. So f is
surjective. Is every surjective map a split epimorphism? This is equivalent to the axiom of choice!
because a section of f is precisely a choice of x ∈ f−1(y) for every y ∈ Y .

Every categorical definition is accompanied by a “dual” definition.

Definition 4.5. A map g : Y → X is a split monomorphism (“split mono” for short) if there is
f : X → Y such that f ◦ g = 1Y .

Example 4.6. Again let C = Set. Any split monomorphism is an injection: If y, y′ ∈ Y , and
g(y) = g(y′), we want to show that y = y′. Apply f , to get y = f(g(y)) = f(g(y′)) = y′. But the
injection ∅→ Y is a split monomorphism only if Y = ∅. So there’s an asymmetry in the category
of sets.

Lemma 4.7. A map is an isomorphism if and only if it is both a split epimorphism and a split
monomorphism.

Proof. Easy!

Example 4.8. Suppose C = Ab, and you have a split epi f : A→ B. Let g : B → A be a section.
We also have the inclusion i : ker f → A, and hence a map

[ g i ] : B ⊕ ker f → A .

I leave it to you to check that this map is an isomorphism, and to formulate a dual statement.

The importance of these definitions is this: Functors will not in general respect “monomorphisms”
or “epimorphisms,” but:

Lemma 4.9. Any functor sends split epis to split epis and split monos to split monos.

Proof. Apply the functor to the diagram establishing f as a split epi or mono.
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Exercises

Exercise 4.10. Here are a couple more “categorical” definitions, giving you some practice with the
idea of constructions being defined by universal mapping properties.

Let C be a category, A a set, and a 7→ Xa an assignment of an object of C to each element of
A. A product of these objects is an object Y together with maps pra : Y → Xa with the following
property. For any object Z and any family of maps fa : Z → Xa, there is a unique map Z → Y
such that fa = pra ◦ f for all a ∈ A. A coproduct of these objects is an object Y together with maps
ina : Xa → Y with the following property. For any object Z and any family of maps fa : Xa → Z,
there is a unique map Y → Z such that fa = f ◦ ina for all a ∈ A.
(a) Describe constructions of the product and coproduct (if they exist) in the following categories:
sets, pointed sets, spaces, abelian groups. (A pointed set is a pair (S, ∗) where S is a set and ∗ ∈ S.)
(b) What should be meant by the product when A = ∅? How about the coproduct? What are
these objects in the four categories mentioned in (a)? Give an example of a category in which
neither one of these constructions exists.
(c) Show that if (Y, {pra}) and (Y ′, {pr′a}) are both products of a family {Xa : a ∈ A}, then there is
a unique map f : Y → Y ′ such that pr′a◦f = pra for all a ∈ A, and that this map is an isomorphism.
(d) Endow the reals R with its natural partial order, and consider a map A → R. Under what
conditions does the product of these objects exist, and if it does what is it? Same question for the
coproduct.

5 Homotopy, star-shaped regions

We’ve computed the homology of a point. Let’s now compare the homology of a general space X
to this example. There’s always a unique map X → ∗: ∗ is a terminal object in Top. We have an
induced map, an augmentation,

ε : Hn(X)→ Hn(∗) =

{
Z n = 0

0 otherwise .

This map may be described on the chain level: A 0-cycle is a formal linear combination c =
∑
aixi

of points of X. Define ε : S0(X) → Z by sending c to
∑
ai ∈ Z. We can use this map to form

the augmented singular complex S̃∗(X) by defining S̃n(X) = Sn(X) for n 6= −1 and S̃−1 = Z, and
using ε for d : S̃0(X)→ S̃−1(X). Its homology will be called the augmented (singular) homology of
X, H̃∗(X).

The surjection S̃∗(X)→ S∗(X) induces an isomorphism in positive dimensions. IfX is nonempty,

H̃∗(X) = ker(ε : H∗(X)→ H∗(∗))

In fact any choice of point in X – a “basepoint” – provides a splitting of ε : S∗(X) → Z, and an
isomorphism

H∗(X) ∼= H̃∗(X)⊕ Z .

But if X is empty, we find

H̃q(∅) =

{
Z for q = −1

0 for q 6= −1 .

This convention isn’t universally accepted, but I find it useful.
What other spaces besides a point have trivial homology? More generally we can ask
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Question 5.1. When do two maps X → Y induce the same map in homology?

For example, when do 1X : X → X and X → ∗ → X induce the same map in homology? If
they do, then ε : H∗(X)→ Z is an isomorphism.

The key idea is that homology is a discrete invariant, so it should be unchanged by deformation.
Here’s the definition that makes “deformation” precise.

Definition 5.2. Let f0, f1 : X → Y be two maps. A homotopy from f0 to f1 is a map h : X×I → Y
(continuous, of course) such that h(x, 0) = f0(x) and f(x, 1) = f1(x). We say that f0 and f1 are
homotopic, and that h is a homotopy between them. This relation is denoted by f0 ' f1.

Homotopy is an equivalence relation on maps from X to Y . Transitivity follows from the gluing
lemma of point set topology. We denote by [X,Y ] the set of homotopy classes of maps from X to
Y . A key result about homology is this.

Theorem 5.3 (Homotopy invariance of homology). If f0 ' f1, then H∗(f0) = H∗(f1): homology
cannot distinguish between homotopic maps.

Suppose I have two maps f0, f1 : X → Y with a homotopy h : f0 ' f1, and a map g : Y → Z.
Composing h with g gives a homotopy between g ◦ f0 and g ◦ f1. Precomposing also works: If
g : W → X is a map, then h ◦ (g × 1) : f0 ' f1 : X → Y . These facts let us compose homotopy
classes: we can complete the diagram of categories and functors:

Top(Y,Z)×Top(X,Y )

��

// Top(X,Z)

��
[Y,Z]× [X,Y ] // [X,Z]

Definition 5.4. The homotopy category (of topological spaces) Ho(Top) has the same objects as
Top, but Ho(Top)(X,Y ) = [X,Y ] = Top(X,Y )/ '.

We may restate Theorem 5.3 as follows:

For each n, the homology functor Hn : Top→ Ab factors as Top→ Ho(Top)→ Ab;
it is a “homotopy functor.”

We will start to work on a proof of this theorem in a minute, and complete it in the next lecture,
but let’s stop now and think about some consequences.

Definition 5.5. A map f : X → Y is a homotopy equivalence if [f ] ∈ [X,Y ] is an isomorphism in
Ho(Top). In other words, there is a map g : Y → X such that f ◦ g ' 1Y and g ◦ f ' 1X .

Such a map g is a homotopy inverse for f ; it is well-defined only up to homotopy.
Most topological properties are not preserved by homotopy equivalences. For example, compact-

ness is not a homotopy-invariant property: Consider the inclusion i : Sn−1 ⊆ Rn−{0}. A homotopy
inverse p : Rn − {0} → Sn−1 can be obtained by dividing a (nonzero!) vector by its length. Clearly
p◦ i = 1Sn−1 . We have to find a homotopy i◦p ' 1Rn−{0}. This is a map (Rn−{0})×I → Rn−{0},
and we can use (v, t) 7→ tv + (1− t) v

||v|| .
On the other hand:

Corollary 5.6. Homotopy equivalences induce isomorphisms in homology.

Proof. If f has homotopy inverse g, then f∗ has inverse g∗.
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Definition 5.7. A space X is contractible if the map X → ∗ is a homotopy equivalence.

Corollary 5.8. Let X be a contractible space. The augmentation ε : H∗(X)→ Z is an isomorphism.

Homotopy equivalences in general may be somewhat hard to visualize. A particularly simple
and important class of homotopy equivalences is given by the following definition.

Definition 5.9. An inclusion A ↪→ X is a deformation retract provided that there is a map h :
X × I → X such that h(x, 0) = x and h(x, 1) ∈ A for all x ∈ X and h(a, t) = a for all a ∈ A and
t ∈ I.

For example, Sn−1 is a deformation retract of Rn − {0}.

Chain homotopy

We now set about constructing a proof of homotopy invariance of homology. The first step is to
understand the analogue of homotopy on the level of chain complexes.

Definition 5.10. Let C∗, D∗ be chain complexes, and f0, f1 : C∗ → D∗ be chain maps. A chain
homotopy h : f0 ' f1 is a collection of homomorphisms h : Cn → Dn+1 such that dh+hd = f1− f0.

This definition takes some getting used to. Here’s a picture (not a commutative diagram).

· · · // Cn+1

��

d // Cn
h

|| ��

d // Cn−1

h

|| ��

// · · ·

· · · // Dn+1
d // Dn

d // Dn−1
// · · ·

Lemma 5.11. If f0, f1 : C∗ → D∗ are chain homotopic, then f0∗ = f1∗ : H∗(C)→ H∗(D).

Proof. We want to show that for every c ∈ Zn(C∗), the difference f1c− f0c is a boundary. Well,

f1c− f0c = (f1 − f0)c = (dh+ hd)c = dhc+ hdc = dhc .

So homotopy invariance of homology will follow from

Proposition 5.12. Let f0, f1 : X → Y be homotopic. Then f0∗, f1∗ : S∗(X) → S∗(Y ) are chain
homotopic.

To prove this we will begin with a special case.

Definition 5.13. A subset X ⊆ Rn is star-shaped with respect to b ∈ X if for every x ∈ X the
interval

{tb+ (1− t)x : t ∈ [0, 1]}

lies in X.
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Any nonempty convex region is star shaped with respect to any of its points. Any star-shaped
region X is contractible: A homotopy inverse to X → ∗ is given by sending ∗ to b. One composite is
the identity. A homotopy from the other composite to the identity 1X is given by (x, t) 7→ tb+(1−t)x.

Now that we have the notion of chain homotopy, we can hope for something similar to happen
on the chain level. A chain map f : C∗ → D∗ is a chain homotopy equivalence if there is a chain map
g : D∗ → C∗ such that the composites fg and gf are chain homotopic to the respective identity
maps. Here is the result we might hope for:

Proposition 5.14. If X is a star-shaped region then ε : S∗(X) → Z is a chain homotopy equiva-
lence.

Proof. We have maps S∗(X)
ε−→ Z η−→ S∗(X) where η(1) = c0

b . Clearly εη = 1, and the claim is that
ηε ' 1 : S∗(X) → S∗(X). The chain map ηε concentrates everything at the point b: ηεσ = c0

b if
σ ∈ Sin0(X) and ηεσ = 0 if σ ∈ Sinn(X) for n > 0. Our chain homotopy h : Sq(X) → Sq+1(X)
will actually send simplices to simplices. For σ ∈ Sinq(X), define the chain homotopy evaluated on
σ by means of the following “cone construction”: h(σ) = b ∗ σ, where

(b ∗ σ)(t0, . . . , tq+1) = t0b+ (1− t0)σ

(
(t1, . . . , tq+1)

1− t0

)
.

Explanation: The denominator 1− t0 makes the entries sum to 1, as they must if we are to apply
σ to this vector. When t0 = 1, this isn’t defined, but it doesn’t matter since we are multiplying by
1− t0. So (b ∗ σ)(1, 0, . . . , 0) = b; this is the vertex of the cone.

0
1

0

1
2

Setting t0 = 0, we find
d0(b ∗ σ) = σ .

Setting ti = 0 for i > 0, we find
di(b ∗ σ) = hdi−1σ .

Using the formula for the boundary operator, we find

d(b ∗ σ) = σ − b ∗ dσ

. . . unless q = 0, when
d(b ∗ σ) = σ − c0

b .

This can be assembled into the equation d(b ∗ σ) + b ∗ (dσ) = σ − ηεσ, or

dh+ hd = 1− ηε ,

which is what we wanted.
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Exercises

Exercise 5.15. (a) Let A∗ be a chain complex. It is acyclic if H∗(A∗) = 0, and contractible if it is
chain-homotopy-equivalent to the trivial chain complex. Prove that a chain complex is contractible
if and only if it is acyclic and for every n the inclusion ZnA ↪→ An is a split monomorphism of
abelian groups.
(b) Give an example of an acyclic chain complex that is not contractible.

Exercise 5.16. Propose a construction of the product and the coproduct of two spaces in the
homotopy category, and check that your proposal serves the purpose.

6 Homotopy invariance of homology

We now know that the homology of a star-shaped region is trivial: in such a space, every cycle with
augmentation 0 is a boundary. We will use that fact, which is a special case of homotopy invariance
of homology, to prove the general result, which we state in somewhat stronger form:

Theorem 6.1. A homotopy h : f0 ' f1 : X → Y determines a natural chain homotopy f0∗ ' f1∗ :
S∗(X)→ S∗(Y ).

The proof uses naturality (a lot). For a start, notice that if k : g0 ' g1 : C∗ → D∗ is a chain
homotopy, and j : D∗ → E∗ is another chain map, then the composites j ◦ kn : Cn → En+1 give
a chain homotopy j ◦ g0 ' j ◦ g1. So if we can produce a chain homotopy k between the chain
maps induced by the two inclusions i0, i1 : X → X × I, we can get a chain homotopy between
f0∗ = h∗ ◦ i0∗ and f1∗ = h∗ ◦ i1∗ in the form h∗ ◦ k.

So now we want to produce a natural chain homotopy, with components kn : Sn(X)→ Sn+1(X×
I). The unit interval hosts a natural 1-simplex given by an identification ∆1 → I, and we should
imagine k as being given by “multiplying” by that 1-chain. This “multiplication” is a special case of
a chain map

× : S∗(X)× S∗(Y )→ S∗(X × Y ) ,

defined for any two spaces X and Y , with lots of good properties. It will ultimately be used to
compute the homology of a product of two spaces in terms of the homology groups of the factors.

Here’s the general result.

Theorem 6.2. There exists a map × : Sp(X) × Sq(Y ) → Sp+q(X × Y ), the cross product, that
(with a, a′ ∈ Sp(X) and b, b′ ∈ Sq(Y )) is:

• Natural, in the sense that if f : X → X ′ and g : Y → Y ′ then f∗(a)× g∗(b) = (f × g)∗(a× b).

• Bilinear, in the sense that (a+ a′)× b = (a× b) + (a′ × b), and a× (b+ b′) = a× b+ a× b′.

• Satisfies the Leibniz rule, i.e., d(a× b) = (da)× b+ (−1)pa× db.

• Normalized, in the following sense. Let x ∈ X and y ∈ Y . Write jx : Y → X × Y for
y 7→ (x, y), and write iy : X → X × Y for x 7→ (x, y). Then c0

x × b = (jx)∗b ∈ Sq(X × Y ) and
a× c0

y = (iy)∗a ∈ Sp(X × Y ).

The Leibniz rule contains the first occurrence of the “topologist’s sign rule”; we’ll see these signs
appearing often. Watch for when it appears in our proof.
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Proof. We’re going to use induction on p+q; the normalization axiom gives us the cases p+q = 0, 1.
Let’s assume that we’ve constructed the cross-product in total dimension p + q − 1. We want to
define σ × τ for σ ∈ Sp(X) and τ ∈ Sq(Y ).

Naturality allows us to focus on universal examples. There is a universal example of a singular
p-simplex! – namely the identity map ιp : ∆p → ∆p. It’s universal in the sense any p-simplex
σ : ∆p → X can be written as σ∗(ιp) where σ∗ : Sinp(∆

p)→ Sinp(X) is the map induced by σ. To
define σ × τ in general, then, it suffices to define ιp × ιq ∈ Sp+q(∆p × ∆q); we can (and must, to
achieve naturality) then take σ× τ = (σ× τ)∗(ιp× ιq). This is not circular! The second occurrence
of “σ × τ ” means the map ∆p ×∆q → X × Y , not the cross-product of σ and τ .

Our long list of axioms is useful in the induction. For one thing, if p = 0 or q = 0, normalization
gets us started. So now assume that both p and q are positive. We want the cross-product to satisfy
the Leibnitz rule:

d(ιp × ιq) = (dιp)× ιq + (−1)pιp × dιq ∈ Sp+q−1(∆p ×∆q) .

Since d2 = 0, a necessary condition for ιp × ιq to exist is that d((dιp) × ιq + (−1)pιp × dιq) = 0.
Let’s compute what this is, using the Leibnitz rule in dimension p+ q − 1 where we have it by the
inductive assumption:

d((dιp)×ιq+(−1)pιp×(dιq)) = (d2ιp)×ιq+(−1)p−1(dιp)×(dιq)+(−1)p(dιp)×(dιq)+ιp×(d2ιq) = 0

because d2 = 0. Note that this calculation would not have worked without the sign!
The subspace ∆p×∆q ⊆ Rp+1×Rq+1 is convex and nonempty, and hence star-shaped. Therefore

we know that Hp+q−1(∆p × ∆q) = 0 (remember, p + q > 1), which means that every cycle is a
boundary. In other words, our necessary condition is also sufficient! So, choose any element with
the right boundary and declare it to be ιp × ιq.

The induction is now complete provided we can check that this choice satisfies naturality, bilin-
earity, and the Leibniz rule. I leave this as a relaxing exercise for the listener.

The essential point here is that the space supporting the universal pair of singular simplices
– ∆p × ∆q – has trivial homology. Naturality transports the result in that case to the general
situation.

The cross-product that this procedure constructs is not unique; it depends on a choice of the
chain ιp × ιq for each pair p, q with p+ q > 1. The cone construction in the proof that star-shaped
regions have vanishing homology does provide us with a specific choice. But this specific formula
isn’t that useful, and it turns out that any two choices lead to naturally chain homotopy equivalent
cross products.

Completion of the proof of homotopy invariance, Theorem 6.1. To define our chain homotopy hX :
Sn(X)→ Sn+1(X × I), pick any 1-simplex ι : ∆1 → I such that d0ι = c0

1 and d1ι = c0
0, and define

hXσ = (−1)nσ × ι .

Let’s compute:
dhXσ = (−1)nd(σ × ι) = (−1)n(dσ)× ι+ σ × (dι)

But dι = c0
1 − c0

0 ∈ S0(I), which means that we can continue (remembering that |∂σ| = n− 1):

· · · = −hXdσ + (σ × c0
1 − σ × c0

0) = −hXdσ + (ι1∗σ − ι0∗σ) ,

using the normalization axiom of the cross-product. This is the result.



18 CHAPTER 1. SINGULAR HOMOLOGY

Exercises

Exercise 6.3. Complete the proof of Theorem 6.2 by checking the axioms at the inductive step.

7 Homology cross product

In the last lecture we proved homotopy invariance of homology using the construction of a chain
level bilinear cross-product

× : Sp(X)× Sq(Y )→ Sp+q(X × Y )

that satisfied the Leibniz formula

d(a× b) = (da)× b+ (−1)pa× (db) .

What else does this map give us?
Let’s abstract a little bit. Suppose we have three chain complexes A∗, B∗, and C∗, and suppose

we have maps × : Ap×Bq → Cp+q that satisfy bilinearity and the Leibniz formula. What does this
induce in homology?

Lemma 7.1. These data determine a bilinear map × : Hp(A)×Hq(B)→ Hp+q(C).

Proof. Let a ∈ Zp(A) and b ∈ Zq(B). We want to define [a] × [b] ∈ Hp+q(C), and we hope that
the obvious guess [a] × [b] = [a × b] actually works. For a start, a × b is a cycle: By Leibniz,
d(a× b) = da× b+ (−1)pa× db, which vanishes because a and b are cycles.

Now we need to check that the homology class of a× b depends only on the homology classes we
started with. So pick other cycles a′ and b′ in the same homology classes. We want [a×b] = [a′×b′].
In other words, we need to show that a×b differs from a′×b′ by a boundary. We can write a′ = a+da
and b′ = b+ db, and compute, using bilinearity:

a′ × b′ = (a+ da)× (b+ db) = a× b+ a× db+ (da)× b+ (da)× (db)

We need to deal with the last three terms here. Since da = 0,

d(a× b) = (−1)pa× (db) .

Since db = 0,
d(a× b) = (da)× b .

And since d2b = 0,
d(a× db) = (da)× (db) .

This means that a′ × b′ and a× b differ by

d
(
(−1)p(a× b) + a× b+ a× db

)
,

and so are homologous.
The last step is to check bilinearity, which is left to the listener.

This gives the following result.

Theorem 7.2. There is a map

× : Hp(X)×Hq(Y )→ Hp+q(X × Y )

that is natural, bilinear, and normalized.
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We will see (Theorem 25.13) that this map is also uniquely defined by these conditions, unlike
the chain-level cross product.

I just want to mention an explicit choice of ιp× ιq. This is called the Eilenberg-Zilber or shuffle
chain, though it was introduced by Eilenberg and Mac Lane. You’re highly encouraged to think
about this yourself. It comes from a triangulation of the prism.

The simplices in this triangulation are indexed by injections

ω : [p+ q]→ [p]× [q]

such that each coordinate, [p + q] → [p] and [p + q] → [q], is order-preserving. Injectivity forces
ω(0) = (0, 0) and ω(p+ q) = (p, q). Each such map determines an affine map ∆p+q → ∆p ×∆q of
the same name. These will be the singular simplices making up ιp × ιq. To specify the coefficients,
think of ω as a staircase in the rectangle [0, p]× [0, q]. Let A(ω) denote the area under that staircase.
Then the Eilenberg-Zilber chain is given by

ιp × ιq =
∑

(−1)A(ω)ω .

0

1 2

3

0

1

2 3

0

1

2 3

This description appears in a paper [19] by Eilenberg and Moore. It’s very pretty, and it provides
an explicit chain map

ζX,Y : S∗(X)× S∗(Y )→ S∗(X × Y )

that satisfies many good properties on the nose and not just up to chain homotopy. For example,
it’s associative –

S∗(X)× S∗(Y )× S∗(Z)
ζX,Y ×1

//

1×ζY,Z
��

S∗(X × Y )× S∗(Z)

ζX×Y,Z
��

S∗(X)× S∗(Y × Z)
ζX,Y×Z // S∗(X × Y × Z)

commutes, and commutative –

S∗(X)× S∗(Y )
ζX,Y //

τ

��

S∗(X × Y )

S∗(T )
��

S∗(Y )× S∗(X)
ζY,X //// S∗(Y ×X)

commutes, where on spaces T (x, y) = (y, x), and on chain complexes τ(a, b) = (−1)pq(b, a) when a
has degree p and b has degree q.

We will see that these properties hold up to chain homotopy for any choice of chain-level cross
product.
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Exercises

Exercise 7.3. Let S and T be sets and A an abelian group. Establish a bijection between the set
of maps of sets from S × T to A and the set of bilinear maps ZS × ZT → A.

Exercise 7.4. For positive integers m,n, let Z/m, Z/n denote the cyclic groups of order m,n.
Construct a surjective bilinear map µ : Z/m × Z/n → Z/ gcd{m,n}. Show that any bilinear map
Z/m× Z/n→ A factors uniquely as f ◦ µ where f : Z/ gcd{m,n} → A is a homomorphism.

8 Relative homology

An ultimate goal of algebraic topology is to find means to compute the set of homotopy classes
of maps from one space to another. This is important because many geometrical problems can be
rephrased as such a computation. It’s a lot more modest than wanting to characterize, somehow,
all continuous maps from X to Y ; but the very fact that it still contains a great deal of interesting
information means that it is still a very challenging problem.

Homology is in a certain sense the best “additive” approximation to this problem; and its ad-
ditivity makes it much more computable. To justify this, we want to describe the sense in which
homology is “additive.” Here are two related aspects of this claim.

1. If A ⊆ X is a subspace, then H∗(X) a combination of H∗(A) and H∗(X −A).

2. The homology H∗(A ∪B) is like H∗(A) +H∗(B)−H∗(A ∩B).

The first hope is captured by the long exact sequence of a pair, the second by the Mayer-Vietoris
Theorem. Both facts show that homology behaves like a measure. The precise statement of both
facts uses the machinery of exact sequences. I’ll use the following language.

Definition 8.1. A sequence of abelian groups is a diagram of abelian groups of the form

· · · → Cn+1
fn−→ Cn

fn−1−−−→ Cn−1 → · · ·

(which may terminate on the left or on the right at some finite stage) in which all composites are
zero; that is, im fn ⊆ ker fn−1 for all n. It is exact at Cn provided that this inequality is an equality.

Thus a chain complex is a sequence that is unbounded in both directions. A sequence is exact
at Cn if and only if Hn(C∗) = 0. So homology measures the failure of exactness.

Example 8.2. The sequence 0 → A
i−→ B is exact if and only if i is injective, and B p−→ C → 0 is

exact if and only if p is surjective.

Exactness was a key concept in the development of algebraic topology, and “exact” is a great
word for the concept. A foundational treatment [18] of algebraic topology was published by Sammy
Eilenberg and Norman Steenrod in 1952. The story goes that in the galleys for the book they
left a blank space whenever the word representing this concept was used, and filled it in at the last
minute.

Definition 8.3. A short exact sequence is an exact sequence of the form

0→ A
i−→ B

p−→ C → 0 .
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Any sequence of the form A→ B → C expands to a commutative diagram

ker(p)

""
A

OO

i // B
p //

##

C

coker(i)

OO

It is exact at B if and only if A→ ker p is surjective, or, equivalently, coker(i)→ C is injective. It
is short exact if furthermore i is injective and p is surjective.

We will compare the homology groups of a space X with those of a subspace A. Let’s formalize
this a bit. Along with the category Top of spaces, we have the category Top2 of pairs of spaces. An
object of Top2 is a space X together with a subspace A. A map (X,A) → (Y,B) is a continuous
map X → Y that sends A into B.

There are four obvious functors relating Top and Top2:

X 7→ (X,∅) , X 7→ (X,X) ,

(X,A) 7→ X , (X,A) 7→ A .

We’ll define relative homology groups of a pair (X,A). First, just divide Sn(X) by the subgroup
Sn(A):

Sn(X,A) = Sn(X)/Sn(A) .

This is the group of relative n-chains of the pair (X,A).
Do the relative chains form themselves into a chain complex?

Lemma 8.4. Let A∗ be a subcomplex of the chain complex B∗. There is a unique structure of chain
complex on the quotient graded abelian group C∗, with entries Cn = Bn/An, such that B∗ → C∗ is
a chain map.

Proof. To define d : Cn → Cn−1, represent a class in Cn by b ∈ Bn, and hope that [db] ∈ Bn−1/An−1

is well defined. If we replace b by b+ a for a ∈ An, we find

d(b+ a) = db+ da ≡ db mod An−1 ,

so our hope is justified. Then d2[b] = [d2b] = 0, so we do get a chain complex.

Definition 8.5. The relative singular chain complex of the pair (X,A) is

S∗(X,A) =
S∗(X)

S∗(A)
.

This is a functor from pairs of spaces to chain complexes. Of course

S∗(X,∅) = S∗(X) , S∗(X,X) = 0 .

Definition 8.6. The relative singular homology of the pair (X,A) is the homology of the relative
singular chain complex:

Hn(X,A) = Hn(S∗(X,A)) .
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Relative homology was introduced by Solomon Lefschetz (1884-1972). Russian, educated in
France as a chemical engineer, he lost the use of his hands in an accident and then received a PhD
in mathematics at Clark University in Worcester. He became the backbone of the great development
of algebraic topology at Princeton University. A fragment of his academic family tree appears at
the end of this unit.

One of the nice features of the absolute chain group Sn(X) is that it is free as an abelian group.
This is also the case for its quotent Sn(X,A), since the map Sn(A) → Sn(X) takes basis elements
to basis elements. Sn(X,A) is freely generated by the cosets of the singular n-simplices in X that
do not lie entirely in A.

Example 8.7. Consider ∆n, relative to its boundary,

∂∆n :=
⋃
i

im di ∼= Sn−1 .

We have the identity map ιn : ∆n → ∆n, the universal n-simplex, in Sinn(∆n) ⊆ Sn(∆n). It is not
a cycle; its boundary dιn ∈ Sn−1(∆n) is the alternating sum of the faces of the n-simplex. Each of
these singular simplices lies in ∂∆n, so dιn ∈ Sn−1(∂∆n), and [ιn] ∈ Sn(∆n, ∂∆n) is a relative cycle.
We will see that the relative homology Hn(∆n, ∂∆n) is infinite cyclic, with generator the class of
[ιn].

Exercises

Exercise 8.8. Let 0 → A
i−→ B

p−→ C → 0 be a short exact sequence. Establish bijections among
the following three sets.

(i) The set of homomorphisms σ : C → B such that pσ = 1C .
(ii) The set of homomorphisms π : B → A such that πi = 1A.
(iii) The set of homomorphisms α : A ⊕ C → B such that α(a, 0) = ia for all a ∈ A and

pα(a, c) = c for all (a, c) ∈ A⊕ C.
Show that any homomorphism as in (iii) is an isomorphism.
Any one of these is a splitting of the short exact sequence, and the sequence is then said to be

split.

Exercise 8.9. Construct a “semi-relative cross product,” natural in X and the pair (Y,B):

× : Hp(X)×Hq(Y,B;R)→ Hp+q(X × Y,X ×B;R)

that agrees with the cross product we constructed in Lecture 7 if B = ∅ and that makes

Hp(X)×Hq(B)
× //

1×∂
��

Hp+q(X ×B)

∂
��

Hp(X)×Hq+1(Y,B)
× // Hp+q+1(X × Y,X ×B)

commute, at least up to sign.

9 Homology long exact sequence

A pair of spaces (X,A) gives rise to a short exact sequence of chain complexes:

0→ S∗(A)→ S∗(X)→ S∗(X,A)→ 0 .
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In homology, this will relate H∗(A), H∗(X), and H∗(X,A).
To investigate this, let’s suppse we have a general short exact sequence of chain complexes,

0→ A∗
f−→ B∗

g−→ C∗ → 0 ,

and study what happens in homology. Clearly the compositeH∗(A)→ H∗(B)→ H∗(C) is trivial. Is
this sequence exact? Let [b] ∈ Hn(B) be such that g∗([b]) = 0. It’s determined by some b ∈ Bn such
that d(b) = 0. Since g∗([b]) = 0, there is some c ∈ Cn+1 such that dc = g(b). Now g is surjective, so
there is some b ∈ Bn+1 such that g(b) = c. Then we can consider db ∈ Bn, and g(db) = dc ∈ Cn. We
have a new representative for [b], namely b− db. This maps to zero in Cn, so by exactness there is
some a ∈ An such that f(a) = b−db. Is a a cycle? Well, f(da) = df(a) = d(b−db) = db−d2b = db,
but we assumed that db = 0, so f(da) = 0. This means that da is zero because f is an injection.
Therefore a is a cycle. Does [a] ∈ Hn(A) do the job? Well, f([a]) = [b − db] = [b]. This proves
exactness of Hn(A)→ Hn(B)→ Hn(C) at Hn(B).

On the other hand, H∗(A)→ H∗(B) may fail to be injective, and H∗(B)→ H∗(C) may fail to
be surjective. Instead:

Theorem 9.1 (The homology long exact sequence). Let 0→ A∗
f−→ B∗

g−→ C∗ → 0 be a short exact
sequence of chain complexes. Then there is a natural homomorphism ∂ : Hn(C) → Hn−1(A) such
that the sequence

· · · g∗ // Hn+1(C)

∂

tt
Hn(A)

f∗ // Hn(B)
g∗ // Hn(C)

∂

tt
Hn−1(A)

f∗ // · · ·

is exact.

Proof. We’ll construct the “boundary map” ∂, and leave the rest as an exercise. Here’s an expanded
part of the short exact sequence:

0 // An+1
f //

d
��

Bn+1
g //

d
��

Cn+1
//

d
��

0

0 // An
f //

d
��

Bn
g //

d
��

Cn //

d
��

0

0 // An−1
f // Bn−1

g // Cn−1
// 0

Let c ∈ Cn be a cycle: dc = 0. The map g is surjective, so pick a b ∈ Bn such that g(b) = c, and
consider db ∈ Bn−1. Now g(db) = dg(b) = dc = 0, so by exactness there is some a ∈ An−1 such
that f(a) = db. Actually there’s a unique such a because f is injective. We need to check that a is
a cycle. What is da? Well, d2b = 0, so da maps to 0 under f . But because f is injective, da = 0,
i.e., a is a cycle. This means we can try to define ∂[c] as [a].

To make sure that this is well-defined, let’s check that the homology class [a] doesn’t depend
on the b that we chose. Pick some other b′ such that g(b′) = c. Then there is a′ ∈ An−1 such that
f(a′) = db′. We want a− a′ to be a boundary, so that [a] = [a′]: We need to find a ∈ An such that
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da = a − a′. Well, g(b − b′) = 0, so by exactness there is a ∈ An such that f(a) = b − b′. Then
da = d(b−b′) = db−db′. But f(a−a′) = b−b′, so, because f is injective, da = a−a′, i.e., [a] = [a′].

I leave the rest of what needs checking to the listener.

Corollary 9.2 (The Snake Lemma). Suppose that we have a map of short exact sequences,

0 // A //

i
��

B //

j
��

C //

k
��

0

0 // A′ // B′ // C ′ // 0 .

There is a naturally associated 6-term exact sequence

0 // ker i // ker j // ker k

tt
coker i // coker j // coker k // 0 .

Proof. Regard each column as a chain complex, and apply Theorem 9.1.

Example 9.3. A pair of spaces (X,A) gives rise to a natural long exact sequence in homology:

· · · // Hn+1(X,A)

∂

tt
Hn(A) // Hn(X) // Hn(X,A)

∂

tt
Hn−1(A) // · · ·

.

Example 9.4. Let’s think again about the pair (Dn, Sn−1). The result is cleaner in augmented
homology (as in Lecture 5). Any map induces an isomorphism in S̃−1, so to a pair (X,A) we can
associate a short exact sequence

0→ S̃∗(A)→ S̃∗(X)→ S∗(X,A)→ 0

and hence a long exact sequence

· · · // Hn+1(X,A)

∂

tt
H̃n(A) // H̃n(X) // Hn(X,A)

∂

tt
H̃n−1(A) // · · ·

.

In the example (Dn, Sn−1), H̃∗(Dn) = 0 and so

∂ : Hq(D
n, Sn−1)

∼=−→ H̃q−1(Sn−1)

for all n and q. This even works when n = 0; remember that S−1 = ∅ and H̃−1(∅) = Z. This is
why I like this convention.

To go any further in this analysis, we’ll need another tool, known as “excision,” coming right up
in the next lecture.
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The five lemma

The homology long exact sequence is often used in conjunction with an elementary fact about a
map between exact sequences known as the five lemma. Suppose you have two exact sequences of
abelian groups and a map between them – a “ladder”:

A4
d //

f4

��

A3
d //

f3

��

A2
d //

f2

��

A1
d //

f1

��

A0

f0

��
B4

d // B3
d // B2

d // B1
d // B0

When can we guarantee that the middle map f2 is an isomorphism? We’re going to “diagram chase”
again. Just follow your nose, making assumptions as necessary.

Surjectivity: Let b2 ∈ B2. We want to show that there is something in A2 mapping to b2. We can
consider db2 ∈ B1. Let’s assume that f1 is surjective. Then there’s a1 ∈ A1 such that f1(a1) = db2.
What is da1? Well, f0(da1) = df1(a1) = ddb = 0. So assume that f0 is injective. Then da1 is zero,
so by exactness of the top sequence there is some a2 ∈ A2 such that da2 = a1. What is f2(a2)? To
answer this, begin by asking: What is df2(a2)? By commutativity, df2(a2) = f1(da2) = f1(a1) = db2.
Let’s consider b2 − f2(a2). This maps to zero under d. So by exactness there is b3 ∈ B3 such that
db3 = b2 − f2(a2). If we assume that f3 is surjective, then there is a3 ∈ A3 such that f3(a3) = b3.
But now da3 ∈ A2, and f2(da3) = df3(a3) = b2−f2(a2). This means that b2 = f(a2 +da3), verifying
surjectivity of f2.

This proves the first half of the following important fact. The second half is “dual” to the first.

Proposition 9.5 (Five lemma). In the map of exact sequences above,

• If f0 is injective and f1 and f3 are surjective, then f2 is surjective.

• If f4 is surjective and f3 and f1 are injective, then f2 is injective.

Very commonly one knows that f0, f1, f3, and f4 are all isomorphisms, and concludes that f2 is
also an isomorphism. For example:

Corollary 9.6. Let
0 // A′∗ //

f

��

B′∗ //

g

��

C ′∗ //

h
��

0

0 // A∗ // B∗ // C∗ // 0

be a map of short exact sequences of chain complexes. If two of the three maps induced in homology
by f, g, and h are isomorphisms, then so is the third.

Here’s an application.

Proposition 9.7. Let (A,X)→ (B, Y ) be a map of pairs, and assume that two of A→ B, X → Y ,
and (X,A)→ (Y,B) induce isomorphisms in homology. Then the third one does as well.

Proof. Just apply the five lemma to the map between the two homology long exact sequences.
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Exercises

Exercise 9.8. Suppose that

· · · // An //

��

Bn //

��

Cn //

∼=
��

An−1
//

��

· · ·

· · · // A′n // B′n // C ′n // A′n−1
// · · ·

is a “ladder”: a map of long exact sequences. So both rows are exact and each square commutes.
Suppose also that every third vertical map is an isomorphism, as indicated. Prove that these data
determine a long exact sequence

· · · → An → A′n ⊕Bn → B′n → An−1 → · · · .

Exercise 9.9 (“3× 3 lemma”). Let

0

��

0

��

0

��
0 // A′

��

// B′

��

// C ′

��

// 0

0 // A

��

// B

��

// C

��

// 0

0 // A′′

��

// B′′

��

// C ′′

��

// 0

0 0 0

be a commutative diagram of abelian groups. Assume that all three columns are exact, that all but
one of the rows is exact, and that the compositions in the remaining row are trivial. Prove that the
remaining row is also exact. (Hint: view each row as a chain complex . . . .)

Exercise 9.10. (Another 3 × 3 puzzle.) Suppose all the rows and columns in the commutative
diagram in Exercise 9.9 are exact. Construct from this a natural exact sequence

0→ A′ → A⊕B′ → B → C ′′ → 0 ,

It may be easiest to construct two short exact sequences and then splice them together.
What is the dual statement?

Exercise 9.11. (Long exact homology sequence of a triple.) Let (C,B,A) be a “triple,” so C is a
space, B is a subspace of C, and A is a subspace of B. Show that there are natural transformations
∂ : Hn(C,B)→ Hn−1(B,A) such that

· · · → Hn(B,A)
i∗−→ Hn(C,A)

j∗−→ Hn(C,B)
∂−→ Hn−1(B,A)→ · · ·

is exact, where i : (B,A)→ (C,A) and j : (C,A)→ (C,B) are the inclusions of pairs.
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10 Excision and applications

We have found two general properties of singular homology: homotopy invariance and the long
exact sequence of a pair. We also claimed that H∗(X,A) “depends only on X − A.” You have to
be careful about this. The following definition gives conditions that will capture the sense in which
the relative homology of a pair (X,A) depends only on the complement of A in X.

Definition 10.1. A triple (X,A,U), where U ⊆ A ⊆ X, is excisive if U ⊆ Int(A). The inclusion
(X − U,A− U) ⊆ (X,A) is then called an excision.

Theorem 10.2. An excision induces an isomorphism in homology,

H∗(X − U,A− U)
∼=−→ H∗(X,A) .

So you can cut out closed bits of the interior of A without changing the relative homology. The
proof will take us a couple of days. Before we give applications, let me pose a different way to
interpret the motto “H∗(X,A) depends only on X−A.” Collapsing the subspace A to a point gives
us a map of pairs

(X,A)→ (X/A, ∗) .

When does this map induce an isomorphism in homology? Excision has the following consequence.

Corollary 10.3. Let (X,A) be a pair of spaces, and assume that there is a subspace B of X such
that (1) A ⊆ IntB and (2) A→ B is a deformation retract. Then

H∗(X,A)→ H∗(X/A, ∗)

is an isomorphism.

Proof. The diagram of pairs

(X,A)

��

i // (X,B)

��

(X −A,B −A)

k
��

joo

(X/A, ∗) i // (X/A,B/A) (X/A− ∗, B/A− ∗)joo

commutes. We want the left vertical to be a homology isomorphism, and will show that the rest of
the perimeter consists of homology isomorphisms. The map k is a homeomorphism of pairs, and j
is an excision by assumption (1). The map i induces an isomorphism in homology by assumption
(2), the long exact sequences, and the five-lemma. Since I is a compact Hausdorff space, the map
B × I → (B/A) × I is again a quotient map (see e.g. [51, pp. 186 and 289]), so the deformation
B × I → B, which restricts to the constant deformation on A, descends to show that ∗ → B/A is a
deformation retract. So the map i is also a homology isomorphism. Finally, ∗ ⊆ Int(B/A) in X/A,
by definition of the quotient topology, so j induces an isomorphism by excision.

Definition 10.4. A pointed space is a pair (X, ∗) in which the subspace is a singleton. The
category of pointed spaces is denoted by Top∗. The reduced homology H∗(X) of a pointed space is
the relative homology H∗(X, ∗).
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So Corollary 10.3 expresses rather general relative homology groups as reduced homology of the
quotient space. Note that there is a canonical isomorphism

H∗(X)
∼=−→ H̃∗(X)

with the augmented homology of the underlying unpointed space. This isomorphism notwithstand-
ing, the distinction is useful. Reduced homology is a functor of pointed spaces; augmented homology
is a functor of unpointed spaces (which might even be empty).

The homology groups of spheres

Now what are some consequences? For a start, we’ll finally get around to computing the homology of
the sphere. It happens simultaneously with a computation of H∗(Dn, Sn−1). To describe generators,
for each n ≥ 0 pick a homeomorphism

(∆n, ∂∆n)→ (Dn, Sn−1) ,

and write
ιn ∈ Sn(Dn, Sn−1)

for the corresponding relative n-chain.

Proposition 10.5. Let n > 0 and let ∗ ∈ Sn−1 be any point. Then:

Hq(S
n) =


Z = 〈[∂ιn+1]〉 if q = n > 0

Z = 〈[c0
∗]〉 if q = 0, n > 0

Z⊕ Z = 〈[c0
∗], [∂ι1]〉 if q = n = 0

0 otherwise

and

Hq(D
n, Sn−1) =

{
Z = 〈[ιn]〉 if q = n

0 otherwise .

Proof. The division into cases for Hq(S
n) can be eased by employing augmented homology. We

already know that for n ≥ 0

∂ : Hq(D
n, Sn−1)→ H̃q−1(Sn−1)

is an isomorphism, so what remains is to check that

H̃q(S
n−1) =

{
Z if q = n− 1

0 if q 6= n− 1 .

This follows by an induction, using the pair of isomorphisms

H̃q−1(Sn−1)
∼=←− Hq(D

n, Sn−1)
∼=−→ Hq(D

n/Sn−1, ∗) ,

since Dn/Sn−1 ∼= Sn. The right hand arrow is an isomorphism since Sn−1 is a deformation retract
of a neighborhood in Dn.
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Applications

Why should you care about this complicated homology calculation?

Corollary 10.6. If m 6= n, then Sm and Sn are not homotopy equivalent.

Proof. Their homology groups are not isomorphic.

Corollary 10.7. If m 6= n, then Rm and Rn are not homeomorphic.

Proof. If m or n is zero, this is clear, so let m,n > 0. Assume we have a homeomorphism f : Rm →
Rn. This restricts to a homeomorphism Rm − {0} → Rn − {f(0)}. But these spaces are homotopy
equivalent to spheres of different dimension.

Corollary 10.8 (Brouwer fixed-point theorem). If f : Dn → Dn is continuous, then there is some
point x ∈ Dn such that f(x) = x.

Proof. Suppose not. Then you can draw a ray from f(x) through x. It meets the boundary of Dn

at a point g(x) ∈ Sn−1. Check that g : Dn → Sn−1 is continuous. If x is on the boundary, then
x = g(x), so g provides a factorization of the identity map on Sn−1 through Dn. This is inconsistent
with our computation because the identity map induces the identity map on H̃n−1(Sn−1) ∼= Z, while
H̃n−1(Dn) = 0.

Our computation of the homology of a sphere also implies that there are many homotopy classes
of self-maps of Sn, for any n ≥ 1. We will distinguish them by means of the degree: A map
f : Sn → Sn induces an endomorphism of the infinite cyclic group Hn(Sn). Any endomorphism
of an infinite cyclic group is given by multiplication by an integer. This integer is well defined
(independent of a choice of generator), and any integer occurs. Thus End(Z) = Z×, the monoid of
integers under multiplication. The homotopy classes of self-maps of Sn also form a monoid, under
composition, and:

Theorem 10.9. Let n ≥ 1. The degree map provides us with a surjective monoid homomorphism

deg : [Sn, Sn]→ Z× .

Proof. Degree is multiplicative by functoriality of homology.
We construct a map of degree k on Sn by induction on n. If n = 1, this is just the winding

number; an example is given by regarding S1 as unit complex numbers and sending z to zk. The
proof that this has degree k is an exercise.

Suppose n > 1, and that we’ve constructed a map fk : Sn−1 → Sn−1 of degree k. Extend it to
a map fk : Dn → Dn by defining fk(tx) = tfk(x) for t ∈ [0, 1]. We may then collapse the sphere
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to a point and identify the quotient with Sn. This gives us a new map gk : Sn → Sn making the
diagram below commute.

Hn−1(Sn−1)

fk∗
��

Hn(Dn, Sn−1)
∼=oo

∼= //

��

Hn(Sn)

gk∗
��

Hn−1(Sn−1) Hn(Dn, Sn−1)
∼=oo

∼= // Hn(Sn)

The horizontal maps are isomorphisms, so deg gk = k as well.

We will see in Lecture 65 that this map is in fact an isomorphism.

Exercises

Exercise 10.10. This exercise generalizes our computation of the homology of spheres, and intro-
duces several important constructions.

The cone on a space X is the quotient space CX = X × I/X ×{0}, where I is the unit interval
[0, 1]. The cone is a pointed space, with basepoint ∗ given by the “cone point,” i.e. the image of
X ×{0}. (By convention, the cone on the empty space ∅ is a single point, the cone point.) Regard
X as the subspace of CX of all points of the form (x, 1).

Define the suspension of a space X to be SX = CX/X. Make SX a pointed space by declaring
the image of X ⊆ CX to be the basepoint in SX. (By convention, the quotient W/∅ is the disjoint
union of W with a single point, which is declared to be the basepoint. So S∅ = ∗/∅ is the discrete
two-point space, with the new point as basepoint.)

The quotient map induces a map of pairs f : (CX,X)→ (SX, ∗).
(a) Show that CX is contractible.

For any a, b ∈ I with a ≤ b, let CbaX denote the image of X × [a, b] in CX. Thus C1
0X = CX,

C0
0X = ∗, and C1

1X = X.
Let p : CX → CX send (x, t) to (x, 3t) for t ≤ 1/3 and to (x, 1) if t ≥ 1/3.

(b) Show that p defines a homotopy equivalence of pairs (C
2/3
0 X,C

2/3
1/3X)→ (CX,X).

(c) Show that the evident map e : (C
2/3
0 X,C

2/3
1/3X)→ (SX,C1

1/3X/X) is an excision.

(d) Show that p defines a homotopy equivalence of pairs (SX,C1
1/3X/X)→ (SX, ∗).

(e) Conclude from the commutativity of

(C
2/3
0 X,C

2/3
1/3X)

e //

��

(SX,C1
1/3X/X)

��
(CX,X)

f // (SX, ∗)

that f induces an isomorphism in homology.

(f) Show that there is a natural isomorphism between augmented and reduced homology groups,
H̃n−1(X)→ Hn(SX), for any n.

Exercise 10.11. (a) Verify the claim that the map z 7→ zd, sending the unit circle in the complex
numbers to itself, has degree d.
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(b) Regard Sn−1 as the unit sphere in Rn. Let L be a line through the origin in Rn, and L⊥ its
orthogonal complement. Let ρL be the linear map given by −1 on L and +1 on L⊥. What is
deg(ρL|Sn−1)?
(c) What is the degree of the “antipodal map,” α : Sn−1 → Sn−1 sending x to −x?
(d) The tangent space to a point x on the sphere Sn−1 can be regarded as the subspace of Rn of
vectors perpendicular to x. A “vector field” on Sn−1 is thus a continuous function v : Sn−1 → Rn
such that v(x) ⊥ x for all x ∈ Sn−1. Show that if n is odd then every vector field vanishes at some
point on the sphere. (When n−1 = 2, this is the “hairy ball theorem,” proved by Poincaré in 1885.)
On the other hand, construct a nowhere vanishing vector field on Sn−1 for any even n.

11 Eilenberg-Steenrod axioms and the locality principle

Before we proceed to prove the excision theorem, let’s review the properties of singular homology
as we have developed them. They are captured by a set of axioms, due to Sammy Eilenberg and
Norman Steenrod [18]. (Steenrod (1910–1971) was a highly influential topologist, a student and
later colleague of Lefschetz’s at Princeton.)

Definition 11.1. A homology theory (on Top) is:

• a sequence of functors hn : Top2 → Ab for all n ∈ Z and

• a sequence of natural transformations ∂ : hn(X,A)→ hn−1(A,∅)

such that:

• (Homotopy invariance) If f0, f1 : (X,A)→ (Y,B) are homotopic, then f0∗ = f1∗ : hn(X,A)→
hn(Y,B).

• (Excision) Excisions induce isomorphisms.

• (Long exact sequence) For any pair (X,A), the sequence

· · · → hq+1(X,A)
∂−→ hq(A)→ hq(X)→ hq(X,A)

∂−→ · · ·

is exact, where we have written hq(X) for hq(X,∅).

• (Dimension axiom) The group hn(∗) is nonzero only for n = 0.

We add the following “Milnor axiom” [43] to our definition. To state it, let I be a set and suppose
that for each i ∈ I we have a space Xi. We can form their disjoint union or coproduct

∐
Xi. The

inclusion maps Xi →
∐
Xi induce maps hn(Xi)→ hn(

∐
Xi), and these in turn induce a map from

the direct sum, or coproduct, in Ab:

α :
⊕
i∈I

hn(Xi)→ hn

(∐
i∈I

Xi

)
.

Then:

• (Milnor axiom) The map α is an isomorphism for all n.
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Singular homology satisfies these, with h0(∗) = Z. We will soon add “coefficients” to homology,
producing a homology theory whose value on a point is any prescribed abelian group. Eilenberg
and Steenrod enunciated these axioms with the goal of bringing order to the plethora of variants of
singular homology that were appearing at the time. But in later developments, it emerged that the
dimension axiom is rather like the parallel postulate in Euclidean geometry: It’s “obvious,” but, as
it turns out, the remaining axioms accommodate extremely interesting alternatives, in which hn(∗)
is nonzero for many – often infinitely many – values of n, often both positive and negative. With
the dimension axiom in place, one has “ordinary homology.”

Locality

Excision is a statement that homology is “localizable.” To make this precise, we need some defini-
tions.

Definition 11.2. Let X be a topological space. A family A of subsets of X is a cover if X is the
union of the interiors of elements of A.

Definition 11.3. Let A be a cover of X. An n-simplex σ is A-small if there is A ∈ A such that
the image of σ is entirely in A.

Notice that if σ : ∆n → X is A-small, then so is diσ; in fact, for any simplicial operator φ,
φ∗σ is again A-small. Let’s denote by SinA

∗ (X) the graded set of A-small simplices. This us a
sub-simplicial set of Sin∗(X). Applying the free abelian group functor, we get the subcomplex

SA
∗ (X) ⊆ S∗(X)

of A-small singular chains. Write HA
∗ (X) for its homology.

Theorem 11.4 (The locality principle). The inclusion SA
∗ (X) ⊆ S∗(X) induces an isomorphism

in homology, HA
∗ (X)

∼=−→ H∗(X).

This will take a little time to prove. Let’s see right now how it implies excision.
Suppose X ⊃ A ⊃ U is excisive, so that U ⊆ Int(A), or Int(X − U) ∪ Int(A) = X. Thus if we

let B = X − U , then A = {A,B} is a cover of X. Rewriting in terms of B,

(X − U,A− U) = (B,A ∩B) ,

so we aim to show that
S∗(B,A ∩B)→ S∗(X,A)

induces an isomorphism in homology. We have the following diagram of chain complexes with exact
rows:

0 // S∗(A)

=

��

// SA
∗ (X)

��

// SA
∗ (X)/S∗(A)

��

// 0

0 // S∗(A) // S∗(X) // S∗(X,A) // 0 .

The middle vertical induces an isomorphism in homology by the locality principle, so the homology
long exact sequences combined with the five-lemma shows that the right hand vertical is also a
homology isomorphism. But

SA
n (X) = Sn(A) + Sn(B) ⊆ Sn(X)
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and a simple result about abelian groups provides an isomorphism

Sn(B)

Sn(A ∩B)
=

Sn(B)

Sn(A) ∩ Sn(B)

∼=−→ Sn(A) + Sn(B)

Sn(A)
=
SA
n (X)

Sn(A)
,

so excision follows.
This case of a cover with two elements leads to another expression of excision, known as the

“Mayer-Vietoris sequence.” In describing it we will use the following notation for the various inclu-
sion.

A ∩B j1 //

j2
��

A

i1
��

B
i2

// X

Theorem 11.5 (Mayer-Vietoris). Assume that {A,B} is a cover of X. There are natural maps
∂ : Hn(X)→ Hn−1(A ∩B) such that the sequence

· · · β // Hn+1(X)

∂

rr
Hn(A ∩B)

α // Hn(A)⊕Hn(B)
β // Hn(X)

∂

rr
Hn−1(A ∩B)

α // · · ·

is exact, where

α =

[
j1∗
−j2∗

]
, β = [ i1∗ i2∗ ] .

Proof. This is the homology long exact sequence associated to the short exact sequence of chain
complexes

0→ S∗(A ∩B)
α−→ S∗(A)⊕ S∗(B)

β−→ SA
∗ (X)→ 0 ,

combined with the locality principle.

The Mayer-Vietoris theorem follows from excision as well, via the following simple observation.
Suppose we have a map of long exact sequences

· · · // C ′n+1
k //

h

��

A′n //

f

��

B′n //

∼=
��

C ′n //

h

��

· · ·

· · · // Cn+1
k // An // Bn // Cn // · · ·

in which every third arrow is an isomorphism as indicated. Define a map

∂ : An → Bn
∼=←− B′n → C ′n .

An easy diagram chase shows:
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Lemma 11.6. The sequence

· · · −→ C ′n+1

 h
−k


−−−−−−→ Cn+1 ⊕A′n

[
k f

]
−−−−−−→ An

∂−−→ C ′n −→ · · ·

is exact.

To get the Mayer-Vietoris sequence, let {A,B} be a cover of X and apply the lemma to

· · · // Hn(A ∩B)

��

// Hn(B)

��

// Hn(B,A ∩B)

∼=
��

// Hn−1(A ∩B)

��

// Hn−1(B)

��

// · · ·

· · · // Hn(A) // Hn(X) // Hn(X,A) // Hn−1(A) // Hn−1(X) // · · · .

Exercises

Exercise 11.7. Verify Lemma 11.6

Exercise 11.8. (a) Use the Mayer-Vietoris sequence to compute the homology groups of the
projective plane P , the Klein bottle K, and the torus T . (The projective plane is obtained by
sewing a disk onto a Möbius band along their boundaries. The Klein bottle is obtained either
by sewing two Möbius bands together, or by sewing the two boundary components of a cylinder
together in a funny way. A torus is obtained by sewing the boundary components of a cylinder
together in a less funny way. In each case, it’s a good idea to give yourself a hem: glue open
“collars” together.)
(b) Hopefully you computed that H2(T ) is an infinite cyclic group. Say something sensible about
whether the “fundamental class” you constructed in Exercise 2.2 is indeed a generator of that abelian
group.

Exercise 11.9. State and prove a version of the Mayer-Vietoris long exact sequence for relative
homology.

12 Subdivision

We will begin the proof of the locality principle today, and finish it in the next lecture. The key is
a process of subdivision of singular simplices. It will use the “cone construction” b∗ from Lecture 5.
The cone construction dealt with a region X in Euclidean space, star-shaped with respect to b ∈ X,
and gave a chain-homotopy between the identity and the “constant map” on S∗(X):

db∗+b∗ d = 1− ηbε

where ε : S∗(X)→ Z is the augmentation and ηb : Z→ S∗(X) sends 1 to the constant 0-chain c0
b .

The cone construction can be used to “subdivide” an “affine simplex.” An affine simplex is the
convex hull of a finite set of points in Euclidean space. To make this non-degenerate, assume that
the points v0, v1, . . . , vn, have the property that {v1 − v0, . . . , vn − v0} is linearly independent. The
barycenter of this simplex is the center of mass of the vertices,

b =
1

n+ 1

∑
vi .
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Start with n = 1. To subdivide a 1-simplex, just cut it in half. For the 2-simplex, look at the
subdivision of each face, and form the cone of them with the barycenter of the 2-simplex. This gives
us a decomposition of the 2-simplex into six sub-simplices.

We want to formalize this process, and extend it to singular simplices (using naturality, of
course). Define a natural transformation

$ : Sn(X)→ Sn(X) ,

the subdivision operator, by defining it first on the standard n-simplex, namely by specifying what
$(ιn) is where ιn : ∆n → ∆n is the universal n-simplex, and then extending by naturality:

$(σ) = σ∗$(ιn) .

Here’s the definition. When n = 0, define $ to be the identity; i.e., $ι0 = ι0. For n > 0, define

$ιn = bn∗ $dιn

where bn is the barycenter of ∆n. This makes a lot of sense if you draw a picture, and it’s a very
clever definition that captures the geometry we described.

The dollar sign symbol is a little odd, but consider: it derives from the symbol for the Spanish
piece of eight, which was meant to be subdivided (so for example two bits is a quarter).

Here’s what we’ll prove.

Proposition 12.1. $ is a natural chain map S∗(X)→ S∗(X) that is naturally chain-homotopic to
the identity.

Proof. Let’s begin by proving that it’s a chain map. We’ll use induction on n. It’s enough to show
that d$ιn = $dιn, because then, for any n-simplex σ,

d$σ = d$σ∗ιn = σ∗d$ιn = σ∗$dιn = $dσ∗ιn = $dσ .

Dimension zero is easy: since S−1 = 0, d$ι0 and $dι0 are both zero and hence equal.
For n ≥ 1, we want to compute d$ιn. Using the fact that b∗ is a chain homotopy, we compute:

d$ιn = d(bn∗ $dιn)

= (1− ηbε− bn∗ d)($dιn)

The map ε here is nonzero when n = 1, but

ηbε$dι1 = ηbε$(c0
1 − c0

0) = ηbε(c
0
1 − c0

0) = 0 ,
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since ε takes sums of coefficients. So the ηbε term drops out for any n ≥ 1. Now we can continue,
using the inductive hypothesis:

d$ιn = (1− bn∗ d)($dιn)

= $dιn − bn∗ d$dιn

= $dιn − bn$d2ιn

= $dιn

because d2 = 0. So $ is a chain map.
To define the chain homotopy T , we’ll just write down a formula and then justify the choice.

Making use of naturality, it suffices to define Tιn. Here it is:

Tιn = bn∗ ($ιn − ιn − Tdιn) ∈ Sn+1(∆n) .

This formula is inductive. The expression Tdιn is defined using naturality of T . When n = 0 the
right hand side is 0, and this starts the induction.

Once again, we’re going to check that T is a chain homotopy by induction, and, again, we need
to check only on the universal case.

When n = 0, it’s true that dT ι0− Tdι0 = $ι0− ι0 since Tι0 = 0 and $ι0 = ι0. Now let’s assume
that dTc− Tdc = $c− c for every (n− 1)-chain c. Start by computing dT ιn:

dT ιn = d(bn∗ ($ιn − ιn − Tdιn))

= (1− bn∗ d)($ιn − ιn − Tdιn)

= $ιn − ιn − Tdιn − bn∗ (d$ιn − dιn − dTdιn)

All we want now is that bn∗(d$ιn−dιn−dTdιn) = 0. We can do this using the inductive hypothesis,
because dιn is in dimension n− 1. Compute:

dTdιn = −Td(dιn) + $dιn − dιn
= $dιn − dιn
= d$ιn − dιn .

This means that d$ιn − dιn − dTdιn = 0, so T is indeed a chain homotopy.

Exercises

Exercise 12.2. The constructions sketched in Exercise 11.8 are examples of the following general
procedure. Take two closed surfaces, Σ1 and Σ2, cut a disk out from each one, and glue them together
along the hem. This is the connected sum Σ1#Σ2. Write T1 for the torus, and Tg = T1#Tg−1. Write
P1 for the projective plane, and Pg = P1#Pg−1. A theorem of Rado (e.g. [35]) asserts that this is
a complete list of compact connected 2-manifolds.
(a) What is the Klein bottle, in this notation?
(b) Complete the work from Exercise 11.8: compute the homology groups of these closed surfaces.
Show that H1(Σ1#Σ2)∼=H1(Σ1)⊕H1(Σ2).

13 Proof of the locality principle

We have constructed the subdivision operator $ : S∗(X)→ S∗(X), with the idea that it will shrink
chains and by iteration eventually render any chain A-small. Does $ succeed in making simplices
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smaller? Let’s look first at the affine case. Recall that the “diameter” of a metric space X is given
by

diam(X) = sup{d(x, y) : x, y ∈ X} .

Lemma 13.1. Let σ be an affine n-simplex. Its diameter is the maximum distance between vertices.
Let τ be the image of an n-simplex in $σ. It is another affine n-simplex, and diam(τ) ≤ n

n+1diam(σ).

Proof. Suppose that the vertices of σ are v0, v1, . . . , vn. The simplex is the convex hull of its verticies,
so its diameter is the maximal distance between verticies. Let b be the barycenter of σ, and write
the vertices of τ as w0 = b, w1, . . . , wn. We want to estimate |wi − wj |. First, compute

|b− vi| =
∣∣∣∣v0 + · · ·+ vn − (n+ 1)vi

n+ 1

∣∣∣∣ =

∣∣∣∣(v0 − vi) + (v1 − vi) + · · ·+ (vn − vi)
n+ 1

∣∣∣∣ .
One of the terms in the numerator is zero, so we can continue:

|b− vi| ≤
n

n+ 1
max
i,j
|vi − vj | =

n

n+ 1
diam(σ)

Since wi ∈ σ,
|b− wi| ≤ max

i
|b− vi| ≤

n

n+ 1
diam(σ) .

For the other cases, we use induction: The wi for i > 0 are the vertices of a simplex in $dσ, so

|wi − wj | ≤ diam(simplex in $dσ) ≤ n− 1

n
max
k
{diam(dkσ)} ≤ n

n+ 1
diam(σ) .

Now let’s transfer this calculation to singular simplices in a space X equipped with a cover A.

Lemma 13.2. For any singular chain c, some iterate of the subdivision operator sends c to an
A-small chain.

Proof. We may assume that c is a single simplex σ : ∆n → X, because in general you just take the
largest of the iterates of $ needed to send the simplices in c to a A-small chains. We now encounter
again the great virtue of singular homology: We pull A back to a cover of the standard simplex.
Define an open cover of ∆n by

U = {σ−1(Int(A)) : A ∈ A} .

The space ∆n is a compact metric space, and so is subject to the Lebesgue covering lemma, which
we apply to the open cover U to finish the proof.

Lemma 13.3 (Lebesgue covering lemma; e.g. [10, I.9.11]). Let M be a compact metric space, and
let U be an open cover. Then there is ε > 0 such that for all x ∈M , Bε(x) ⊆ U for some U ∈ U.

So iterating the subdivision operator does produce small chains. The remaining ingredient in
the proof of the Locality Principal is now the following observation.

Lemma 13.4. For any k ≥ 1, $k ' 1 : S∗(X)→ S∗(X).

Proof. We construct Tk such that dTk + Tkd = $k − 1. To begin, we take T1 = T , the chain
homotopy from Proposition 12.1, since dT + Td = $ − 1. Let’s apply $ to this equation. We get
$dT + $Td = $2 − $. Sum up these two equations to get

dT + Td+ $dT + $Td = $2 − 1 ,
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which simplifies to
d($ + 1)T + ($ + 1)Td = $2 − 1

since $d = d$.
So define T2 = ($ + 1)T . Continuing, you see that we can define

Tk = ($k−1 + $k−2 + · · ·+ 1)T .

We are now in position to prove

Theorem 13.5 (The locality principle). Let A be a cover of a space X. The inclusion SA
∗ (X) ⊆

S∗(X) is a quasi-isomorphism; that is, HA
∗ (X)→ H∗(X) is an isomorphism.

Proof. To prove surjectivity let c be an n-cycle in X. We want to find an A-small n-cycle that
is homologous to c. There’s only one thing to do. Pick k such that $kc is A-small. It is a cycle
because because $k is a chain map. I want to compare this new cycle with c. That’s what the chain
homotopy Tk is designed for:

$kc− c = dTkc+ Tkdc = dTkc

since c is a cycle. So $kc and c are homologous.
Now for injectivity. Suppose c is a cycle in SAn (X) such that c = db for some b ∈ Sn+1(X). We

want c to also be a boundary of an A-small chain. Use the chain homotopy Tk again: Suppose that
k is such that $kb is A-small. Compute:

d$kb− c = d($k − 1)b = d(dTk + Tkd)b = dTkc

so
c = d$kb− dTkc = d($kb− Tkc) .

Now $kb is A-small, by choice of k. I claim that Tkc is also A-small. It’s enough to show that Tkσ
is A-small if σ is. We know that σ = σ∗ιn. Because σ is A-small, we know that σ : ∆n → X is the
composition i∗σ where σ : ∆n → A and i : A → X is the inclusion of some A ∈ A. By naturality,
then, Tkσ = Tki∗σ = i∗Tkσ, which is certainly A-small.

This completes the proof of the Eilenberg Steenrod axioms for singular homology. In the next
chapter, we will develop a variety of practical tools, using these axioms to compute the singular
homology of many spaces.

Exercises

Exercise 13.6. Let A be a cover of a space X. For any simplex in X, let k(σ) be the smallest
integer such that $kσ is A-small. Define a map S∗(X) → SA∗ (X) by sending each simplex σ to
$k(σ)σ. Show that this defines a homotopy inverse of the inclusion map.
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Chapter 2

Computational methods

14 CW complexes I

There are various ways to model geometrically interesting spaces. Manifolds provide one important
model, well suited to analysis. Another model is given by simplicial complexes. That theory is very
combinatorial, and constructing a simplicial complex model for a given space involves making a lot
of choices that are combinatorial rather than topological in character. We won’t discuss simplicial
complexes further in this course; we refer you to [50] for example for a treatment of them. A more
flexible model, one more closely reflecting topological information, is provided by the theory of CW
complexes.

In building up a space as a CW complex, we will successively “glue” “cells,” dimension by
dimension, onto what has been already built. This gluing process is a general construction.

Suppose we have a pair (B,A), and a map α : A→ X. Define a space X ∪α B (or X ∪A B) in
the diagram

A
α //� _

��

X

��
B // X ∪α B

by
X ∪α B = X qB/ ∼

where the equivalence relation on the coproduct is generated by requiring that a ∼ α(a) for all
a ∈ A. We say that we have “attached B to X along α.”

There are two kinds of equivalence classes in X ∪α B: (1) singletons containing elements of
B−A, and (2) {x}qα−1(x) for x ∈ X. The space X ∪αB is characterized by a universal property:
any solid-arrow commutative diagram

A
α //� _

��

X

j
��

j

��

B //

))

X ∪α B

##
Y

can be uniquely filled in. It’s a “push-out.”

41
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Example 14.1. With X = ∗, ∗ ∪A B = B/A.

Example 14.2. With A = ∅, X ∪∅ B is the coproduct X qB.

Example 14.3. With both,
B/∅ = ∗ ∪∅ B = ∗ qB .

For example, ∅/∅ = ∗. This is creation from nothing! We won’t get into the religious ramifications.

Example 14.4 (Attaching a cell). A basic collection of pairs of spaces is given by the disks relative
to their boundaries: (Dn, Sn−1). (Recall that S−1 = ∅.) In this context, Dn is called an “n-cell,”
and a map α : Sn−1 → X allows us to attach an n-cell to X, to form

Sn−1 α //� _

��

X

��
Dn // X ∪α Dn

You might want to generalize this a little bit, and attach a bunch of n-cells all at once:

∐
i∈In S

n−1
i

α //
� _

��

X

��∐
i∈In D

n
i

// X ∪α
∐
i∈In D

n
i

What are some examples? When n = 0, (D0, S−1) = (∗,∅), so you are just adding a discrete
set to X:

X ∪α
∐
i∈I0D

0 = X qA

More interesting: Let’s attach two 1-cells to a point:

S0 q S0 α //� _

��

∗

��
D1 qD1 // ∗ ∪α (D1 qD1)

Again there’s just one choice for α, and ∗ ∪α (D1 q D1) is a figure 8, because you start with two
1-disks and identify the four boundary points together. Let me write S1 ∨ S1 for this space. We
can go on and attach a single 2-cell to manufacture a torus. Think of the figure 8 as the perimeter
of a square with opposite sides identified.
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The inside of the square is a 2-cell, attached to the perimeter by a map I’ll denote by aba−1b−1:

S1 aba−1b−1
//� _

��

S1 ∨ S1

��
D2 // (S1 ∨ S1) ∪aba−1b−1 D2 = T 2 .

This example illuminates the following definition.

Definition 14.5. A CW complex is a space X equipped with a sequence of subspaces

∅ = Sk−1X ⊆ Sk0X ⊆ Sk1X ⊆ · · · ⊆ X

such that

• X is the union of the SknX’s, and

• for all n, there is a pushout diagram like this:∐
i∈In S

n−1
i

αn //
� _

��

Skn−1X

��∐
i∈In D

n
i

βn // SknX .

The subspace SknX is the n-skeleton of X. Sometimes it’s convenient to use the alternate
notation Xn for the n-skeleton. The first condition is intended topologically, so that a subset of X
is open if and only if its intersection with each SknX is open; or, equivalently, a map f : X → Y is
continuous if and only if its restriction to each SknX is continuous. The maps αn are the attaching
maps and the maps βn are characteristic maps.

The sequence of skeleta determines the CW structure. A cell structure consists of a choice of
attaching and characteristic maps. Generally a CW complex has many cell structures; it’s a bit like
choosing a basis in a vector space.

Example 14.6. We just constructed the torus as a CW complex with Sk0T
2 = ∗, Sk1T

2 = S1∨S1,
and Sk2T

2 = T 2.

Definition 14.7. A CW complex is finite-dimensional if SknX = X for some n; of finite type if
each In is finite, i.e., finitely many cell in each dimension; and finite if it is finite-dimensional and
of finite type.

The dimension of a CW complex is the largest n for which there are n-cells. This is not obviously
a topological invariant, but, have no fear, it turns out that it is.

In “CW,” the “C” is for cell, and the “W” is for weak, because of the topology on a CW complex.
This definition is due to J. H. C. Whitehead (1904–1960, Oxford University, one of the founding
fathers of both homotopy theory and geometric topology). Here are a couple of important facts
about them.

Theorem 14.8. (1) Any CW complex is Hausdorff, and it is compact if and only if it is finite.
(2) Any compact smooth manifold admits a CW structure.

Proof. See [10] Prop. IV.8.1, and [24] Prop. A.3.
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A cell of a CW complex is the image of a characteristic map. The interior of Dn is Dn\Sn−1

(so for example the interior of D0 is just D0), and a cell interior is the image of the interior of a
disk under a characteristic map. Neglecting the topology, a CW complex is the disjoint union of its
cell interiors. A CW complex is locally finite if each cell meets only finitely many other cells. An
infinite bouquet of circles is thus not locally finite.

Theorem 14.9. A CW complex is locally compact if and only if it is locally finite. A connected
CW complex is metrizable if and only if it is locally finite.

Proof. See [20], Prop. 1.5.17.

Exercises

Exercise 14.10. Provide the Euclidean space Rn with the structure of a CW complex.

Exercise 14.11. Provide each compact connected surface with the structure of a CW complex with
just a single 0-cell and a single 0-cell and a single 2-cell.

15 CW complexes II

There are a few more general things to say about CW complexes, and some important examples.

Definition 15.1. Let X be a CW complex with a cell structure {βi : Dn
i → Xn : i ∈ In, n ≥ 0}.

A subcomplex of X (with this cell structure) is a subspace Y ⊆ X such that for all n, there is a
subset Jn of In such that Yn = Y ∩Xn provides Y with a CW structure with characteristic maps
{βj : j ∈ Jn, n ≥ 0}.

Example 15.2. SknX ⊆ X is a subcomplex.

Proposition 15.3. Let X be a CW complex with a chosen cell structure. Any compact subspace of
X lies in some finite subcomplex.

Proof. See [10], p. 196.

Remark 15.4. For fixed cell structures, unions and intersections of subcomplexes are subcomplexes.

The n-sphere Sn (for n > 0) admits a very simple CW structure: Let ∗ = Sk0(Sn) = Sk1(Sn) =
· · · = Skn−1(Sn), and attach an n-cell using the unique map Sn−1 → ∗. This is a minimal CW
structure – you need at least two cells to build Sn.

This is great – much simpler than the simplest construction of Sn as a simplicial complex, for
example – but it is not ideal for all applications. Here’s another CW structure on Sn. Regard Sn

as the unit sphere in Rn+1, filter the Euclidean space by leading subspaces Rk = 〈e1, . . . , ek〉, and
define

SkkS
n = Sn ∩ Rk+1 = Sk .
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Now there are two k-cells for each k with 0 ≤ k ≤ n, given by the two hemispheres of Sk. For
each k there are two characteristic maps,

uk, `k : Dk → Sk

defining the upper and lower hemispheres:

uk(x) = (x,
√

1− |x|2) , `k(x) = (x,−
√

1− |x|2) .

Note that if |x| = 1 then |uk(x)| = |`k(x)| = 1, so each characteristic map restricts on the boundary
to a map to Sk−1 – to the same map, in fact! – and these restrictions serve as attaching maps. This
cell structure has the advantage that Sn−1 is a subcomplex of Sn.

The case n = ∞ is allowed here. Then R∞ denotes the countably infinite dimensional inner
product space that is the topological union of the leading subspaces Rn. The CW complex S∞ is
of finite type but not finite dimensional. It has the following interesting property. We know that
Sn is not contractible for any finite n (because H̃∗(Sn) 6= 0), but:

Proposition 15.5. S∞ is contractible.

Proof. This is an example of a “swindle” (another concept introduced by Eilenberg), making use
of infinite dimensionality. Let T : R∞ → R∞ send (x1, x2, . . .) to (0, x1, x2, . . .). This sends S∞

to itself. The location of the leading nonzero entry is different for x and Tx, so the line segment
joining x to Tx doesn’t pass through the origin. Therefore

x 7→ tx+ (1− t)Tx
|tx+ (1− t)Tx|

provides a homotopy 1 ' T . On the other hand, T is homotopic to the constant map with value
(1, 0, 0, . . .), again by an affine homotopy.

This “inefficient” CW structure on Sn has a second advantage: it’s equivariant with respect to
the antipodal involution. This provides us with a CW structure on the orbit space for this action.
This is the real projective space of dimension k: RPk = Sk/ ∼ where x ∼ −x. The quotient map
π : Sk → RPk is a double cover, identifying upper and lower hemispheres. The inclusion of one
sphere in the next is compatible with this equivalence relation, and gives us “linear” embeddings
RPk−1 ⊆ RPk. This suggests that

∅ ⊆ RP0 ⊆ RP1 ⊆ · · · ⊆ RPn

might serve as a CW filtration. Indeed, for each k,

Sk−1 //

π
��

Dk

u
��

RPk−1 // RPk
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is a pushout: A line in Rk+1 either lies in Rk or is determined by a unique point in the upper
hemisphere of Sk.

A CW structure on the Grassmannian

More generally, the Grassmannian Grk(Rn) of k dimensional vector subspaces of Rn admits a
beautiful and explicit CW structure, which we describe following [46].

The Grassmannian is very symmetric—it has a transitive action by the Lie group SO(n) of
rotations in Rn—but to define a CW structure on it we must break this symmetry. This symmetry
breaking occurs by picking a complete flag in Rn. Any one will do (and the space of complete flags
is acted on freely and transitively by SO(n)), so let’s just agree to use the flag determined by the
standard ordered basis: so

0 = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn

where Ri is the “leading subspace,” spanned by {e1, . . . , ei}. The ith coordinate function xi maps
Ri surjectively to R with kernel Ri−1.

Let V ∈ Grk(Rn). Intersecting V with this flag gives a filtration of V by vector subspaces,

0 = V0 ⊆ V1 ⊆ · · · ⊆ V , Vi = V ∩ Ri .

It’s still the case that Vi−1 = ker(xi : Vi → R), but the restriction of xi to Vi is no longer necessarily
surjective. When it’s zero, Vi−1 = Vi. When it’s surjective, dimVi = 1 + dimVi−1.

The k-plane V determines a weakly increasing sequence of integers

0 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n− k

by requiring that i+ ai is the smallest index j for which dimVj = i. This sequence a = (a1, . . . , ak)
is the type of V . Write e̊(a) for the subset of Grk(Rn) consisting of all k-planes of type a. They will
be the cell interiors in a CW decomposition of Grk(Rn).

The flag determines a section of the projection Vk(Rn) → Grk(Rn) (which, to be sure, is only
continuous when restricted to a fixed e̊(a)), by assigning to a k-plane V the frame v1, . . . , vk,
described as follows. The first vector, v1, is the unit basis vector for V1+a1 (which is one-dimensional)
with positive (1 + a1)st entry; the next vector, v2, is the unit vector in V2+a2 that is orthogonal to
v1 and has positive (2 + a2)nd entry; etc. This is the “column reduction” process of linear algebra.

For example, each 2-plane in R4 is spanned by a unique (orthonormal) frame forming the columns
in a matrix of exactly one of the shapes

p ∗
p

 ,

p ∗
∗
p

 ,

p ∗
∗
∗
p

 ,

∗ ∗
p ∗

p

 ,

∗ ∗
p ∗
∗
p

 ,

∗ ∗
∗ ∗
p ∗

p

 ,
where p denotes a positive real, ∗ any real, and empty spaces are 0. The types are

(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2) .

As V runs over k-planes in e̊(a), the vector v1 has a1 degrees of freedom: the first a1 entries can
make up any vector of norm less than 1, and the bottom entry (marked p above) is then determined.
The vector v2 has 2 + a2 nonzero entries, but is subject to the two conditions that it be orthogonal
to v1 and of unit length; so it enjoys a2 degrees of freedom. We thus expect dim e̊(a) = ‖a‖, where

‖a‖ = a1 + · · ·+ ak .
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Therefore we define
SkdGrk(Rn) =

⋃
‖a‖≤d

e̊(a) .

Theorem 15.6. This filtration defines a finite CW structure on Grk(Rn).

Proof. We will construct a pushout diagram∐
‖a‖=d ∂e(a)

α

��

//
∐
‖a‖=d e(a)

β

��
Skd−1

// Skd

and show that for each a, (e(a), ∂e(a))∼=(Dd, Sd−1).
Define e(a) to be the closure of e̊(a) regarded as a subset of the Stiefel variety Vk(Rn):

e(a) = {(v1, . . . , vk) : vi ∈ Rn , vi · vj = δi,j , vi · bi ≥ 0}

where bi = ei+ai is the ith “pivotal” basis vector. The subspace ∂e(a) is the subset where some
vi · bi = 0. The map β is given on e(a) by sending (v1, . . . , vk) to its span.

What remains to be proved is that e(a)∼=Dd. We will prove that e(a) is homeomorphic to a
product of the disks

Di(a) = {v ∈ Ri+ai : ‖v‖ = 1 , bj · v = 0 for j < i , bi · v ≥ 0} .

Do this by induction on k. When k = 1, e(a1) = D1(a1). So we now need to construct a
homeomorphism

e(a′)×Dk(a)→ e(a) ,

where a′ = (a1, . . . , ak−1). View an element of the source space here as an n × k matrix (V ′, v).
In it, the last column, v, is zero in the pivotal entries – that is, it’s orthogonal to the pivotal basis
vectors bi for i < k – but is not orthogonal to the columns of V ′; while in the target the last column
has become orthogonal to the columns in V ′. This homeomorphism will have the form

(V ′, v) 7→ (V ′, TV ′v) , V ′ = (v1, . . . , vk−1)

where TV ′ is an n× n rotation matrix such that

TV ′bi = vi for i < k and TV ′x− x ∈ R(k−1)+ak−1 for x ∈ Rk+ak .

Then for i < k
vi · TV ′v = TV ′bi · TV ′v = bi · v = 0 ,

and, since bk is orthogonal to R(k−1)+ak−1 ,

vk · TV ′v = bk · v ≥ 0 ,

so this is a homeomorphism to e(a).
The operator TV ′ is constructed as the composite

TV ′ = T (bk−1, vk−1) · · ·T (b2, v2)T (b1, v1)

where, for any two unit vectors b, v ∈ Rn with b+ v 6= 0, T (b, v) is the rotation matrix that sends b
to v and is the identity on the orthogonal complement of the span of b and v.
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Exercises

Exercise 15.7. Complex projective space CPn admits a CW structure in which Sk2k = Sk2k+1 =
CPk for 0 ≤ k ≤ n. Verify this by describing characteristic maps D2k → CPk.

Exercise 15.8. Provide a cell structure on the unit sphere S2n−1 ⊂ Cn that is equivariant with
respect to the action of the subgroup µp of pth roots of unity in C×. By this we mean: Each skeleton
is closed under the group action, and the characteristic maps can be grouped as equivariant maps
D → SkkS

2n−1, where D is a coproduct of copies of µp ×Dk in which µp acts trivially on the disk.
This is an example of a “G-CW complex,” a topic we will develop further in Lecture 56.

16 Homology of CW complexes

The skeleton filtration of a CW complex leads to a long exact sequence in homology, showing that
the relative homology H∗(Xk, Xk−1) controls how the homology changes when you pass from Xk−1

to Xk. What is this relative homology? If we pick a set of characteristic maps, we get the following
diagram. ∐

i∈Ik S
k−1
i
� � //

α

��

∐
i∈Ik D

k
i

//

��

∨
i∈Ik S

k
i

��
Xk−1

� � // Xk
// Xk/Xk−1

where
∨

is the wedge sum (disjoint union with all basepoints identified):
∨
i S

k
i is a “bouquet of

spheres.” The dotted map exists and is a homeomorphism.
Luckily, the inclusion Xk−1 ⊆ Xk satisfies what’s needed (Corollary 10.3) to conclude that

Hq(Xk, Xk−1)→ Hq(Xk/Xk−1, ∗) = Hq(Xk/Xk−1)

is an isomorphism. After all, Xk−1 is a deformation retract of the space you get from Xk by deleting
the center of each k-cell.

We know Hq(Xk/Xk−1) very well:

Hq(
∨
i∈Ik

Ski ) ∼=

{
Z〈Ik〉 q = k

0 q 6= k .

Moral: The relative homology Hk(Xk, Xk−1) keeps track of the k-cells of X.

Definition 16.1. The group of cellular n-chains in a CW complex X is

Ck(X) = Hk(Xk, Xk−1) .

A choice of k-cells determines a basis for this free abelian group:

Ck(X) ∼= Z〈Ik〉 .

If we put the fact that Hq(Xk, Xk−1) = 0 for q 6= k into the homology long exact sequence of
the pair, we find first that

Hq(Xk−1)
∼=−→ Hq(Xk) for q 6= k, k − 1 ,
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and then that there is an exact sequence

0→ Hk(Xk)→ Ck(X)→ Hk−1(Xk−1)→ Hk−1(Xk)→ 0 .

So if we fix a dimension q, and watch how Hq varies as we move through the skelata of X, we
find the following picture. First, H0(X0) surjects onto H0(X1), which is thereafter unchanged as
you go to larger skelata. Now fix q > 0. Since X0 is discrete, Hq(X0) = 0. Then Hq(Xk) continues
to be 0 till you get up to Xq. Hq(Xq) is a subgroup of the free abelian group Cq(X) and hence
is free abelian. Relations may get introduced into it when we pass to Xq+1; but thereafter all the
maps

Hq(Xq+1)→ Hq(Xq+2)→ · · ·

are isomorphisms. All the q-dimensional homology of X is created on Xq, and all the relations in
Hq(X) occur by Xq+1.

This stable value of Hq(Xk) maps isomorphically to Hq(X), even if X is infinite dimensional.
This is because the union of the images of any finite set of singular simplices in X is compact and so
lies in a finite subcomplex (Proposition 15.3) and in particular lies in a finite skeleton. So any chain
in X is the image of a chain in some skeleton. Since Hq(Xk)

∼=−→ Hq(Xk+1) for k > q, we find that
Hq(Xq) → Hq(X) is surjective. Similarly, if c ∈ Sq(Xk) is a boundary in X, then it’s a boundary
in X` for some ` ≥ k. This shows that the map Hq(Xq+1)→ Hq(X) is injective. We summarize:

Proposition 16.2. Let k, q ≥ 0. Then

Hq(Xk) = 0 for k < q

and

Hq(Xk)
∼=−→ Hq(X) for k > q .

In particular, Hq(X) = 0 if q exceeds the dimension of X.

We have defined the cellular n-chains of a CW complex X,

Cn(X) = Hn(Xn, Xn−1) ,

and found that it is the free abelian group on the set of n cells. We claim that these abelian groups
are related to each other; they form the groups in a chain complex.

What should the boundary of an n-cell be? The n-cell is represented by a characteristic map
Dn → Xn whose boundary is the attaching map α : Sn−1 → Xn−1. This is a lot of information,
and hard to interpret because Xn−1 is itself potentially a complicated space. But things get much
simpler if I pinch Xn−2 to a point. This suggests defining

d : Cn(X) = Hn(Xn, Xn−1)
∂n−1−−−→ Hn−1(Xn−1)

jn−1−−−→ Hn−1(Xn−1, Xn−2) = Cn−1(X) .
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The fact that d2 = 0 is embedded in the following large diagram, in which the two columns and
the central row are exact.

Cn+1(X) = Hn+1(Xn+1, Xn)

∂n
��

d

**

0 = Hn−1(Xn−2)

��
0 // Hn(Xn)

jn //

��

Cn(X) = Hn(Xn, Xn−1)
∂n−1 //

d

**

Hn−1(Xn−1)

jn−1

��
Hn(Xn+1)

��

Cn−1(X) = Hn−1(Xn−1, Xn−2)

0 = Hn(Xn+1, Xn)

Now, ∂n−1 ◦ jn = 0. So the composite of the diagonals is zero, i.e., d2 = 0, and we have a chain
complex! This is the cellular chain complex of X.

We should compute the homology of this chain complex, Hn(C∗(X)) = ker d/ im d. Now

ker d = ker(jn−1 ◦ ∂n−1) .

But jn−1 is injective, so
ker d = ker ∂n−1 = im jn = Hn(Xn) .

On the other hand
im d = jn(im ∂n) = im ∂n ⊆ Hn(Xn) .

So
Hn(C∗(X)) = Hn(Xn)/ im ∂n = Hn(Xn+1)

by exactness of the left column; but as we know this is exactly Hn(X)! We have proven the following
result.

Theorem 16.3. For a CW complex X, there is an isomorphism

H∗(C∗(X)) ∼= H∗(X)

natural with respect to filtration-preserving maps between CW complexes.

This has an immediate and surprisingly useful corollary.

Corollary 16.4. Suppose that the CW complex X has only even cells – that is, X2k ↪→ X2k+1 is
an isomorphism for all k. Then

H∗(X) ∼= C∗(X) .

That is, Hn(X) is trivial for n odd, it is free abelian for all n, and the rank of Hn(X) for n even is
the number of n-cells.

Example 16.5. Complex projective space CPn has a CW structure in which

Sk2kCPn = Sk2k+1CPn = CPk .

The attaching S2k−1 → CPk sends v ∈ S2k−1 ⊆ Ck to the complex line through v. So

Hk(CPn) =

{
Z for 0 ≤ k ≤ 2n, k even
0 otherwise .
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Remark 16.6. Notice that in our proof of Theorem 16.3 we used only properties contained in the
Eilenberg-Steenrod axioms. As a result, any construction of an ordinary homology theory satisfying
the Eilenberg-Steenrod axioms gives you the same values on CW complexes as singular homology.

Exercises

Exercise 16.7. Compute the homology of Gr2(C4).

Exercise 16.8. Let p, q ∈ Z, and let X be the 2-dimensional CW complex obtained by attaching
two 2-cells to S1 using maps of degree p and q. Compute π1(X) and H∗(X).

17 Real projective space

Let’s try to compute H∗(RPn). This computation will invoke a second way to think of the cellular
chain group Cn(X). Each cell has a characteristic map Dn → Xn, and we have the diagram∐

(Dn, Sn−1) //

''

(Xn, Xn−1)

��
(
∨
Sn, ∗).

We’ve shown that the vertical map induces an isomorphism in homology, and the diagonal does as
well. (For example, note that

∐
Dn has a CW structure in which the (n− 1)-skeleton is

∐
Sn−1.)

So
Hn(

∐
(Dn, Sn−1))

∼=−→ Cn(X).

We have a CW structure on RPn with Skk(RPn) = RPk; there is one k-cell – which we’ll
denote by ek – for each k between 0 and n. The attaching map of the n-cell is the double cover
π : Sn−1 → RPn−1. The cellular chain complex looks like this:

0 C0(RPn)oo C1(RPn)oo · · ·oo Cn(RPn)oo 0oo

0 Z〈e0〉oo Z〈e1〉d=0oo · · ·oo Z〈en〉oo 0oo

The first differential is zero because H0(RPn) = Z. For n > 1, the differential in the cellular chain
complex is given by the top row in the following commutative diagram, whose bottom row we will
proceed to explain.

Cn = Hn(RPn,RPn−1)
∂ // Hn−1(RPn−1) // Hn−1(RPn−1,RPn−2) = Cn−1

Hn(Dn, Sn−1)

∼=

OO

∂
∼=

// Hn−1(Sn−1)

π∗

OO

// Hn−1(Dn−1/Sn−2, ∗) .

∼=

OO

The right square arises from the commutative diagram

RPn−1 pinch // RPn−1/RPn−2

Sn−1

π

OO

// Sn−1/Sn−2 = Sn−1 ∨ Sn−1 // Sn−1 = Dn−1/Sn−2

∼=

OO
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One of the maps Sn−1 → Sn−1 from the wedge is the identity, and the other map is the antipodal
map α : Sn−1 → Sn−1. Write σ for a generator of Hn−1(Sn−1). Then Hn−1 applied to the bottom
path sends σ 7→ (σ, σ) 7→ σ + α∗σ. So we need to know the degree of the antipodal map on Sn−1.
The antipodal map reverses all n coordinates in Rn. Each reversal is a reflection, and acts on Sn−1

by a map of degree −1. So
degα = (−1)n .

Therefore the cellular complex of RPn is as follows:

dim −1 0 1 · · · n n+ 1 · · ·

0 Zoo Z
0oo · · ·2oo Z

2 or 0oo 0oo · · ·oo

.

The homology is then easy to read off.

Proposition 17.1. The homology of real projective space is as follows.

Hk(RPn) =


Z k = 0

Z k = n odd
Z/2Z k odd, 0 < k < n

0 otherwise .

Here’s a table. Missing entries are 0.

dim 0 1 2 3 4 5 · · ·

RP0 Z

RP1 Z Z

RP2 Z Z/2

RP3 Z Z/2 0 Z

RP4 Z Z/2 0 Z/2

RP5 Z Z/2 0 Z/2 0 Z

...
...

...
...

...
...

...

Summary: In real projective space, odd cells create new generators; even cells (except for the
zero-cell) create torsion in the previous dimension.

This example illustrates the significance of cellular homology, and, therefore, of singular homol-
ogy. A CW structure involves attaching maps∐

Sn−1 → Skn−1X .

Knowing these, up to homotopy, determines the full homotopy type of the CW complex. Homology
does not record all this information. Instead, it records only information about the composite
obtained by pinching out Skn−2X.∐

i∈In S
n−1
i

//

''

Skn−1X

��∨
j∈In−1

Sn−1
j .
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In Hn−1, the diagonal map induces a map ∂ : ZIn → ZIn−1 that is none other than the differential
in the cellular chain complex.

The moral: homology picks off only the “first order” structure of a CW complex.

Exercises

Exercise 17.2 (Lens spaces). Let p and q be relatively prime positive integers. Define a space
L(p, q) as the quotient of S3, the unit sphere in C2, by the action of the group of pth roots of unity
given by

ζ · (z1, z2) = (ζz1, ζ
qz2) .

Impose on L(p, q) the structure of a finite cell complex with one cell in each dimension between 0
and 3. The cell complex structure is just the filtration, but you should specify the characteristic
maps as well. Then compute the homology of L(p, q).

18 Euler characteristic and homology approximation

Theorem 18.1. Let X be a finite CW complex with ak k-cells. Then

χ(X) :=
∑

(−1)kak

depends only on the homotopy type of X; it is independent of the choice of CW structure.

This integer χ(X) is called the Euler characteristic of X. We will prove this theorem by show-
ing that χ(X) equals a number computed from the homology groups of X, which are themselves
homotopy invariants.

We’ll need a little bit of information about the structure of finitely generated abelian groups.
Let A be an abelian group. The set of torsion elements of A,

Tors(A) = {a ∈ A : na = 0 for some n 6= 0} ,

is a subgroup of A. A group is torsion free if Tors(A) = 0. For any A the quotient group A/Tors(A)
is torsion free.

For a general abelian group, that’s about all you can say. But now assume A is finitely generated.
Then Tors(A) is a finite abelian group and A/Tors(A) is a finitely generated free abelian group,
isomorphic to Zr for some integer r called the rank of A. Pick elements of A that map to a set
of generators of A/Tors(A), and use them to define a map A/TorsA → A splitting the projection
map. This shows that if A is finitely generated then

A ∼= Tors(A)⊕ Zr .

Lemma 18.2. Let 0 → A → B → C → 0 be a short exact sequence of finitely generated abelian
groups. Then

rankA− rankB + rankC = 0 .

Lemma 18.3. A finite abelian group A is isomorphic to

Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/ntZ

for a uniquely defined sequence of natural numbers n1, . . . , nt such that 2 ≤ n1|n2| · · · |nt.
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The ni are the “torsion coefficients” of A. The abelian group A cannot be generated by fewer
than t elements.

Theorem 18.4. Let X be a finite CW complex. Then

χ(X) =
∑
k

(−1)krankHk(X) .

Proof. Pick a CW structure with, say, ak k-cells for each k. We have the cellular chain complex
C∗. Write H∗, Z∗, and B∗ for the homology, the cycles, and the boundaries, in this chain complex.
From the definitions, we have two families of short exact sequences:

0→ Zk → Ck → Bk−1 → 0

and
0→ Bk → Zk → Hk → 0 .

Let’s use them and facts about rank to rewrite the alternating sum:∑
k

(−1)kak =
∑
k

(−1)krank(Ck)

=
∑
k

(−1)k(rank (Zk) + rank (Bk−1))

=
∑
k

(−1)k(rank (Bk) + rank (Hk) + rank (Bk−1))

The terms rankBk + rankBk−1 cancel because it’s an alternating sum. This leaves
∑

k(−1)krankHk.
But Hk

∼= Hsing
k (X).

In the early part of the 20th century, “homology groups” were not discussed. It was Emmy
Noether who first described things that way. Instead, people worked mainly with the sequence of
ranks,

βk = rankHk(X) ,

which are known (following Poincaré) as the Betti numbers of X.
Given a CW complexX of finite type, can we give a lower bound on the number of k-cells in terms

of the homology of X? Let’s see. Hk(X) is finitely generated because Ck(X)←↩ Zk(X)� Hk(X).
Thus

Hk(X)∼=Zr(k) ⊕
t(k)⊕
i=1

Z/ni(k)Z

where the n1(k), . . . , nt(k)(k) are the torsion coefficients of Hk(X) and r(k) is the rank. Note that
r(0) is the number of components, and t(k) = 0 for k ≤ 0.

The minimal chain complex with Hk = Zr and Hq = 0 for q 6= k is just the chain complex with 0
everywhere except for Zr in the kth degree. The minimal chain complex of free abelian groups with
Hk = Z/nZ and Hq = 0 for q 6= k is the chain complex with 0 everywhere except in dimensions
k+ 1 and k, where we have Z n−→ Z. These small complexes are called elementary chain complexes.

This implies that a lower bound on the number of k-cells is

r(k) + t(k) + t(k − 1) .

The first two terms correspond to generators for Hk, and the last to relations for Hk−1.
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These elementary chain complexes can be realized as the reduced cellular chains of CW complexes
(at least if k > 0). A wedge of r copies of Sk has a CW structure with one 0-cell and r k-cells, so
its cellular chain complex has Zr in dimension k and 0 in other positive dimensions. To construct
a CW complex with cellular chain complex given by Z n−→ Z in dimensions k + 1 and k and 0 in
other positive dimensions, start with Sk as k-skeleton and attach a (k + 1)-cell by a map of degree
n. For example, when k = 1 and n = 2, you have RP2. These CW complexes are called “Moore
spaces.” (John Moore (1923–2016) worked at Princeton. He was an MIT alumnus and my PhD
thesis advisor.)

This maximally efficient construction of a CW complex in a homotopy type can in fact be
achieved, at least in the simply connected case:

Theorem 18.5 (Homology approximation: Wall, [75]; see Exercise 51.8). Let X be a simply con-
nected CW complex of finite type. Then there exists a CW complex Y with r(k) + t(k) + t(k − 1)
k-cells, for all k, and a homotopy equivalence Y → X.

The construction of Moore spaces can be generalized:

Proposition 18.6. For any graded abelian group A∗ with Ak = 0 for k ≤ 1, there exists a simply
connected CW complex X with H̃∗(X) = A∗.

Proof. Let A be any abelian group. Pick generators for A. They determine a surjection from a free
abelian group F0. The kernel F1 of that surjection is free, being a subgroup of a free abelian group.
Write G0 for a basis of F0, and G1 for a basis of F1.

Let k ≥ 2. Define Xk to be the wedge of |G0| copies of Sk, so Hk(Xk) = ZG0. Now define an
attaching map

α :
∐
b∈G1

Skb → Xk

by specifying it on each summand Skb . The generator b ∈ G1 is given by a linear combination of the
generators of F0, say

b =
s∑
i=1

niai .

We want to mimic this in topology. To do this, first map Sk →
∨s Sk by pinching (s− 1) tangent

(k − 1)-spheres to a point. In homology, this map takes a generator of Hk(S
k) to the sum of the

generators of the k-dimensional homology of the various spheres in the bouquet. Map the ith sphere
in the wedge to Skai ⊆ Xk by a map of degree ni. The map on the summand Skb is then the composite
of these two maps,

Skb →
s∨
i=1

Sk →
∨
a∈G0

Ska = Xk .

Altogether, we get a map α that realizes F1 → F0 in Hk. So using it as an attaching map produces
a CW complex X with H̃q(X) = A for q = k and 0 otherwise. Write M(A, k) for a CW complex
produced in this way.

Finally, given a graded abelian group A∗, form the wedge over k of the spaces M(Ak, k).

Such a space M(A, k), simply connected with H̃q(M(A, k)) = A for q = k and 0 otherwise, is
called a Moore space of type (A, k) [49]. The notation is a bit deceptive, since (as we’ll see) there is
no functor M(−, k) : Ab→ HoTop∗ splitting Hk, for any k ≥ 2 [66]. In fact at this point it’s not
clear that these conditions determine the homotopy type of a CW complex, though this will follow
from the Whitehead theorem 46.8.
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On the other hand, if π is any group, this construction (with groups rather than abelian groups)
may be used to construct a connected 2-dimensional CW complex with fundamental group π, by
the van Kampen Theorem.

Exercises

Exercise 18.7. Show that the Euler characteristic is a “cut-and-paste” invariant, in the following
sense. Let X and Y be subcomplexes of the finite CW complex X ∪ Y . Show that

χ(X ∪ Y ) = χ(X) + χ(Y )− χ(X ∩ Y ) .

19 Coefficients

Abelian groups can be quite complicated, even finitely generated ones. Vector spaces over a field
are so much simpler! A vector space is determined up to isomorphism by a single cardinality, its
dimension. Wouldn’t it be great to have a version of homology that took values in the category of
vector spaces over a field?

We can do this, and more. Let R be any commutative ring at all. Instead of forming the free
abelian group on Sin∗(X), we could just as well form the free R-module:

S∗(X;R) = RSin∗(X)

This gives, first, a simplicial object in the category of R-modules. Forming the alternating sum of
the face maps produces a chain complex of R-modules: Sn(X;R) is an R-module for each n, and
d : Sn(X;R)→ Sn−1(X;R) is an R-module homomorphism. The homology groups are then again
R-modules:

Hn(X;R) =
ker(d : Sn(X;R)→ Sn−1(X;R))

im(d : Sn+1(X;R)→ Sn(X;R))
.

This is the singular homology of X with coefficients in the commutative ring R. It satisfies all
the Eilenberg-Steenrod axioms, with

Hn(∗;R) =

{
R for n = 0

0 otherwise .

(We could actually have replaced the ring R by any abelian group here, but this will become much
clearer after we have the tensor product as a tool.) This means that all the work we have done
for “integral homology” carries over to homology with any coefficients. In particular, if X is a
CW complex we have the cellular homology with coefficients in R, C∗(X;R), and its homology is
isomorphic to H∗(X;R).

The coefficient rings that are most important in algebraic topology are simple ones: the integers
and the prime fields Fp and Q; almost always a PID.

As an experiment, let’s compute H∗(RPn;R) for various rings R. Let’s start with R = F2, the
field with 2 elements. This is a favorite among algebraic topologists, because using it for coefficients
eliminates all sign issues. The cellular chain complex has Ck(RPn;F2) = F2 for 0 ≤ k ≤ n, and the
differential alternates between multiplication by 2 and by 0. But in F2, 2 = 0: so d = 0, and the
cellular chains coincide with the homology:

Hk(RPn;F2) =

{
F2 for 0 ≤ k ≤ n
0 otherwise .
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On the other hand, suppose that R is a ring in which 2 is invertible. The universal case is Z[1/2],
but any subring of the rationals containing 1/2 would do just as well, as would Fp for p odd. Now
the cellular chain complex (in dimensions 0 through n) looks like

R
0←− R

∼=←− R 0←− R
∼=←− · · ·

∼=←− R

for n even, and
R

0←− R
∼=←− R 0←− R

∼=←− · · · 0←− R

for n odd. Therefore for n even

Hk(RPn;R) =

{
R for k = 0

0 otherwise

and for n odd

Hk(RPn;R) =


R for k = 0

R for k = n

0 otherwise .

You get a much simpler result: Away from 2, even-dimensional projective spaces look like points
and odd-dimensional projective spaces look like spheres!

One can generalize this process a little bit, and allow coefficients not just in a commutative ring,
but more generally in a module M over a commutative ring; in particular, in any abelian group.
This is most cleanly done using the mechanism of the tensor product. That mechanism will also let
us address the following natural question:

Question 19.1. Given H∗(X;R), can we deduce H∗(X;M) for an R-module M?

The answer is called the “universal coefficient theorem.” We’ll spend a few days developing what
we need to talk about this.

Exercises

Exercise 19.2. Let X be a finite CW complex. Show that for any field F ,

χ(X) =
∑

(−1)k dimF Hk(X;F ) .

Exercise 19.3. Let p be a prime number. Give an example of two maps f, g : X → Y inducing
the same map on integral homology but not homology with coeffients in Fp (and that are therefore
not homotopic).

20 Tensor product

The category of R-modules is what might be called a “categorical ring,” in which addition corre-
sponds to the direct sum, the zero element is the zero module, 1 is R itself, and multiplication is
. . . well, the subject for today. We care about the tensor product for two reasons: First, it allows us
to deal smoothly with bilinear maps such as the cross-product, and ultimately compute the homol-
ogy of a product in terms of the homology of the factors. Second, and of more immediate interest,
it will allow us relate homology with coefficients in an any R-module to homology with coefficients
in the PID R; for example, relate H∗(X;M) to H∗(X), where M is any abelian group.

Let’s begin by recalling the definition of a bilinear map over a commutative ring R.
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Definition 20.1. Given three R-modules, M,N,P , a bilinear map (or, to be explicit, an R-bilinear
map) is a function β : M ×N → P that is R-linear separately in each variable; that is:

β(x+ x′, y) = β(x, y) + β(x′, y) , β(x, y + y′) = β(x, y) + β(x, y′) ,

and
β(rx, y) = rβ(x, y) , β(x, ry) = rβ(x, y) ,

for x, x′ ∈M , y, y′ ∈ N , and r ∈ R.

Of course, if R is the ring of integers then the second pair of identities follows from the first pair.

Example 20.2. Rn × Rn → R given by the dot product is an R-bilinear map. The cross product
R3 × R3 → R3 is R-bilinear. If R is any ring, the multiplication R × R → R is Z-bilinear, but is
R-bilinear if and only if the ring is commutative.

Wouldn’t it be great to reduce stuff about bilinear maps to linear maps? We’re going to do this
by means of a universal property.

Definition 20.3. Let M,N be R-modules. A tensor product of M and N is an R-module P and a
bilinear map β0 : M ×N → P such that for every R-bilinear map β : M ×N → Q there is a unique
factorization

M ×N β0 //

β

##

P

f
��
Q

through an R-module homomorphism f .

We should have pointed out that a composition like f ◦ β0 is indeed again R-bilinear; but this
is easy to check.

So β0 is a “universal” bilinear map out ofM×N . Instead of β0 we’re going to write ⊗ : M×N →
P . This means that β(x, y) = f(x⊗ y) in the above diagram. There are lots of things to say about
this. When you have something that is defined by means of a universal property, you know that
it’s unique . . . but you still have to check that it exists!

Construction 20.4. Let’s think about how to construct a univeral R-bilinear map out of M ×N .
Let β : M × N → Q be any R-bilinear map. This β isn’t linear. Maybe we should first extend it
to a linear map. There is a unique R-linear extension over the free R-module R〈M ×N〉 generated
by the set M ×N :

M ×N β //

[−]

&&

Q

R〈M ×N〉

β

::

The map [−], including a basis, isn’t bilinear. We should quotient R〈M ×N〉 by a submodule S of
relations to make it bilinear. So S is the sub R-module generated by the four families of elements
(corresponding to the four relations in the definition of R-bilinearity):

1. [(x+ x′, y)]− [(x, y)]− [(x′, y)]

2. [(x, y + y′)]− [(x, y)]− [(x, y′)]
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3. [(rx, y)]− r[(x, y)]

4. [(x, ry)]− r[(x, y)]

for x, x′ ∈ M , y, y′ ∈ N , and r ∈ R. Now the composite M × N → R〈M × N〉/S is R-bilinear -
we’ve quotiented out by all things that prevented it from being so! And the map β : R〈M×N〉 → Q

factors as R〈M ×N〉 → R〈M ×N〉/S f−→ Q, where f is R-linear, and uniquely because the map to
the quotient is surjective. This completes the construction.

If you find yourself using this construction, stop and think about what you’re doing. You’re
never going to use this construction to compute anything. Here’s an example: For any abelian
group A,

A× Z/nZ→ A/nA , (a, b) 7→ ba mod nA

is clearly bilinear, and is universal as such. Just look: If β : A × Z/nZ → Q is bilinear then
β(na, b) = nβ(a, b) = β(a, nb) = β(a, 0) = 0, so β factors through A/nA; and A × Z/nZ → A/nA
is surjective. So A⊗ Z/nZ = A/nA.

Remark 20.5. The image of M ×N in R〈M ×N〉/S generates it as an R-module. These elements
x⊗ y are called “decomposable tensors.”

What are the properties of such a universal bilinear map?

Property 20.6 (Uniqueness). Suppose β0 : M ×N → P and β′0 : M ×N → P ′ are both universal.
Then there’s a linear map f : P → P ′ such that β′0 = fβ0 and a linear map f ′ : P ′ → P such that
β0 = f ′β′0. The composite f ′f : P → P is a linear map such that f ′fβ0 = f ′β′0 = β0. The identity
map is another. But by universality, there’s only one such linear map, so f ′f = 1P . An identical
argument shows that ff ′ = 1P ′ as well, so they are inverse linear isomorphisms. Both f and f ′ are
unique, so we may say:

The universal R-bilinear map β0 : M × N → P is unique up to a unique R-linear
isomorphism.

This entitles us to speak of “the” universal bilinear map out ofM×N , and give the target a symbol:
M ⊗R N . If R is the ring of integers, or otherwise understood, we will drop it from the notation.

Property 20.7 (Functoriality). Suppose f : M →M ′ and g : N → N ′. Study the diagram

M ×N
f×g
��

⊗ //

&&

M ⊗N
f⊗g
��

M ′ ×N ′ ⊗ //M ′ ⊗N ′

There is a unique R-linear map f ⊗ g making the diagram commute, because the diagonal map is
R-bilinear and the map M ×N →M ⊗N is the universal R-bilinear map out of M ×N . You are
invited to show that this makes −⊗R − : ModR ×ModR →ModR into a functor.

Property 20.8 (Unitality, associativity, commutativity). I said that the tensor product was going
to render ModR a “categorical ring,” so we should check various properties of the tensor product.
For example, R⊗RM should be isomorphic to M . Let’s think about this for a minute. We have an
R-bilinear map R×M →M , given by multiplication. We just need to check the universal property.
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Suppose we have an R-bilinear map β : R×M → P . We have to construct a map f : M → P such
that β(r, x) = f(rx) and show it’s unique. Our only choice is f(x) = β(1, x), and that works.

Similarly, we should check that there’s a unique isomorphism L ⊗ (M ⊗ N)
∼=−→ (L ⊗M) ⊗ N

that’s compatible with L × (M × N) ∼= (L × M) × N , and that there’s a unique isomorphism
M ⊗N → N ⊗M that’s compatible with the switch map M ×N → N ×M . There are a few other
things to check, too: Have fun!

Property 20.9 (Sums). What happens with M ⊗
(⊕

i∈I Ni

)
? Here I can be any set, not just a

finite set. How does this tensor product relate to
⊕

j∈I(M ⊗Nj)? Let’s construct a map

f :
⊕
i∈I

(M ⊗Ni)→M ⊗

⊕
j∈I

Nj

 .

We just need to define maps M ⊗Ni →M ⊗
(⊕

j∈I Nj

)
because the direct sum is the coproduct.

We can use 1⊗ ini where ini : Ni →
⊕

j∈I Nj is the defining inclusion. These give you a map f .
What about a map the other way? We’ll define a map out of the tensor product using the

universal property. So we need to define a bilinear map out of M ×
(⊕

j∈I Nj

)
. By linearity in the

second factor, it will suffice to say where to send an element of the form x⊗ y ∈M ⊗Nj . Just send
it to inj(x⊗ y)! Now it’s up to you to check that these are inverses.

Property 20.10 (Distributivity). Suppose f : M ′ →M , r ∈ R, and g, g0, g1 : N ′ → N . Then

f ⊗ (g0 + g1) = f ⊗ g0 + f ⊗ g1 : M ′ ⊗N ′ →M ⊗N

and
f ⊗ rg = r(f ⊗ g) = (rf)⊗ g : M ′ ⊗N ′ →M ⊗N .

Again I’ll leave this to you to check. Of course you can take sums in the first variable as well.

Our immediate use of this construction is to give a clean definition of “homology with coefficients
in M ,” where M is any abelian group. First, endow singular chains with coefficients in M like this:

S∗(X;M) = S∗(X)⊗M .

The boundary maps are just d⊗ 1 : Sn(X)⊗M → Sn−1(X)⊗M . Then we define

Hn(X;M) = Hn(S∗(X;M)) .

Since Sn(X) = ZSinn(X), Sn(X;M) is a direct sum of copies of M indexed by the n-simplices in
X.

If M happens to be a ring, this coincides with the notation used in the last lecture. In fact, if
M is a module over a commutative ring R, we might as well have defined S∗(X;M) as

S∗(X;M) = S∗(X;R)⊗RM .

One virtue of this way of thinking of it is that it makes it clear that in this case the differential in
S∗(X;M) is R-linear.

These definitions extend to relative homology. As we have noted, if A ⊆ X then the map
Sn(A) → Sn(X) is a split monomorphism. The same argument shows that if R is a commutative
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ring then Sn(A;R) → Sn(X;R) is a split monomorphism of free R-modules. So the quotient
R-module Sn(X,A;R) is again free,

0→ Sn(A;R)→ Sn(X;R)→ Sn(X,A;R)→ 0

is a split exact sequence of R-modules, and applying the functor − ⊗R M to it gives us another
short exact sequence of R-modules

0→ Sn(A;M)→ Sn(X;M)→ Sn(X,A;M)→ 0 .

In any case, S∗(X,A;M) is a chain complex of R-modules and we define

Hn(X,A;M) = Hn(S∗(X,A;M)) .

This gives a functor to R-modules, and the boundary map

∂ : Hn(X,A;M)→ Hn−1(A;M)

is an R-module homomorphism. Notice that

Hn(∗;M) =

{
M for n = 0

0 otherwise .

The following result is immediate:

Proposition 20.11. For any abelian group M , (X,A) 7→ H∗(X,A;M) provides a homology theory
satisfying the Eilenberg-Steenrod axioms with H0(∗;M) = M . This construction is natural in the
abelian group M . If M is an R-module, for a commutative ring R, then the homology theory takes
values in the category of R-modules.

We have said that the homology theory is natural in the coefficient module: an R-module
homomorphism M ′ →M induces chain maps S∗(X,A;M ′)→ S∗(X,A;M). Moreover, if

0→M ′ →M →M ′′ → 0

is a short exact sequence of R-modules then the induced sequence

0→ S∗(X;M ′)→ S∗(X;M)→ S∗(X;M ′′)→ 0

is again short exact, and we arrive at a long exact sequence in homology, the “coefficient long exact
sequence”:

· · · // Hn+1(X;M ′′)

∂

ss
Hn(X;M ′) // Hn(X;M) // Hn(X;M ′′)

∂

ss
Hn−1(X;M ′) // · · · .

A particularly important case of all this is when R is a field; then S∗(X;R) is a chain complex
of vector spaces over R, and H∗(X;R) is a graded vector space over R.

We motivated consideration of the tensor product by suggesting that it will be useful in answering
questions like: If you know H∗(X), can you compute H∗(X;M) for other abelian coefficient groups?
For example, is it possible that the latter is just H∗(X)⊗M? We have already seen examples where
this fails! The problem is that tensoring with a general abelian group fails to preserve exactness. We
were lucky in forming Sn(X,A;M), because we were tensoring M with a split short exact sequence.
But on the level of homology, we have to work harder.
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Exercises

Exercise 20.12. Let m,n be positive integers and consider the cyclic groups Z/m and Z/n. Com-
pute the tensor product Z/m⊗ Z/n.

Exercise 20.13. Let A ⊆ X and B ⊆ Y be subsets. Construct a natural chain map

S∗(X,A)⊗ S∗(Y,B)→ S∗(X × Y,A× Y ∪X ×B)

that is a homology isomorphism if A and B are open. (Hint: Exercise 9.10 might be useful.) So
there is a natural “relative cross product” map

H∗(X,A;R)⊗R H∗(Y,B;R)→ H∗(X × Y,A× Y ∪X ×B;R)

that is an isomorphism if A and B are open, R is a PID, and either H∗(X,A;R) or H∗(Y,B;R) is
free over R.

21 Tensor and Tor

We continue to study properties of the tensor product. Recall that

Z/mZ⊗N = N/mN .

Consider the exact sequence
0→ Z

2−→ Z→ Z/2Z→ 0 .

Let’s tensor it with Z/2Z. We get

0→ Z/2Z→ Z/2Z→ Z/2Z→ 0 .

This cannot be a short exact sequence! This is a major tragedy: tensoring doesn’t preserve exact
sequences; one says that the functor Z/mZ⊗− is not “exact.” This is why we can’t form homology
with coefficients in M by simply tensoring homology with M .

Tensoring does respect certain exact sequences:

Proposition 21.1. The functor N 7→M ⊗R N preserves cokernels; it is right exact.

Proof. Suppose that N ′ → N → N ′′ → 0 is exact and let f : M ⊗N → Q. We wish to show that
there is a unique factorization as shown in the diagram

M ⊗N ′ //

0

&&

M ⊗N

f
��

//M ⊗N ′′ //

xx

0

Q .

This is equivalent to asking whether there is a unique factorization of the corresponding diagram of
bilinear maps,

M ×N ′ //

0

&&

M ×N

β
��

//M ×N ′′ //

xx

0

Q

– uniqueness of the linear factorization is guaranteed by the fact that M ×N ′′ generates M ⊗N ′′.
This unique factorization reflects the fact that M ×− preserves cokernels.
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Question 21.2. What about this argument fails if we try to use it to show that M ⊗R− preserves
kernels?

Failure of exactness is bad, so let’s try to repair it. A key observation is that if M is free, then
M ⊗R− is exact. IfM = RI, the free R-module on a set I, thenM ⊗RN = ⊕i∈IN , since tensoring
distributes over direct sums. Then we remember the following “obvious” fact:

Lemma 21.3. If M ′i →Mi →M ′′i is exact for all i ∈ I, then so is⊕
M ′i →

⊕
Mi →

⊕
M ′′i .

Proof. Clearly the composite is zero. Let (xi ∈ Mi, i ∈ I) ∈
⊕
Mi and suppose it maps to zero.

That means that each xi maps to zero in M ′′i and hence is in the image of some x′i ∈ M ′i . Just
make sure to take x′i = 0 if xi = 0, so that it’s still the case that only finitely many entries are
nonzero.

To exploit this observation, we’ll “resolve” M by free modules. For a start, this means: find a
surjection from a free R-module,

ε : F0 →M .

This amounts to specifying a set of R-module generators. For a general ring R, the kernel of ε may
not be free. For the moment, let’s make sure that it is by assuming that R is a PID, and write F1

for the kernel. The failure of M ⊗R − to be exact is measured, at least partially, by the leftmost
term (defined as the kernel) in the exact sequence

0→ TorR1 (M,N)→ F1 ⊗R N → F0 ⊗R N →M ⊗R N → 0 .

The notation suggests that this Tor term is independent of the resolution. This is indeed the case,
as we shall show presently. But before we do, let’s compute some Tor groups.

Example 21.4. For any PID R, if M = F is free over R we can take F0 = F and F1 = 0, and
discover that then TorR1 (F,N) = 0 for any N .

Example 21.5. Let R = Z, M = Z/nZ, and be N any abelian group. When R = Z it is often
omitted from the notation for Tor. There is a nice free resolution staring at us: F0 = F1 = Z, and
F1 → F0 given by multiplication by n. The sequence defining Tor1 looks like

0→ Tor1(Z/nZ, N)→ Z⊗N n⊗1−−→ Z⊗N → Z/nZ⊗N → 0 ,

so
Z/nZ⊗N = N/nN , Tor1(Z/nZ, N) = ker(n|N) .

The torsion in this case is the “n-torsion” in N . This accounts for the name.

Functors like Tor1 can be usefully defined for any ring, and moving to that general case makes
their significance clearer and illuminates the reason why Tor1 is independent of choice of generators.

So let R be any ring and M a module over it. By picking R-module generators I can produce a
surjection from a free R-module, F0 → M . Write K0 for the kernel of this map. It is the module
of relations among the generators. We can no longer guarantee that it’s free, but we can at least
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find a set of module generators for it, and construct a surjection from a free R-module, F1 → K0.
Continuing in this way, we get a diagram like this –

· · · //

!!

F2

  

d // F1

  

d // F0

  
K2

>>

!!

K1

>>

!!

K0

>>

!!

N

��
0

==

0

==

0

==

0

>>

0

– in which the Λ-shaped subdiagrams are short exact sequences and Fs is free for all s. Splicing
these short exact sequences gives you an exact sequence in the top row. This is a free resolution
of N . The top row, F∗, is a chain complex. It maps to the very short chain complex with N in
degree 0 and 0 elsewhere, and this chain map is a homology isomorphism (or “quasi-isomorphism”).
We have in effect replaced N with this chain complex of free modules. The module N may be very
complicated, with generators, relations, relations between relations . . . . All this is laid out in front
of us by the free resolution. Generators of F0 map to generators for N , and generators for F1 map
to relations among those generators, and so on.

Now we can try to define higher Tor functors by tensoring F∗ with N and taking homology. If
R is a PID and the resolution is just F1 → F0, forming homology is precisely taking cokernel and
kernel, as we did above. In general, we define

TorRn (M,N) = Hn(M ⊗R F∗) .

In the next lecture we will check that this is well-defined – independent of free resolution, and
functorial in the arguments. For the moment, notice that

TorRn (M,F ) = 0 for n > 0 if F is free ,

since I can take F
∼=←− F ← 0← · · · as a free resolution; and that

TorR0 (M,N) = M ⊗R N

since M ⊗R − is right-exact.

22 Fundamental theorem of homological algebra

We will now show that the R-modules TorRn (M,N) are well-defined and functorial. This will be an
application of a very general principle.

Theorem 22.1 (Fundamental Theorem of Homological Algebra). Let N and M be R-modules; let

· · · → F1 → F0 → N → 0

be a sequence of R-modules in which each Fn is free; let

· · · → E1 → E0 →M → 0

be an exact sequence of R-modules; and let f : N →M be a homomorphism. Then f lifts to a chain
map f∗ : F∗ → E∗, uniquely up to chain homotopy.
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Proof. Let’s try to construct f0. We know that F0 = RS0 for some set S0. Map the generators of
F0 into N via εN and then into M via f , and then lift the images to E0 via εM (which is possible
because εM is surjective). Then extend to an R-module homomorphism, to get f0.

Now restrict f0 to kernels to get g0:

0 // L0 = ker(εN ) //

g0

��

F0
εN //

f0

��

N

f

��
0 // K0 = ker(εM ) // E0

εM //M // 0 .

Now the map d : F1 → F0 satisfies εN ◦ d = 0, and so factors through a map to L0 = ker εN .
Similarly, d : E1 → E0 factors through a map E1 → K0, and this map must be surjective because
the sequence E1 → E0 → N is exact. We find ourselves in exactly the same situation as before:

0 // L1
//

g1

��

F1
//

f1

��

L0

g0

��
0 // K1

// E1
// K0

// 0

So we construct f∗ by induction.
Now we need to prove the chain homotopy claim. So suppose I have f∗, f ′∗ : F∗ → E∗, both

lifting f : N → M . Then f ′n − fn (which we’ll rename `n) is a chain map lifting 0 : N → M . We
want to construct a chain null-homotopy of `∗; that is, we want a sequence of maps h : Fn → En+1

such that dh+ hd = `∗. At the bottom, F−1 = 0, so we want h : F0 → E1 such that dh = `0. This
factorization happens in two steps.

F0

`0
��}}

h

vv

// N

0
��

E1
// //// //

d

44K0
// E0

εM //M .

First, εM`0 = 0 implies that `0 factors through K0 = ker εM . Next, E1 → K0 is surjective, by
exactness, and F0 is free, so we can lift generators and extend R-linearly to get h : F0 → E1.

The next step is organized by the diagram

F1
d //

`1
��}}

h

vv

F0

`0
��

h

~~
E2

// //

d

44K1
// E1

d // E0

This diagram doesn’t commute; dh = `0, but the (d, h, `1) triangle doesn’t commute. Rather, we
want to construct h : F1 → E2 such that dh = `1 − hd. Since

d(`1 − hd) = `0d− dhd = (`0 − dh)d = 0

the map `1 − hd lifts to K1 = ker d. But then it lifts through E2, since E2 → K1 is surjective and
F1 is free.

Exactly the same process continues.
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This proof uses a property of freeness that is shared by a broader class of modules.

Definition 22.2. An R-module P is projective if any map out of P factors through any surjection:

M

����
P

>>

// N

Every free module is projective, and this is the property of freeness that we have been using;
the Fundamental Theorem of Homological Algebra holds under the weaker assumption that each
Fn is projective.

Any direct summand in a projective is also projective. Any projective module is a direct sum-
mand of a free module. Over a PID, every projective is free, because any submodule of a free is
free. But there are examples of nonfree projectives:

Example 22.3. Let k be a field and let R be the product ring k × k. Then R acts on k in two
ways, via (a, b)c = ac and via (a, b)c = bc. These are both projective R-modules that are not free.

Now we will apply Theorem 22.1 to verify that our proposed construction of Tor is independent
of free (or projective!) resolution, and is functorial.

Suppose we have an R-module homomorphism f : N ′ → N . Pick arbitrary free resolutions
N ′ ← F ′∗ and N ← F∗, and pick any chain map f∗ : F ′∗ → F∗ lifting f . We claim that the map
induced in homology by 1⊗ f∗ : M ⊗R F ′∗ →M ⊗R F∗ is independent of the choice of lift. Suppose
f ′∗ is another lift, and pick a chain homotopy h : f∗ ' f ′∗. Since M ⊗R − is additive, the relation

1⊗ h : 1⊗ f∗ ' 1⊗ f ′∗

still holds. So 1⊗ f∗ and 1⊗ f ′∗ induce the same map in homology.
For example let f : N ′ → N and g : N → N ′′; let F ′∗ → N ′, F∗ → N , and F ′′∗ → N ′′ be

projective resolutions, and pick chain lifts f∗ of f and g∗ of g. The g∗ ◦ f∗ is a chain lift of g ◦ f ,
and (1 ⊗ g∗) ◦ (1 ⊗ f∗) is a chain lift of 1 ⊗ (g ◦ f) = (1 ⊗ g) ◦ (1 ⊗ f). So the map it induces in
homology is the map induced by 1⊗ (g ◦ f). By functoriality of the formation of homology, this is
also the composite of the maps induced by 1⊗ g and 1⊗ f .

This argument establishes that TorR∗ (M,N) is uniquely functorial inN . In particular TorR∗ (M,N)
is independent of choice of projective resolution. Functoriality in M is also easy to see.

My last general comment about Tor is that there’s a symmetry here. Of course, M ⊗R N ∼=
N⊗RM . This uses the fact that R is commutative. This leads right on to saying that TorRn (M,N) ∼=
TorRn (N,M). We’ve been computing Tor by taking a resolution of the second variable. But I could
equally have taken a resolution of the first variable. This follows from Theorem 22.1.

Example 22.4. I want to give an example in which you do have higher Tor modules. Let k be a
field, and let R = k[d]/(d2). This is sometimes called the “dual numbers,” or the exterior algebra over
k. What is an R-module? It’s just a k-vector space M with an operator d (given by multiplication
by d) that satisfies d2 = 0. Even though there’s no grading around, I can still define the “homology”
of M :

H(M ; d) =
ker d

im d
.
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The k-algebra R is “augmented” by an algebra map ε : R→ k splitting the unit: ε(d) = 0. This
renders k an R-module. Let’s construct a free R-module resolution of this module. Here’s a picture.

• oo

• •oo

• •oo

• •oo

• •oo

The vertical lines indicate multiplication by d. We could write this as

0← k
ε←− R d←− R d←− R← · · · .

Now tensor this over R with an R-module M ; so M is a vector space equipped with an operator
d with d2 = 0. Each copy of R gets replaced by a copy ofM , and the differential gives multiplication
by d on M . So taking homology gives

TorRn (k,M) =

{
k ⊗RM = M/dM for n = 0

H(M ; d) forn > 0 .

So for example
TorRn (k, k) = k for n ≥ 0 .

Exercises

Exercise 22.5. Let 0→M ′ →M →M ′′ → 0 be a short exact sequence of R-modules. Construct
from it a natural long exact sequence of the form

· · · // TorR2 (M ′′, N)

ss
TorR1 (M ′, N) // TorR1 (M,N) // TorR1 (M ′′, N)

ss
M ′ ⊗R N //M ⊗R N //M ′′ ⊗R N // 0 .

23 Hom and Lim

We will now develop more properties of the tensor product: its relationship to homomorphisms and
to direct limits.

Hom

The tensor product arose in our study of bilinear maps. Even more natural are linear maps. Given a
commutative ring R and two R-modulesM and N , we can think about the collection of all R-linear
maps from M to N . Not only does this set form an abelian group (under pointwise addition of
homomorphisms); it forms an R-module, with

(rf)(y) = f(ry) = rf(y) , r ∈ R, y ∈M .
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The check that this is again an R-module homomorphism uses commutativity of R. We will write
HomR(M,N), or just Hom(M,N), for this R-module.

Since Hom(M,N) is an R-module, we are entitled to think about what an R-module homomor-
phism into it is. Given

f : L→ Hom(M,N)

we can define a new function

f̂ : L×M → N , f̂(x, y) = (f(x))(y) ∈ N .

You should check that this new function f̂ is R-bilinear! So we get a natural map

Hom(L,Hom(M,N))→ Hom(L⊗M,N) .

Conversely, given a map f̂ : L⊗M → N and x ∈ L, we can define f(x) : M → N by the same
formula. These are inverse operations, so:

Lemma 23.1. The natural map Hom(L,Hom(M,N))→ Hom(L⊗M,N) is an isomorphism.

One says that −⊗M and Hom(M,−) are adjoint, . The notion of adjoint functors will be taken
up again in Lecture 39.

Lim

The second thing we will discuss is a generalization of one perspective on how the rational numbers
are constructed from the integers – by a limit process: There are compatible maps in the diagram

Z 2 //

1
��

Z 3 //

1/2
��

Z 4 //

1/3!
��

Z 5 //

1/4!
��

· · ·

Q = // Q = // Q = // Q = // · · ·

and Q is the “universal,” or “initial,” abelian group that all these copies of the integers map to in a
compatible way.

We will formalize this process, using partially ordered sets as indexing sets. Recall from Lecture
3 that a partially ordered set, or poset, is a small category I such that #I(i, j) ≤ 1 and the only
isomorphisms are the identity maps. Write i ≤ j if I(i, j) 6= ∅. Then i ≤ i, i ≤ j ≤ k implies i ≤ k,
and if i ≤ j and j ≤ i then i = j. We will be interested in a particular class of posets.

Definition 23.2. A poset (I,≤) is directed if for every i, j ∈ I there exists k ∈ I such that i ≤ k
and j ≤ k.

Example 23.3. This is a very common condition. A first example is the natural numbers N with
≤ as the order. Another example is the positive natural numbers, with i ≤ j if i|j. This is because
i, j|(ij). A topological example: if X is a space, A a subspace, we can consider the poset UA whose
elements are the open subsets of X containing A, ordered by saying that U ≤ V if U ⊇ V . This is
directed because an intersection of two opens is again open. You should think of this directed set
as capturing how A is approximated from above by open neighborhoods. It will play a big role in
our treatment of Poincaré duality.

Definition 23.4. Let I be a directed set. An I-directed system in a category C is a functor I → C.
This means that for every i ∈ I we are given an object Xi ∈ C, and for every i ≤ j we are given a
map fi,j : Xi → Xj , in such a way that fi,i = 1Xi and if i ≤ j ≤ k then fi,k = fj,k ◦ fi,j : Xi → Xk.
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Example 23.5. If I = (N,≤), then you get a “linear system” X0
f01−−→ X1

f12−−→ X2 → · · · .

Example 23.6. Suppose I = (N>0, |), i.e., the second example above. You can consider I → Ab,

say assigning to each i the integers Z, and fij : Z j/i−−→ Z.

Example 23.7. There is an evident UA-directed system of spaces given by sending U ⊆ A to the
space X − U . We will encounter this example when we discuss Poincaré duality.

These directed systems can be a little complicated. But there’s a simple one, namely the constant
system.

Example 23.8. Let I be any directed set and C any category. An object A ∈ C determines an
I-directed set, namely the constant functor cA : I → C.

Not every directed system is constant, but we can try to find a best approximating constant
system. To compare systems, we need morphisms. I-directed systems in C are functors I → C.
They are related by natural transformations, and those are the morphisms in the category of I-
directed systems. That is to say, a morphism is a choice of map gi : Xi → Yi, for each i ∈ I, such
that

Xi
//

gi

��

Xj

gj

��
Yi // Yj

commutes for all i ≤ j.

Definition 23.9. Let X : I → C be a directed system. A direct limit of X is an object L and a
map X → cL that is initial among maps to constant systems. This means that given any other map
to a constant system, say X → cA, there is a unique map f : L→ A such that

cL

cf

��
X

77

''
cA

commutes.

This is a “universal property.” Being solutions to a universal property, any two direct limits
are canonically isomorphic; but a directed system may fail to have a direct limit. For example,
the linear directed systems we used to create the rational numbers exists in the category of finitely
generated abelian groups; but Q is not finitely generated, and there’s no finitely generated group
that will serve as a direct limit of this system in the category of finitely generated abelian groups.

Example 23.10. Suppose we have an increasing sequence of subspaces, X0 ⊆ X1 ⊆ · · · ⊆ X. This
gives us a directed system of spaces, directed by the poset (N,≤). It’s pretty clear that as a set the
direct limit of this system is the union of the subspaces. Saying that X is the direct limit of this
directed system of spaces is saying first that X is the union of the Xi’s, and second that the topology
on X is determined by the topology on the subspaces; it’s the “weak topology,” characterized by
the property that a map f : X → Y is continuous if and only if the restriction of f to each Xn is
continuous. This is saying that a subset of X is open if and only if its intersection with each Xn is
open in X. For example, a CW complex is the direct limit of its skelata.
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Direct limits may be constructed from the material of coproducts and quotients. So suppose
X : I → C is a directed system. To attempt to construct the direct limit, begin by forming (if
possible) the coproduct over the elements of I,∐

i∈IXi .

There are maps ini : Xi →
∐
Xi, but they are not yet compatible with the order relation in I.

Form a quotient of the coproduct to enforce that compatibility:

lim−→
i∈I

Xi =
(∐

i∈IXi

)
/ ∼

where ∼ is the equivalence relation generated by requiring that for any i ∈ I and any x ∈ Xi,

inix ∼ injfij(x) .

The process of forming the coproduct and the quotient will depend upon the category you are
working in, and may not be possible. In sets, coproduct is disjoint union and the quotient just
forms equivalence classes. In abelian groups, the coproduct is the direct sum and to form the
quotient you divide by the subgroup generated by differences. In general we really want to form a
“coequalizer,” as discussed later in Lecture 39.

The conclusion is that direct limits exist in Set, Top, Ab, ModR, and many other categories.
Here’s a lemma that lets us identify when a map to a constant system is a direct limit.

Lemma 23.11. Let X : I → Ab (or ModR). A map f : X → cL (given by fi : Xi → L for i ∈ I)
is the direct limit if and only if:

1. For every x ∈ L, there exists an i ∈ I and an xi ∈ Xi such that fi(xi) = x.

2. Let xi ∈ Xi be such that fi(xi) = 0 in L. Then there exists some j ≥ i such that fij(xi) = 0
in Xj.

Proof. Homework.

Proposition 23.12. The direct limit functor lim−→I : Fun(I,Ab) → Ab is exact. In other words,

if X p−→ Y
q−→ Z is an exact sequence of I-directed systems (meaning that at every degree we get an

exact sequence of abelian groups), then lim−→I X → lim−→I Y → lim−→I Z is exact.

Proof. First of all, qp : X → Z is zero, which is to say that it factors through the constant zero
object, so lim−→I X → lim−→I Z is certainly the zero map. Let y ∈ lim−→I Y , and suppose y maps to 0 in
lim−→I Z. By condition (1) of Lemma 23.11, there exists i such that y = fi(yi) for some yi ∈ Yi. Then
0 = q(y) = qfi(yi) = fiq(yi) because q is a map of direct systems. By condition (2), this means
that there is j ≥ i such that fijq(yi) = 0 in Zj . So qfijyi = 0, again because q is a map of direct
systems. Then fijyi is an element in Yj that maps to zero under q, so there is some xj ∈ Xj such
that p(xj) = fijyi. Then fj(xj) ∈ lim−→I X maps to y.

The exactness of the direct limit has many useful consequences. For example:

Corollary 23.13. Let i 7→ C(i) be a directed system of chain complexes. Then there is a natural
isomorphism

lim−→
i∈I

H∗(C(i))→ H∗(lim−→
i∈I

C(i)) .
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Lim and tensor

Direct limits and the tensor product are nicely related, and the way to see that is to use the
adjunction with Hom that we started with today.

Proposition 23.14. Let I be a direct set, and let M : I → ModR be a I-directed system of
R-modules. There is a natural isomorphism

(lim−→
i∈I

Mi)⊗R N ∼= lim−→
i∈I

(Mi ⊗R N) .

Proof. Let’s verify that both sides satisfy the same universal property. A map from (lim−→i∈IMi)⊗RN
to an R-module L is the same thing as a linear map lim−→i∈IMi → HomR(N,L). This is the same as
a compatible family of maps Mi → HomR(N,L), which in turn is the same as a compatible family
of maps Mi ⊗R N → L, which is the same as a linear map lim−→i∈I(Mi ⊗R N)→ L.

Putting together things we have just said:

Corollary 23.15. H∗(X;Q) = H∗(X)⊗Q.

So for example we can redefine the Betti numbers of a space X as

βn = dimQHn(X;Q) .

Exercises

Exercise 23.16. Verify Lemma 23.11.

Exercise 23.17. (a) Embed Z/pnZ into Z/pn+1Z by sending 1 to p, and write Zp∞ for the union.
It’s called the Prüfer group (at p). Show that Zp∞ ∼=Z[1/p]/Z and that

Q/Z∼=
⊕
p

Zp∞

where the sum runs over the prime numbers.
(b) Compute Zp∞ ⊗Z A for A each of the following abelian groups: Z/nZ, Z[1/q] (for q a prime),
and Zq∞ (for q a prime).
(c) Compute TorZ1 (M,Z[1/p]) and TorZ1 (M,Zp∞), for any abelian group M in terms of the self-map
p : M →M .
(d) Show that if f : X → Y induces an isomorphism in homology with coefficients in the prime
fields Fp (for all primes p) and Q, then it induces an isomorphism in homology with coefficients in
Z.

24 Universal coefficient theorem

Finally, let’s return to the question: Suppose that we are given H∗(X; Z). Can we compute
H∗(X; Z/2Z)? This is non-obvious. For example, consider the map RP2 → S2 that pinches RP1

to a point. H2(RP2; Z) = 0, so in H2 this map is certainly zero. But in Z/2Z-coefficients, in
dimension 2, this map gives an isomorphism. This shows that there’s no functorial determination
of H∗(X; Z/2) in terms of H∗(X; Z); the effect of a map in integral homology does not determine
its effect in mod 2 homology. So how do we go between different coefficients?
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Let R be a commutative ring and M an R-module, and suppose we have a chain complex C∗ of
R-modules. It could be the singular complex of a space, but it doesn’t have to be. Let’s compare
Hn(C∗) ⊗M with Hn(C∗ ⊗M). (Here and below we’ll just write ⊗ for ⊗R.) The latter thing
gives homology with coefficients in M . Let’s investigate how these two are related, and build up
conditions on R and C∗ as we go along.

First, there’s a natural map

α : Hn(C∗)⊗M → Hn(C∗ ⊗M) ,

sending [z] ⊗m to [z ⊗m]. We propose to find conditions under which it is injective. The map α
fits into a commutative diagram with exact columns like this:

0 0

Hn(C∗)⊗M α //

OO

Hn(C∗ ⊗M)

OO

Zn(C∗)⊗M //

OO

Zn(C∗ ⊗M)

OO

Cn+1 ⊗M = //

OO

Cn+1 ⊗M .

OO

Now, Zn(C∗ ⊗M) is a submodule of Cn ⊗M , but the map Zn(C) ⊗M → Cn ⊗M need not be
injective . . . unless we impose more restrictions. If we can guarantee that it is, then the middle map
is injective and a diagram chase shows that α is too.

So let’s assume that R is a PID and that Cn is a free R-module for all n. Then the submodule
Bn−1(C∗) ⊆ Cn−1 is again free, so the short exact sequence in the top row of

0 // Zn(C∗) // Cn //

d

$$

Bn−1(C∗) //

��

0

Cn−1

splits. So Zn(C∗)→ Cn is a split monomorphism, and hence Zn(C∗)⊗M → Cn ⊗M is too.
In fact, a little thought shows that this argument produces a splitting of the map α.
Now α is still not always an isomorphism. But it certainly is ifM = R, and it’s compatible with

direct sums, so it certainly is if M is free. The idea is now to resolve M by frees, and see where
that takes us.

So let

0→ F1 → F0 →M → 0

be a free resolution of M . Again, we’re using the assumption that R is a PID, to guarantee that
ker(F0 →M) is free. Again using the assumption that each Cn is free, we get a short exact sequence
of chain complexes

0→ C∗ ⊗ F1 → C∗ ⊗ F0 → C∗ ⊗M → 0 .
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In homology, this gives a long exact sequence. Unsplicing it gives the left-hand column in the
following diagram.

0

��

0

��
coker(Hn(C∗ ⊗ F1)→ Hn(C∗ ⊗ F0))

��

∼= // coker(Hn(C∗)⊗ F1 → Hn(C∗)⊗ F0))

��
Hn(C∗ ⊗M)

∂
��

= // Hn(C∗ ⊗M)

��
ker(Hn−1(C∗ ⊗ F1)→ Hn−1(C∗ ⊗ F0))

∼= //

��

ker(Hn−1(C∗)⊗ F1 → Hn−1(C∗)⊗ F0)

��
0 0

The map α is an isomorphism when the module involved is free, and this lets us replace the left
hand column with the indicated right hand column. But

coker(Hn(C∗)⊗ F1 → Hn(C∗)⊗ F0)) = Hn(C∗)⊗M

and
ker(Hn−1(C∗)⊗ F1 → Hn−1(C∗)⊗ F0) = TorR1 (Hn−1(C∗),M) .

We have proved the following theorem.

Theorem 24.1 (Universal Coefficient Theorem). Let R be a PID and let C∗ a chain complex of
R-modules such that Cn is free for all n and let M be an R-module. Then there is a natural short
exact sequence of R-modules

0→ Hn(C∗)⊗RM
α−→ Hn(C∗ ⊗RM)

∂−→ TorR1 (Hn−1(C∗),M)→ 0

that splits (but not naturally).

Example 24.2. The pinch map RP2 → S2 induces the following map of universal coefficient short
exact sequences:

0 // H2(RP2)⊗ Z/2Z

0
��

// H2(RP2; Z/2Z)

∼=
��

∼= // Tor1(H1(RP2),Z/2Z)

0
��

// 0

0 // H2(S2)⊗ Z/2Z
∼= // H2(S2; Z/2Z) // Tor1(H1(S2),Z/2Z) // 0

This shows that the splitting of the universal coefficient short exact sequence cannot be made
natural, and it explains the mystery that we began with.

Exercises

Exercise 24.3. Let X be a CW complex of finite type. Determine the dimension of Hn(X;Fp),
for each n, in terms of the Betti numbers and torsion coefficients of H∗(X;Z).
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Exercise 24.4. The hypotheses of Theorem 24.1 are essential. Construct two counterexamples:
one with R = Z but in which the groups in the chain complex are not free, and one in which
R = k[d]/d2 and the modules in C∗ are free over R.

Exercise 24.5. Give an example of two Moore spaces that have the same homology with any field
coefficients but that are not homotopy equivalent.

25 Künneth and Eilenberg-Zilber

We want to compute the homology of a product. Long ago, in Lecture 7, we constructed a bilinear
map Sp(X) × Sq(Y ) → Sp+q(X × Y ), called the cross product. So we get a linear map Sp(X) ⊗
Sq(Y )→ Sp+q(X × Y ), and it satisfies the Leibniz formula, i.e., d(x× y) = dx× y + (−1)px× dy.
The method we used works with any coefficient ring, not just the integers.

Definition 25.1. Let C∗, D∗ be two chain complexes. Their tensor product is the chain complex
with

(C∗ ⊗D∗)n =
⊕
p+q=n

Cp ⊗Dq .

The differential (C∗⊗D∗)n → (C∗⊗D∗)n−1 sends Cp⊗Dq into the submodule Cp−1⊗Dq
⊕
Cp⊗Dq−1

by
x⊗ y 7→ dx⊗ y + (−1)px⊗ dy .

So the cross product is a map of chain complexes S∗(X)⊗ S∗(Y )→ S∗(X × Y ). There are two
questions:
(1) Is this map an isomorphism in homology?
(2) How is the homology of a tensor product of chain complexes related to the tensor product of
their homologies?

It’s easy to see what happens in dimension zero, because π0(X) × π0(Y ) = π0(X × Y ) implies
that H0(X)⊗H0(Y )

∼=−→ H0(X × Y ).
Let’s dispose of the purely algebraic question (2) first.

Theorem 25.2. Let R be a PID and C∗, D∗ be chain complexes of R-modules. Assume that Cn is
a free R-module for all n. There is a short exact sequence

0→
⊕
p+q=n

Hp(C)⊗R Hq(D)→ Hn(C∗ ⊗R D∗)→
⊕

p+q=n−1

TorR1 (Hp(C), Hq(D))→ 0

natural in these data, that splits (but not naturally).

Proof. This is exactly the same as the proof for the UCT. It’s a good idea to work through this on
your own.

Corollary 25.3. Let R be a PID and assume C ′n and Cn are R free for all n. If C ′∗ → C∗ and
D′∗ → D∗ are homology isomorphisms then so is C ′∗ ⊗D′∗ → C∗ ⊗D∗.

Proof. Apply the five-lemma.

Our attack on question (1) is via the method of “acyclic models.” This is really a special case of
the Fundamental Theorem of Homological Algebra, Theorem 22.1.
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Definition 25.4. Let C be a category, and fix a set M of objects in C, to be called the “models.”
A functor F : C → Ab is M-free if it is the free abelian group functor applied to a coproduct of
functors of the form C(M,−) for M ∈M.

Example 25.5. Since we are interested in the singular homology of a product of two spaces, it
may be sensible to take as C the category of ordered pairs of spaces, C = Top2, and for M the set
of pairs of simplices, M = {(∆p,∆q) : p, q ≥ 0}. Then

Sn(X × Y ) = Z[Top(∆n ×X)×Top(∆n, Y )] = ZTop2((∆n,∆n), (X,Y ))

is M-free; it’s given by a single model, namely (∆n,∆n).

Example 25.6. With the same category and models,

(S∗(X)⊗ S∗(Y ))n =
⊕
p+q=n

Sp(X)⊗ Sq(Y )

is M-free, since the tensor product has as free basis the set∐
p+q=n

Sinp(X)× Sinq(Y ) =
∐

p+q=n

Top2((∆p,∆q), (X,Y )) .

Definition 25.7. A natural transformation of functors θ : F → G in Fun(C,Ab) is an M-
epimorphism if θM : F (M) → G(M) is a surjection of abelian groups for every M ∈ M. A
sequence of natural transformations is a composable pair G′ → G → G′′ with trivial composition.
It is M-exact if G′(M)→ G(M)→ G′′(M) is exact for all M ∈M.

Example 25.8. We claim that

· · · → Sn(X × Y )→ Sn−1(X × Y )→ · · · → S0(X × Y )→ H0(X × Y )→ 0

is M-exact. Just plug in (∆p,∆q): you get an exact sequence, since ∆p ×∆q is contractible.

Example 25.9. The sequence

· · · → (S∗(X)⊗ S∗(Y ))n → (S∗(X)⊗ S∗(Y ))n−1 → · · · → S0(X)⊗ S0(Y )→ H0(X)⊗H0(Y )→ 0 .

is also M-exact, by Corollary 25.3.

The terms “M-free” and “M-exact” relate to each other in the expected way:

Lemma 25.10. Let C be a category with a set of models M and let F,G,G′ : C → Ab be functors.
Suppose that F is M-free, let G′ → G be a M-epimorphism, and let f : F → G be any natural
transformation. Then there is a lifting:

G′

��
F

f
>>

f // G .
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Proof. Clearly we may assume that F (X) = ZC(M,X) for some M ∈ M. Suppose first that
X = M ∈M, so that

G′(M)

����
ZC(M,M)

fM
88

fM // G(M) .

Consider 1M ∈ ZC(M,M). Its image fM (1M ) ∈ G(M) is hit by some element in cM ∈ G′(M),
since G′ → G is an M-epimorphism. Define fM (1M ) = cM .

Now we exploit naturality! Any ϕ : M → X produces a commutative diagram

C(M,M)
fM //

ϕ∗
��

G′(M)

ϕ∗
��

C(M,X)
fX // G′(X)

Chase 1M around the diagram, to see what the value of fX(ϕ) must be:

fX(ϕ) = fX(ϕ∗(1M )) = ϕ∗(fM (1M )) = ϕ∗(cM ) .

Now extend linearly. You should check that this does define a natural transformation.

This is precisely the condition required to prove the Fundamental Theorem of Homological
Algebra. So we have the

Theorem 25.11 (Acyclic Models). Let M be a set of models in a category C. Let θ : F → G be
a natural transformation of functors from C to Ab. Let F∗ and G∗ be functors from C to chain
complexes, with augmentations F0 → F and G0 → G. Assume that Fn is M-free for all n, and that
G∗ → G → 0 is an M-exact sequence. Then there is a unique chain homotopy class of chain maps
F∗ → G∗ covering θ.

Corollary 25.12. Suppose furthermore that θ is a natural isomorphism. If each Gn is M-free and
F∗ → F → 0 is an M-exact sequence, then any natural chain map F∗ → G∗ covering θ is a natural
chain homotopy equivalence.

Applying this to our category Top2 with models as before, we get the following theorem that
completes work we did in Lecture 7.

Theorem 25.13 (Eilenberg-Zilber theorem). Take coefficients in any commutative ring R. There
are unique chain homotopy classes of natural chain maps:

S∗(X)⊗R S∗(Y )� S∗(X × Y )

covering the usual isomorphism

H0(X)⊗R H0(Y ) ∼= H0(X × Y ) ,

and any such pair are natural chain homotopy inverses.

Corollary 25.14. There is a canonical natural isomorphism H∗(S∗(X)⊗R S∗(Y )) ∼= H∗(X × Y ).
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Corollary 25.15. Any choice of natural chain-level cross-product is naturally homotopy commuta-
tive.

Proof. Let γX,Y : S∗(X)⊗ S∗(Y )→ S∗(X × Y ) be any chain map covering × : H0(X)⊗H0(Y )→
H0(X × Y ). Then

S∗(X)× S∗(Y )
γX,Y //

τ

��

S∗(X × Y )

T∗∼=
��

S∗(Y )× S∗(X)
γY,X // S∗(Y ×X)

is another; so it must be naturally homotopic to γX,Y . Similarly for a cross product in the other
direction.

Combining this theorem with the algebraic Künneth theorem, we get:

Theorem 25.16 (Künneth theorem). Take coefficients in a PID R. There is a short exact sequence

0→
⊕
p+q=n

Hp(X)⊗R Hq(Y )→ Hn(X × Y )→
⊕

p+q=n−1

TorR1 (Hp(X), Hq(Y ))→ 0

natural in X, Y . It splits as R-modules, but not naturally.

Example 25.17. If R = k is a field, every module is free, so the Tor term vanishes, and you get a
Künneth isomorphism:

× : H∗(X; k)⊗k H∗(Y ; k)
∼=−→ H∗(X × Y ; k)

This is rather spectacular. For example, what is H∗(RP3 × RP3; k), where k is a field? Well,
if k has characteristic different from 2, RP3 has the same homology as S3, so the product has the
same homology as S3 × S3: the dimensions are 1, 0, 0, 2, 0, 0, 1. If char k = 2, on the other hand,
the cohomology modules are either 0 or k, and we need to form the graded tensor product:

k k k k
k k k k
k k k k
k k k k

so the dimensions of the homology of the product are 1, 2, 3, 4, 3, 2, 1.
The palindromic character of this sequence will be explained by Poincaré duality. Let’s look

also at what happens over the integers. Then we have the table of tensor products

Z Z/2Z 0 Z

Z Z Z/2Z 0 Z
Z/2Z Z/2Z Z/2Z 0 Z/2Z

0 0 0 0 0
Z Z Z/2Z 0 Z

There is only one nonzero Tor group, namely

TorZ1 (H1(RP3), H1(RP3)) = Z/2Z.
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Putting this together, we get the groups

H0 Z
H1 Z/2Z⊕ Z/2Z
H2 Z/2Z
H3 Z⊕ Z⊕ Z/2Z
H4 Z/2Z⊕ Z/2Z
H5 0
H6 Z

The failure of perfect symmetry here is interesting, and will also be explained by Poincaré duality.

Exercises

Exercise 25.18. An object A of a category C determines a functor C(A,−) : C → Set sending X
to C(A,X); a morphism f : X → Y sends g ∈ C(A,X) to f ◦ g ∈ C(A, Y ). This is the functor
“co-represented” by A.
(a) Let F : C → Set be any functor, and consider the set (or possibly class) of natural transforma-
tions θ : C(A,−)→ F . Write down a (natural!) pair of inverse maps

F (A)� nt(C(A,−), F )

(so that in this case the class of natural transformations is actually a set).
(b) Conclude that the obvious (natural!) map

C(B,A)→ nt(C(A,−), C(B,−))

is a bijection, and then that the set of natural isomorphisms from C(A,−) to C(B,−) is in bijection
with the set of isomorphisms from B to A.

Exercise 25.19. Show that any chain map natural γX,Y as in the Eilenberg-Zilber theorem is
not only commutative up to natural chain homotopy, as in Corollary 25.15, but also “unital” and
“associative” up to natural chain homotopy.



Chapter 3

Cohomology and duality

26 Coproducts, cohomology

The next topic is cohomology. This is like homology, but it’s a contravariant rather than covariant
functor of spaces. There are three reasons why you might like a contravariant functor.
(1) Many geometric contructions pull back; that is, they behave contravariantly. For example, if I
have some covering space X̃ → X and a map f : Y → X, I get a pullback covering space f∗X̃. A
better example is vector bundles (that we’ll talk about in Chapter 6) – they don’t push forward,
they pull back. So if we want to study them by means of “natural” invariants, these invariants will
have to lie in a (hopefully computable) group that also behaves contravariantly. This will lead to
the theory of “characteristic classes.”
(2) The structure induced by the diagonal map from a space to its square induces stucture in
contravariant functors that is more general and easier to study than what you get in homology.
(3) Cohomology turns out to be the target of the Poincaré duality map.

Coalgebras

Let’s elaborate on point (2). Every space has a diagonal map

∆ : X → X ×X .

This induces a map H∗(X;R) → H∗(X ×X;R), for any coefficient group R. Now, if R is a ring,
we get a cross product map

× : H∗(X;R)⊗R H∗(X;R)→ H∗(X ×X;R) .

If R is a PID, the Künneth Theorem tells us that this map is a monomorphism. If the remaining
term in the Künneth Theorem is zero, the cross product is an isomorphism. So if H∗(X;R) is free
over R (or even just flat over R), we get a “diagonal” or “coproduct”

∆ : H∗(X;R)→ H∗(X;R)⊗R H∗(X;R) .

If R is a field, this map is universally defined, and natural in X.
This kind of structure is unfamiliar, and at first seems a bit strange. After all, the tensor product

is defined by a universal property for maps out of it; maps into it just are what they are.
Still, it’s often useful, and we pause to fill in some of its properties.

79



80 CHAPTER 3. COHOMOLOGY AND DUALITY

Definition 26.1. Let R be a commutative ring. A (graded) coalgebra over R is a (graded) R-module
M equipped with a “comultiplication” ∆ : M →M ⊗RM and a “counit” map ε : M → R such that
the following diagrams commute.

M

∆
��

=

''

=

ww
R⊗RM M ⊗RM

ε⊗1oo 1⊗ε //M ⊗R R

M
∆ //

∆

��

M ⊗RM

∆⊗1
��

M ⊗RM
1⊗∆ //M ⊗RM ⊗RM

It is commutative if in addition

M
∆

zz

∆

$$
M ⊗RM τ //M ⊗RM

commutes, where τ(x⊗ y) = (−1)|x|·|y|y ⊗ x is the twist map.

Using acyclic models, you saw in Exercise 25.19 and Corollary 25.15 that the cross product map
is associative and commutative: The diagrams

S∗(X)⊗ S∗(Y )⊗ S∗(Z)
×⊗1 //

1⊗×
��

S∗(X × Y )⊗ S∗(Z)

×
��

S∗(X)⊗ S∗(Y × Z)
× // S∗(X × Y × Z)

and
S∗(X)⊗ S∗(Y )

τ //

×
��

S∗(Y )⊗ S∗(X)

×
��

S∗(X × Y )
T∗ // S∗(Y ×X)

commute up to natural chain homotopy, where τ is as defined above on the tensor product and
T : X × Y → Y ×X is the swap map. Similar diagrams apply to the standard comparison map for
the homology of tensor products of chain complexes,

µ : H∗(C)⊗H∗(D)→ H∗(C ⊗D) ,

and the result is this:

Corollary 26.2. Suppose that R is a PID and that H∗(X;R) is free over R. Then H∗(X;R) has
the natural structure of a commutative graded coalgebra over R.

We could now just go on and talk about coalgebras. But they are less familiar, and available
only if H∗(X;R) is free over R. So instead we’re going to dualize, talk about cohomology, and get
an algebra structure. Some say that cohomology is better because you have algebras, but that’s
more of a sociological statement than a mathematical one.

Let’s get on with it.
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Cohomology

Definition 26.3. Let N be an abelian group. A singular n-cochain on X with values in N is a
function Sinn(X)→ N .

If N is an R-module, then I can extend linearly to get an R-module homomorphism Sn(X;R)→
N .

Notation 26.4. Write

Sn(X;N) = Map(Sinn(X), N) = HomR(Sn(X;R), N) .

It is naturally an R-module.

This is going to give us something contravariant, that’s for sure. But we haven’t quite finished
dualizing. The differential d : Sn+1(X;R)→ Sn(X;R) induces a “coboundary map”

d : Sn(X;N)→ Sn+1(X;N)

defined by
(df)(σ) = (−1)n+1f(dσ) .

The sign is a little strange, and we’ll see an explanation in a minute. Anyway, we get a “cochain
complex,” with a differential that increases degree by 1. We still have d2 = 0, since

(d2f)(σ) = ±d(f(dσ)) = ±f(d2σ) = ±f(0) = 0 ,

so we have cocycles and coboundaries and we can still take homology of this cochain complex.

Definition 26.5. The nth singular cohomology group of X with coefficients in an abelian group N
is

Hn(X;N) =
ker(Sn(X;N)→ Sn+1(X;N))

im(Sn−1(X;N)→ Sn(X;N))
.

If N is an R-module, then Hn(X;N) is again an R-module.
Let’s first compute H0(X;N). A 0-cochain is a function Sin0(X)→ N ; that is, a function (not

required to be continuous!) f : X → N . To compute df , take a 1-simplex σ : ∆1 → X and evaluate
f on its boundary:

(df)(σ) = −f(dσ) = −f(σ(e0)− σ(e1)) = f(σ(e1))− f(σ(e0)) .

So f is a cocycle if it’s constant on path components. That is to say:

Lemma 26.6. H0(X;N) = Map(π0(X), N).

Warning 26.7. Sn(X;Z) = Map(Sinn(X);Z) =
∏

Sinn(X) Z, which is probably an uncountable
product. An awkward fact is that no infinite product of free abelian groups is free abelian.

The first thing a cohomology class does is to give a linear functional on homology, by “evaluation.”
Let’s spin this out a bit.

We want to tensor together cochains and chains. But to do that we should make the differential
in S∗(X) go down, not up. Just as a notational matter, let’s write

S∨−n(X;N) = Sn(X;N)
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and define a differential d : S∨−n(X)→ S∨−n−1(X) to be the differential d : Sn(X)→ Sn+1(X). Now
S∨∗ (X) is a chain complex, albeit a nonpositively graded one. Form the graded tensor product, with(

S∨∗ (X;N)⊗ S∗(X)
)
n

=
⊕
p+q=n

S∨p (X;N)⊗ Sq(X) .

Now evaluation is a map of graded abelian groups

〈−,−〉 : S∨∗ (X;N)⊗ S∗(X)→ N ,

where N is regarded as a chain complex concentrated in degree 0. We would like this map to be a
chain map. So let f ∈ Sn(X;N) and σ ∈ Sn(X), and compute

0 = d〈f, σ〉 = 〈df, σ〉+ (−1)n〈f, dσ〉 .

This forces
(df)(σ) = 〈df, σ〉 = −(−1)nf(dσ) ,

explaining the odd sign in our definition above.
Here’s the payoff: There’s a natural map

H−n(S∨∗ (X;N))⊗Hn(S∗(X))
µ−→ H0

(
S∨∗ (X;N)⊗ S∗(X)

)
→ N .

This gives us the Kronecker pairing

〈−,−〉 : Hn(X;N)⊗Hn(X)→ N .

We can develop the properties of cohomology in analogy with properties of homology. For
example: If A ⊆ X, there is a restriction map Sn(X;N) → Sn(A;N), induced by the injection
Sinn(A) ↪→ Sinn(X). And as long as A is nonempty, we can split this injection, so any function
Sinn(A) → N extends to Sinn(X) → N . This means that Sn(X;N) → Sn(A;N) is surjective.
(This is the case if A = ∅, as well!)

Definition 26.8. The relative n-cochain group with coefficients in N is

Sn(X,A;N) = ker (Sn(X;N)→ Sn(A;N)) .

This defines a sub cochain complex of S∗(X;N), and we define

Hn(X,A;N) = Hn(S∗(X,A;N)) .

The short exact sequence of cochain complexes

0→ S∗(X,A;N)→ S∗(X;N)→ S∗(A;N)→ 0

induces the long exact cohomology sequence

H2(X,A;N) // · · ·

H1(X,A;N) // H1(X;N) // H1(A;N)

δ
kk

0 // H0(X,A;N) // H0(X;N) // H0(A;N) .

δ
kk
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Exercises

Exercise 26.9. The linear dual of a graded k-algebra of finite type (finitely generated in each degree)
has a natural k-coalgebra structure. Determine the diagonal map in the dual of the polynomial
algebra k[x], |x| = 2. (It will transpire that the H∗(CP∞; k) = k[x], |x| = 2, so this is determining
the coalgebra structure of H∗(CP∞; k).)

27 Ext and UCT

Let R be a commutative ring (probably a PID) and N an R-module. The singular cochains on X
with values in N ,

S∗(X;N) = Map(Sin∗(X), N) ,

then forms a cochain complex of R-modules. It is contravariantly functorial in X and covariantly
functorial in N . The Kronecker pairing defines a map

Hn(X;N)⊗R Hn(X)→ N

whose adjoint
β : Hn(X;N)→ HomR(Hn(X), N)

gives us an estimate of the cohomology in terms of the homology of X. Here’s how well it does:

Theorem 27.1 (Mixed variance Universal Coefficient Theorem). Let R be a PID and N an R-
module, and let C∗ be a chain-complex of free R-modules. Then there is a short exact sequence of
R-modules,

0→ Ext1
R(Hn−1(C∗), N)→ Hn(HomR(C∗, N))→ HomR(Hn(C∗), N)→ 0 ,

natural in C∗ and N , that splits (but not naturally).

Taking C∗ = S∗(X;R), we have the short exact sequence

0→ Ext1
R(Hn−1(X), N)→ Hn(X;N)

β−→ HomR(Hn(X), N)→ 0

that splits, but not naturally. This also holds for relative cohomology.
What is this Ext?
The problem that arises is that HomR(−, N) : ModR → ModR is not exact. Suppose I have

an injection M ′ →M . Is Hom(M,N)→ Hom(M ′, N) surjective? Does a map M ′ → N necessarily
extend to a map M → N? No! For example, Z/2Z ↪→ Z/4Z is an injection, but the identity map
Z/2Z→ Z/2Z does not extend over Z/4Z.

On the other hand, if M ′ i−→M
p−→M ′′ → 0 is an exact sequence of R-modules then

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)

is again exact. Check this statement, in which R is any commutative ring.
Now homological algebra comes to the rescue again to repair the failure of exactness. Fix a

commutative ring R and an R-module M . Pick a projective resolution of M ,

0←M ← F0 ← F1 ← F2 ← · · · .

Apply HomR(−, N) to get a cochain complex

0→ HomR(F0, N)→ HomR(F1, N)→ HomR(F2, N)→ · · · .
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Definition 27.2. ExtnR(M,N) = Hn(HomR(F∗, N)).

Remark 27.3. Ext is well-defined and functorial, by the Fundamental Theorem of Homological
Algebra, Theorem 22.1. If M is free (or projective) then ExtnR(M,−) = 0 for n > 0, since we can
take M as its own projective resolution. If R is a PID, then we can assume F1 = ker(F0 →M) and
Fn = 0 for n > 1, so ExtnR = 0 if n > 1. If R is a field, then ExtnR = 0 for n > 0.

Example 27.4. Let R = Z and take M = Z/kZ. This admits a simple free resolution: 0 → Z k−→
Z → Z/kZ → 0. Apply Hom(−, N) to it, and remember that Hom(Z, N) = N , to get the very
short cochain complex, with entries in dimensions 0 and 1:

0→ N
k−→ N → 0 .

Taking homology gives us

Hom(Z/kZ, N) = ker(k|N) , Ext1(Z/kZ, N) = N/kN .

Proof of Theorem 27.1. First of all, we can’t just copy the proof (in Lecture 24) of the homology
universal coefficient theorem, since Ext1

R(−, R) is not generally trivial.
Instead, we start by thinking about what an n-cocycle in HomR(C∗, N) is: It’s a homomorphism

Cn → N such that the composite Cn+1 → Cn → N is trivial. Write Bn ⊆ Cn for the submodule of
boundaries. We have a homomorphism that kills Bn; that is,

Zn(HomR(C∗, N))
∼=−→ HomR(Cn/Bn, N) .

Now Hn(C∗) (which we’ll abbreviate as Hn) is the submodule Zn/Bn of Cn/Bn; we have an exact
sequence

0→ Hn → Cn/Bn → Bn−1 → 0 .

Apply HomR(−, N) to this short exact sequence. The result is again short exact, because the
original sequence is split short exact since Bn−1 is a submodule of the free R-module Cn−1 and
hence free. This gives us the bottom line in the map of short exact sequences

0 // Bn HomR(C∗, N) //

��

Zn HomR(C∗, N)

∼=
��

// Hn(HomR(C∗, N))

β
��

// 0

0 // HomR(Bn−1, N) // HomR(Cn/Bn, N) // HomR(Hn, N) // 0 .

The map β is the one we started with. The Snake Lemma 9.2 now shows that it is surjective and
that

kerβ ∼= coker(Bn HomR(C∗, N)→ HomR(Bn−1, N)) .

An element of Bn HomR(C∗, N) is a map Cn → N that factors as Cn
d−→ Cn−1 → N . The

observation is now that this is the same as requiring a factorization Cn
d−→ Zn−1 → N ; once this

factorization has been achieved, the map Zn−1 → N automatically extends to all of Cn−1. This is
because Zn−1 ⊆ Cn−1 as a direct summand: the short exact sequence

0→ Zn−1 → Cn−1 → Bn−2 → 0

splits since Bn−2 is free. Consequently we can rewrite our formula for kerβ as

kerβ ∼= coker(HomR(Zn−1, N)→ HomR(Bn−1, N)) .
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But after all
0← Hn−1 ← Zn−1 ← Bn−1 ← 0

is a free resolution, so this cokernel is precisely Ext1
R(Hn−1(C∗), N).

Question 27.5. Why is Ext called Ext?

Answer: It classifies extensions. Let R be a commutative ring, and let M,N be two R-modules. I
can think about “extensions of M by N ,” that is, short exact sequences of the form

0→ N → L→M → 0 .

We’ll say that two extensions are equivalent if there’s a map of short exact sequences between them
that is the identity on N and on M . The map in the middle is necessarily then an isomorphism
as well, by the 5-lemma. An alternate and equivalent definition of Ext1

R(M,N) is as the set of
extensions like this modulo this notion of equivalence. The zero in this group is the split extension.
I invite you to think about why this is isomorphic to the definition using projective resolutions, and
to construct the addition (“Baer sum”) in this version of Ext1

R(M,N) [33].
For example, with R = Z, I have two extensions of Z/2Z by Z/2Z:

0→ Z/2Z→ Z/2Z⊕ Z/2Z→ Z/2Z→ 0

and
0→ Z/2Z→ Z/4Z→ Z/2Z→ 0 .

The first represents 0 ∈ Ext1(Z/2Z,Z/2Z), and the second represents the nonzero element in that
group.

Eilenberg-Steenrod axioms for cohomology

The universal coefficient theorem is useful in transferring properties of homology to cohomology.
For example, if f : X → Y is a map that induces an isomorphism in H∗(−;R), then it induces an
isomorphism in H∗(−;N) for any R-module N , at least provided that R is a PID. (This is in fact
true in general.)

Cohomology satisfies the appropriate analogues of the Eilenberg-Steenrod axioms.

Homotopy invariance: If f0 ' f1 : (X,A)→ (Y,B), then

f∗0 = f∗1 : H∗(Y,B;N)→ H∗(X,A;N) .

I can’t use the UCT to address this. But we established a chain homotopy f0,∗ ' f1,∗ : S∗(X,A)→
S∗(Y,B), and applying Hom converts chain homotopies to cochain homotopies.

Excision: If U ⊆ A ⊆ X such that U ⊆ Int(A), then H∗(X,A;N) → H∗(X − U,A− U ;N) is an
isomorphism. This follows from excision in homology and the mixed variance UCT.

Milnor axiom: The inclusions induce an isomorphism

H∗(
∐
αXα;N)→

∏
αH
∗(Xα;N) .

As a result, it enjoys the fruit of these axioms, such as:
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The Mayer-Vietoris sequence: If A,B ⊆ X are such that their interiors cover X, then there is
a long exact sequence

Hn+1(X;N) // · · ·

Hn(X;N) // Hn(A;N)⊕Hn(B;N) // Hn(A ∩B;N)

ll

· · · // Hn−1(A ∩B;N)

ll

Exercises

Exercise 27.6. Compute H∗(RPn;R) where R = Z, R = Z[1/2], and R = F2.

Exercise 27.7. Verify the Milnor axiom for singular cohomology.

Exercise 27.8. Check that our proof of the UCT (Theorem 24.1) only really required that TorR1 (Cn,M) =
0 for all n. Use this observation to prove that if M is a finitely generated R-module then there is a
natural short exact sequence

0→ Hn(X)⊗RM → Hn(X;M)→ TorR1 (Hn+1(X),M)→ 0 .

28 Products in cohomology

In Lecture 25 we used acyclic models to construct a natural chain homotopy equivalence

S∗(X)⊗ S∗(Y )� S∗(X × Y )

lifting the isomorphism H0(X) ⊗ H0(Y )∼=H0(X × Y ). We used a choice of the bottom arrow
(and gave the Eilenberg-Zilber map as an example) to produce a homology cross product × :
H∗(X) ⊗ H∗(Y ) → H∗(X × Y ). Now we want to use a map going the other way, in order to
construct a cohomology cross product map × : H∗(X)⊗H∗(Y )→ H∗(X × Y ).

There is an attractive choice in this case too: the Alexander-Whitney map. For each pair of
natural numbers p, q, we will define a natural homomorphism

α : Sp+q(X × Y )→ Sp(X)⊗ Sq(Y ) .

It suffices to define this on simplices, so let σ : ∆p+q → X × Y be a singular (p+ q)-simplex in the
product. Let

σ1 = pr1 ◦ σ : ∆p+q → X and σ2 = pr2 ◦ σ : ∆p+q → Y

be the two coordinates of σ. I have to produce a p-simplex in X and a q-simplex in Y .
First define two maps in the simplex category:
– the “front face” αp : [p]→ [p+ q], sending i to i for 0 ≤ i ≤ p, and
– the “back face” ωq : [q]→ [p+ q], sending j to p+ j for 0 ≤ j ≤ q.

Use the same symbols for the affine extensions to maps ∆p → ∆p+q and ∆q → ∆p+q. Now let

α(σ) = (σ1 ◦ αp)⊗ (σ2 ◦ ωq) .
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This seems like a very random construction; but it works! It’s named after two great early
algebraic topologists, James W. Alexander and Hassler Whitney. Both worked at the Institute for
Advanced Study in Princeton. Alexander (1888–1971) is known for his polynomial and his horned
sphere, as well as his duality theorem we will come to presently. To Whitney (1907-1989) we owe the
characteristic classes and sum formula we will see later, as well as fundamental work embeddings
and stratified spaces. For homework, you will show that these maps assemble into a chain map

α : S∗(X × Y )→ S∗(X)⊗ S∗(Y )

lifting the isomorphism H0(X × Y )→ H0(X)⊗H0(Y ).
This works over any ring R. To get a map in cohomology, we should form a composite

Sp(X)⊗ Sq(Y )→ HomR(Sp(X)⊗ Sq(Y ), R)
α∗−→ HomR(Sp+q(X × Y ), R) = Sp+q(X × Y ) .

The first map goes like this: Given chain complexes C∗ and D∗, we can consider the dual cochain
complexes HomR(C∗, R) and HomR(D∗, R), and construct a chain map

HomR(C∗, R)⊗R HomR(D∗, R)→ HomR(C∗ ⊗R D∗, R)

by

f ⊗ g 7→

{
(x⊗ y 7→ (−1)pqf(x)g(y)) |x| = |f | = p, |y| = |g| = q

0 otherwise.

Again, I leave it to you to check that this is a cochain map.
Altogether, we have constructed a natural cochain map

× : Sp(X)⊗ Sq(Y )→ Sp+q(X × Y )

From this, we get a homomorphism

H∗(S∗(X)⊗ S∗(Y ))→ H∗(X × Y ) .

I’m not quite done! As in the Künneth theorem, there is an evident natural map

µ : H∗(X)⊗H∗(Y )→ H∗(S∗(X)⊗ S∗(Y )) .

The composite
× : H∗(X)⊗H∗(Y )→ H∗(S∗(X)⊗ S∗(Y ))→ H∗(X × Y )

is the cohomology cross product.
It’s not very easy to do computations with this, directly. We’ll find indirect means. Let me

make some points about this construction, though.

Definition 28.1. The cup product is the map obtained by taking X = Y and composing with the
map induced by the diagonal ∆ : X → X ×X:

∪ : Hp(X)⊗Hq(X)
×−→ Hp+q(X ×X)

∆∗−−→ Hp+q(X), .

These definitions make good sense with any ring for coefficients.
Let’s explore this definition in dimension zero. I claim that H0(X;R) ∼= Map(π0(X), R) as

rings. When p = q = 0, both α0 and ω0 are the identity maps, so we are just forming the pointwise
product of functions.
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There’s a distinguished element in H0(X), namely the the function π0(X) → R that takes on
the value 1 on every path component. This is the identity for the cup product. This comes about
because when p = 0 in our above story, then α0 is just including the 0-simplex, and ωq is the
identity.

The cross product is also associative. This follows again from acyclic models, but if we use the
Alexander-Whitney map it holds even on the chain level.

Proposition 28.2. Let f ∈ Sp(X), g ∈ Sq(Y ), and h ∈ Sr(Z), and let σ : ∆p+q+r → X × Y × Z
be any simplex. Then the Alexander-Whitney cross product satisfies:

((f × g)× h)(σ) = (f × (g × h))(σ) .

Proof. Write σ12 for the composite of σ with the projection map X × Y × Z → X × Y , and so on.
Then

((f × g)× h)(σ) = (−1)(p+q)r(f × g)(σ12 ◦ αp+q)h(σ3 ◦ ωr) .

But
(f × g)(σ12 ◦ αp+q) = (−1)pqf(σ1 ◦ αp)g(σ2 ◦ µq) ,

where µq is the “middle face,” sending ` to `+ p for 0 ≤ ` ≤ q. In other words,

((f × g)× h)(σ) = (−1)pq+qr+rpf(σ1 ◦ αp)g(σ2 ◦ µq)h(σ3 ◦ ωr) .

I’ve used associativity of the coefficient ring. You get exactly the same thing when you expand
(f × (g × h))(σ), so the cross product is associative.

Of course the diagonal map is “associative,” too, and we find that the cup product is associative:

(α ∪ β) ∪ γ = α ∪ (β ∪ γ) .

Exercises

Exercise 28.3. Verify that the Alexander-Whitney map is a chain map lifting the isomorphism
H0(X × Y )→ H0(X)⊗H0(y).

29 Cup product, continued

We have constructed an explicit map × : Sp(X)⊗ Sq(Y )→ Sp+q(X × Y ) via:

(f × g)(σ) = (−1)pqf(σ1 ◦ αp)g(σ2 ◦ ωq)

where αp : ∆p → ∆p+q sends i to i for 0 ≤ i ≤ p and ωq : ∆q → ∆p+q sends j to p+ j for 0 ≤ j ≤ q.
This is a cochain map; it induces a “cross product” × : Hp(X)⊗Hq(Y )→ Hp+q(X × Y ), and, by
composing with the map induced by the diagonal embedding, the “cup product”

∪ : Hp(X)⊗Hq(X)→ Hp+q(X) .

We formalize the structure that this product imposes on cohomology.
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Definition 29.1. Let R be a commutative ring. A graded R-algebra is a graded R-module
. . . , A−1, A0, A1, A2, . . . equipped with maps Ap ⊗R Aq → Ap+q and a map η : R → A0 that
make the following diagram commute.

Ap ⊗R R
1⊗η //

=

&&

Ap ⊗R A0

��

A0 ⊗R Aq

��

R⊗R Aq
η⊗1oo

=

xx
Ap Aq

Ap ⊗R (Aq ⊗R Ar) //

��

Ap ⊗R Aq+r

��
Ap+q ⊗R Ar // Ap+q+r

A graded R-algebra A is commutative if the following diagram commutes:

Ap ⊗R Aq τ //

%%

Aq ⊗R Ap

yy
Ap+q

where τ(x⊗ y) = (−1)pqy ⊗ x.

We claim that H∗(X;R) forms a commutative graded R-algebra under the cup product. From
what we did in the last lecture, it is clearly a graded R-algebra. But commutativity is nontrivial.
On the cochain level, this is clearly not graded commutative. We’re going to have to work hard
– in fact, so hard that you’re going to do it for homework. What needs to be checked is that the
following diagram commutes up to natural chain homotopy.

S∗(X × Y )
T∗ //

αX,Y

��

S∗(Y ×X)

αY,X

��
S∗(X)⊗R S∗(Y )

τ // S∗(Y )⊗R S∗(X)

Acyclic models helps us prove things like this. Let us summarize:

Theorem 29.2. With any commutative ring of coefficients, H∗(X) is naturally a commutative
graded R-algebra.

So, for example, if |x| is odd then x2 = −x2, or 2x2 = 0. If 2 is invertible in the coefficient ring,
this implies that x2 = 0.

You might hope that there is some way to produce a commutative product on a chain complex
modeling H∗(X). With coefficients in Q, this is possible, by a construction due to Dennis Sullivan.
With coefficients in a field of nonzero characteristic, it is not possible. Steenrod operations provide
the obstruction.

My goal now is to compute the cohomology algebras of some spaces. Some spaces are easy!
There is only one possible product structure on H∗(Sn), for example. (When n = 0, we get a free
module of rank 2 in dimension 0. This admits a variety of commutative algebra structures; but we
have already seen that H0(S0) = Z × Z as an algebra.) Maybe the next thing to try is a product
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of spheres. More generally, we should ask whether there is an algebra structure on H∗(X)⊗H∗(Y )
making the cross product an algebra map. If A and B are two graded algebras, there is a natural
algebra structure on A⊗B, given by 1 = 1⊗ 1 and

(a′ ⊗ b′)(a⊗ b) = (−1)|b
′|·|a|a′a⊗ b′b .

If A and B are commutative, then so is A⊗B with this algebra structure.

Proposition 29.3. The cohomology cross product

× : H∗(X)⊗H∗(Y )→ H∗(X × Y )

is an R-algebra homomorphism.

Proof. We have diagonal maps ∆X : X → X ×X and ∆Y : Y → Y × Y . The diagonal on X × Y
factors as

X × Y
∆X×Y //

∆X×∆Y

((

X × Y ×X × Y

X ×X × Y × Y .

1×T×1
55

Let α1, α2 ∈ H∗(X) and β1, β2 ∈ H∗(Y ). Then α1 × β1, α2 × β2 ∈ H∗(X × Y ), and I want to
calculate (α1 × β1) ∪ (α2 × β2). Let’s see:

(α1 × β1) ∪ (α2 × β2) = ∆∗X×Y (α1 × β1 × α2 × β2)

= (∆X ×∆Y )∗(1× T × 1)∗(α1 × β1 × α2 × β2)

= (∆X ×∆Y )∗(α1 × T ∗(β1 × α2)× β2)

= (−1)|α2|·|β1|(∆X ×∆Y )∗(α1 × α2 × β1 × β2) .

Naturality of the cross product asserts that the diagram

H∗(X × Y ) H∗(X)⊗R H∗(Y )
×X×Yoo

H∗(X ×X × Y × Y )

(∆X×∆Y )∗

OO

H∗(X ×X)⊗H∗(Y × Y ) .
×X×X,Y×Yoo

∆∗X⊗∆∗Y

OO

commutes. We learn:

(α1 × β1) ∪ (α2 × β2) = (−1)|α2|·|β1|(∆X ×∆Y )∗(α1 × α2 × β1 × β2)

= (−1)|α2|·|β1|(α1 ∪ α2)× (β1 ∪ β2) .

That’s exactly what we wanted.

We will see later, in Theorem 33.3, that the cross product map is often an isomorphism.

Example 29.4. How about H∗(Sp×Sq)? I’ll assume that p and q are both positive, and leave the
other cases to you. The Künneth theorem guarantees that × : H∗(Sp) ⊗H∗(Sq) → H∗(Sp × Sq)
is an isomorphism. Write α for a generator of Sp and β for a generator of Sq; and use the same
notations for the pullbacks of these elements to Sp × Sq under the projections. Then

H∗(Sp × Sq) = Z〈1, α, β, α ∪ β〉 ,

and
α2 = 0 , β2 = 0 , αβ = (−1)pqβα .

This calculation is useful! For example:
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Corollary 29.5. Let p, q > 0. Any map Sp+q → Sp × Sq induces the zero map in Hp+q(−).

Proof. Let f : Sp+q → Sp × Sq be such a map. It induces an algebra map f∗ : H∗(Sp × Sq) →
H∗(Sp+q). This map must kill α and β, for degree reasons. But then it also kills their product,
since f∗ is multiplicative.

The space Sp ∨ Sq ∨ Sp+q has the same homology and cohomology groups as Sp × Sq. Both
are built as CW complexes with cells in dimensions 0, p, q, and p + q. But they are not homotopy
equivalent. We can see this now because there is a map Sp+q → Sp ∨ Sq ∨ Sp+q inducing an
isomorphism in Hp+q(−), namely, the inclusion of that summand.

Exercises

Exercise 29.6. Verify that the cup product renders H∗(X) a commutative graded ring.

Exercise 29.7. (a) Let n, k > 0. Compute H∗((Sk)n;R) as an R-algebra. When k is odd, this is
an “exterior algebra.”
(b) Rn is the universal cover of (S1)n = Rn/Zn. Let M be an n × n matrix with entries in Z. It
defines a linear map Rn → Rn in the usual way. Show that this map descends to a self-map of
(S1)n. Compute the effect of this map on H1((S1)n) and on Hn((S1)n).

30 Surfaces and nondegenerate symmetric bilinear forms

We are aiming towards a proof of a fundamental cohomological property of manifolds.

Definition 30.1. A (topological) manifold is a Hausdorff space such that every point has an open
neighborhood that is homeomorphic to some finite dimensional Euclidean space.

If all these Euclidean spaces can be chosen to be Rn, we have an n-manifold. This definition
makes space for some very “large” manifolds: the “long line,” for example, or an uncountable discrete
set. Whenever necessary we will feel free to add hypotheses to eliminate these “non-geometric”
examples. Compactness certainly avoids them! In fact any compact manifold is of the homotopy
type of a finite CW complex [78].

In this lecture we will state a case of the Poincaré duality theorem and study some consequences
of it, especially for compact 2-manifolds. Henri Poincaré (1854–1912), engineer, theoretical physicist,
mathematician, Professor at the Sorbonne, could be said to be the founding father of the subject
of topology.

This whole lecture will be happening with coefficients in F2.

Theorem 30.2. Let M be a compact manifold of dimension n. There exists a unique class [M ] ∈
Hn(M), called the fundamental class, such that for every p, q with p+ q = n the pairing

Hp(M)⊗Hq(M)
∪−→ Hn(M)

〈−,[M ]〉−−−−−→ F2

is perfect.

A bilinear map V ⊗W → R of modules over a PID R is a perfect pairing if the adjoint maps

α : V → HomR(W,R) = W∨ , β : W → HomR(V,R) = V ∨
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are both isomorphisms. Since HomR(W,R) is torsion-free, both V and W must be torsion free.
The maps α and β determine each other: α = β∨ ◦ ιV and β = α∨ ◦ ιW , where ιV : V → V ∨∨

is the canonical map. Since α and β are isomorphisms by assumption, the maps ιV and ιW are
isomorphisms as well. This forces V and W to be of finite rank: they are both finitely generated
free R-modules.

So we learn that Hp(M) is finite-dimensional and vanishes for p > n.
Combining this pairing with the universal coefficient theorem, we get isomorphisms

Hp(M)
∼=−→ Hom(Hq(M),F2)

∼=←− Hq(M) .

The homology and cohomology classes corresponding to each other under this isomorphism are said
to be “Poincaré dual.”

Using these isomorphisms, the cup product pairing can be rewritten as a homology pairing:

Hp(M)⊗Hq(M)
t //

∼=
��

Hn−p−q(M)

∼=
��

Hn−p(M)⊗Hn−q(M)
∪ // H2n−p−q(M) .

This is the intersection pairing. Here’s how to think of it. Take homology classes α ∈ Hp(M) and
β ∈ Hq(M) and represent them (if possible!) as the image of the fundamental classes of submanifolds
of M , of dimensions p and q. Move them if necessary to make them intersect “transversely.” Then
their intersection will be a submanifold of dimension n− p− q, and it will represent the homology
class α t β.

This relationship between the cup product and the intersection pairing is the source of the
symbol for the cup product.

Example 30.3. Let M = T 2 = S1 × S1. We know that

H1(M) = F2〈a, b〉

and a2 = b2 = 0, while ab = ba generatesH2(M). The Poincaré duals of these classes are represented
by cycles α and β wrapping around one or the other of the two factor circles. They can be made to
intersect in a single point. This reflects the fact that

〈a ∪ b, [M ]〉 = 1 .

Similarly, the fact that a2 = 0 reflects the fact that its Poincaré dual cycle α can be moved so as
not to intersect itself. The picture below shows two possible α’s.

This example exhibits a particularly interesting fragment of the statement of Poincaré duality:
In an even dimensional manifold – say n = 2k – the cup product pairing gives us a nondegenerate
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symmetric bilinear form on Hk(M). As indicated above, this can equally well be considered a
bilinear form on Hk(M), and it is then to be thought of as describing the number of points (mod
2) two k-cycles intersect in, when put in general position relative to one another. It’s called the
intersection form. We’ll denote it by

α · β = 〈a ∪ b, [M ]〉 ,

where again a and α are Poincaré dual, and b and β are dual.

Example 30.4. In terms of the basis α, β, the intersection form for T 2 has matrix[
0 1
1 0

]
.

This is a “hyperbolic form.”

Let’s discuss finite dimensional nondegenerate symmetric bilinear forms over F2 in general. A
form on V restricts to a form on any subspace W ⊆ V , but the restricted form may be degenerate.
Any subspace has an orthogonal complement

W⊥ = {v ∈ V : v · w = 0 for all w ∈W} .

Lemma 30.5. The restriction of a nondegenerate bilinear form on V to a subspace W is nonde-
generate exactly when W ∩W⊥ = 0. In that case W⊥ is also nondegenerate, and the splitting

V ∼= W ⊕W⊥

respects the forms.

Using this easy lemma, we may inductively decompose a general finite dimensional symmetric
bilinear form. First, suppose that there is a vector v ∈ V such that v · v = 1. It generates a
nondegenerate subspace and

V = 〈v〉 ⊕ 〈v〉⊥ .

Continuing to split off one-dimensional subspaces brings us to the situation of a nondegenerate
symmetric bilinear form such that v · v = 0 for every vector. Unless V = 0 we can pick a nonzero
vector v. Since the form is nondegenerate, we may find another vector w such that v · w = 1. The
two together generate a 2-dimensional hyperbolic subspace. Split it off and continue. We conclude:

Proposition 30.6. Any finite dimensional nondegenerate symmetric bilinear form over F2 splits

as an orthogonal direct sum of forms with matrices [1] and
[

0 1
1 0

]
.

Let Bil be the set of isomorphism classes of finite dimensional nondegenerate symmetric bilinear
forms over F2. We’ve just given a classification of these things. This is a commutative monoid under
orthogonal direct sum. It can be regarded as the set of nonsingular symmetric matrices modulo the
equivalence relation of “similarity”: Two matrices M and N are similar, M ∼ N , if N = AMAT for
some nonsingular A.

Claim 30.7.

 1
1

1

 ∼
 1

1
1

 .
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Proof. This is the same thing as saying that

 1
1

1

 = AAT for some nonsingular A. Let

A =

 1 1 1
1 0 1
0 1 1

.
It’s easy to see that there are no further relations; Bil is the commutative monoid with two

generators I and H, subject to the relation H + I = 3I.
Let’s go back to topology, and let M be a compact 2-manifold. Then you get an intersection

pairing on H1(M). Consider RP2. We know that H1(RP2) = F2. This must be the form we labeled
I. This says that any time you have a nontrivial cycle on a projective plane, there’s nothing you
can do to remove its self intersections. You can see this. The projective plane is a Möbius band
with a disk sewn on along the boundary. The waist of the Möbius band serves as a generating cycle.
The observation is that if this cycle is moved to intersect itself tranversely, it must intersect itself
an odd number of times.

We can produce new surfaces from old by a process of “addition.” Given two connected surfaces
Σ1 and Σ2, cut a disk out of each one and sew them together along the resulting circles. This is the
connected sum Σ1#Σ2. You showed in 12.2 that there is an isomorphism

H1(Σ1#Σ2) ∼= H1(Σ1)⊕H1(Σ2) .

I leave it to you to verify that the direct sum is orthogonal.
Write Surf for the set of homeomorphism classes of compact connected surfaces. Connected

sum provides it with the structure of a commutative monoid. The classification (e.g. [35]) of surfaces
may now be summarized as follows:

Theorem 30.8. Formation of the intersection bilinear form gives an isomorphism of commutative
monoids Surf → Bil.

This is a kind of model result of algebraic topology! – a complete algebraic classification of a
class of geometric objects. The oriented surfaces correspond to the bilinear forms of type gH; g is
the genus. We must have a relation corresponding to H ⊕ I = 3I, namely

T 2#RP2 ∼= RP2#RP2#RP2 .

You should verify this for yourself!
There’s more to be said about this. Away from characteristic 2, symmetric bilinear forms and

quadratic forms are interchangeable. But over F2 you can ask for a quadratic form q such that

q(x+ y) = q(x) + q(y) + x · y .

This is a “quadratic refinement” of the symmetric bilinear form. Of course it implies that x · x = 0
for all x, so this will correspond to some further structure on an oriented surface. This structure is a
“framing,” a trivialization of the normal bundle of an embedding into a high dimensional Euclidean
space. There are then further invariants of this framing; this is the story of the Kervaire invariant.

Exercises

Exercise 30.9. Construct a homeomorphism of surfaces corresponding to H ⊕ I = 3I.
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Exercise 30.10. Where does the Klein K2 bottle figure in this classification of surfaces? Draw sin-
gular 1-simplices representing each of the four elements ofH1(K2), and verify that their intersections
(including self-intersections) are determined by the intersection pairing.

Exercise 30.11. Show that any odd-dimensional compact manifold has vanishing Euler character-
istic.

31 Local coefficients and orientations

The fact that a manifold is locally Euclidean puts surprising constraints on its cohomology, captured
in the statement of Poincaré duality. To understand how this comes about, we have to find ways to
promote “local information” – like the existence of Euclidean neighborhoods – to “global information”
– like restrictions on the structure of the cohomology. Today we’ll study the notion of an orientation,
which is the first link between local and global.

The local-to-global device relevant to this is the notion of a “local coefficient system,” which is
based on the more primitive notion of a covering space. We merely summarize that theory, since it
is a prerequisite for this course; see for example [35] for more details.

Covering spaces

Definition 31.1. A continuous map p : E → B is a covering space if
(1) every point pre-image is a discrete subspace of E, and
(2) every b ∈ B has a neighborhood V admitting a map p−1(V ) → p−1(b) such that the induced
map

p−1(V )→ V × p−1(b)

is a homeomorphism.

The space B is the “base,” E the “total space.”

Example 31.2. A first example is given by the projection map pr1 : B × F → B where F is
discrete. A covering space of this form is said to be trivial, so the covering space condition can be
rephrased as “local triviality.”

The first interesting example is the projection map Sn → RPn obtained by identifying antipodal
maps on the sphere. This example generalizes in the following way.

Definition 31.3. An action of a group π on a space X is principal or totally discontinuous (terrible
language, since we are certainly assuming that every group element acts by homeomorphisms)
provided that every element x ∈ X has a neighborhood U such that the only time U and gU
intersect is when g = 1.

This is a strong form of “freeness” of the action. It is precisely what is needed to guarantee:

Lemma 31.4. If π acts principally on X then the orbit projection map X → π\X is a covering
space.

It is not hard to use local triviality to prove the following:

Theorem 31.5 (Unique path lifting). Let p : E → B be a covering space, and ω : I → B a path
in the base. For any e ∈ E such that p(e) = ω(0), there is a unique path ω̃ : I → E in E such that
pω̃ = ω and ω̃(0) = e.
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This theorem connects the theory of covering spaces with the “fundamental group” of a space B
with distinguished basepoint b. It’s denoted by π1(B, b), in homage to Henri Poincaré. It is the set
of equivalence classes of loops at B, in which two loops are equivalent if they differ by a homotopy
that fixes the endpoints. Loops can be added by juxtaposition:

(α · ω)(t) =

{
α(2t) 0 ≤ t ≤ 1/2

ω(2t− 1) 1/2 ≤ t ≤ 1

A space B is simply connected if it is path connected and π1(B, b) is trivial for some (and hence
any) b ∈ B.

The fundamental group is closely related to singular homology in dimension one. If we pick a
generator σ for H1(S1, ∗) = Z, we get a map π1(B, ∗)→ H1(B, ∗) by sending the pointed homotopy
class of f : Sn → X to f∗(σ). This is the Hurewicz map (in dimension 1), and we have Poincaré’s
theorem:

Theorem 31.6 (e.g. [72, Theorem 9.2.1]). Let B be a path-connected pointed space. The Hurewicz
map factors through an isomorphism

π1(b, ∗)ab → H1(B, ∗)

from the abelianization of the fundamental group.

This theorem will be generalized later; see Lectures 51 and 65. Combined with the Universal
Coefficient Theorem 27.1, Poincaré’s theorem implies:

Corollary 31.7. Let B be a path-connected space and b ∈ B, and let N be any abelian group. There
is a natural isomorphism

Hom(π1(B, b), N)→ H1(B;N) .

Returning to the covering space story, Theorem 31.5 leads to a right action of π1(B, b) on
F = p−1(b): Represent an element of π1(B, b) by a loop ω; for an element e ∈ p−1(b) let ω̃ be the
lift of ω with ω̃(0) = e; and define

e · [ω] = ω̃(1) ∈ E .

This element lies in F because ω was a loop, ending at b. One must check that this action by
[ω] ∈ π1(B, b) does not depend upon the choice of representative ω, and that we do indeed get a
right action:

e · (ab) = (e · a) · b , e · 1 = e .

Given a principal π-action on X, with orbit space B, we can do more than just form the orbit
space! If we also have a right action of π on a set F , we can form a new covering space over B with
F as “generic” fiber. Write F ×π X for the quotient of the product space F ×X by the equivalence
relation

(s, gx) ∼ (sg, x) , g ∈ π .

This is the “balanced product” or “Borel construction.” The composite projection F×X → X → B
factors through a map p : F ×π X → B, which is easily seen to be a covering space. Any element
x ∈ X determines a homeomorphism

F → p−1p(x) by s 7→ [s, x] .
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Of course ∗ ×π X = B, and if we let π act on itself by right translation, π ×π X = X.
Covering spaces of a fixed space B form a category CovB, in which a morphism E′ → E is

“covering transformation,” that is, a map f : E′ → E making

E′
f //

  

E

��
B

commute. Sending p : E → B to p−1(b) with its action by π1(B, b) gives a functor

CovB → Setπ1(B,b)

to the category of right actions of π1(B, b) on sets. For connected spaces, this is usually an equiv-
alence of categories. The technical assumption required is this: A space B is semilocally simply
connected if it is path connected and for every point b and every neighborhood U of b, there exists
a smaller neighborhood V such that π1(V, b)→ π1(X, b) is trivial. This is a very weak condition.

Theorem 31.8. Assume that B is semi-locally simply connected. Then the functor CovB →
Setπ1(B,b) is an equivalence of categories.

This “Galois correspondence” is another one of those perfect theorems in algebraic topology!
The covering space corresponding under this equivalence to the translation action of π1(B, b)

on itself is the universal cover of B, denoted by B̃ → B. B̃ is simply connected. Since the
automorphism group of π as a right π-set is π (acting by left translation), the automorphism group
of B̃ → B as a covering space of B is π1(B, b). This action is principal, and the covering space
corresponding to a π1(B, b)-set S is given by the balanced product S ×π1(B,b) B̃.

If p : E → B is a covering space, one of the things you may want to do is consider a section of p;
that is, a continuous function s : B → E such that p ◦ s = 1B. Write Γ(B;E) for the set of sections
of p : E → B. Under the correspondence of Theorem 31.8,

Γ(B;E) = (p−1(b))π1(B,b) ,

the fixed point set for the action of π1(B, b) on p−1(b).
The local trivality implies:

Lemma 31.9. Let E → B be a covering space, and suppose that s1 and s2 are sections. The subset
of B on which these two sections coincide is open and closed.

The following technical lemma will be important to us.

Proposition 31.10. Let B be a normal space, E → B be a covering space, and K a compact subset
of B. Any element of Γ(K;E) extends to a section on an open neighborhood of K in B.

Proof. (cp. [10, p. 334], [22, p. 150], [11, p. 66]) Let U be a set of open subsets of X that covers
K and such that E is trivial over each element of U . Since K is compact we may assume that U is
finite: U = {U1, . . . , Un}. Let U0 = X−K, so that the set {U0, . . . , Un} is an open cover of X. Any
finite open cover of a normal space admits a shrinking: so there is a new open cover {V0, . . . , Vn}
such that Vi ⊆ Ui for all i. Since V0 doesn’t meet K, {V1, . . . , Vn} covers K. Let V =

⋃n
i=1 Vi, an

open subset of X containing K.
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Let s be a section of E over K. It certainly extends to a section over each Ui, say si. Now define

W = {x ∈ V : ∀ i, j ∈ I , x ∈ Vi ∩ Vj ⇒ si(x) = sj(x)}

where I = {1, . . . , n}. The subspaceW inherits the finite open cover {Vi∩W : i ∈ I}, and the gluing
lemma for maps on open subsets shows that there is a continuous section of E on W restricting on
Vi ∩W to the same section that si does for each i ∈ I. Since K ⊆ W , it suffices to show that W
contains an open neighborhood of K.

Let x ∈ K. We construct an open subset of X containing x and lying in W . Let I(x) be the
set of indices i such that x ∈ Vi, and define

N0(x) =
⋂

j 6∈I(x)

(V − Vj) ,

and for i, j ∈ I(x) define

Ni,j(x) = {y ∈ Ui ∩ Uj ∩ V : si(y) = sj(y)} .

Then x ∈ Ni,j(x) since x ∈ Vi ⊆ Ui for all i ∈ I(x) and the sections agree at x since x ∈ K. By
Lemma 31.9, this is an open subset of V . Then put

N(x) = N0(x) ∩
⋂

i,j∈I(x)

Ni,j(x) .

This is certainly an open subset of X containing x. To see that it lies in W , let y ∈ N(x) ⊆ V . If
y ∈ Vi then i ∈ I(x) since N(x) ⊆ N0(x), so if y ∈ Vi ∩ Vj then both i and j lie in I(x). Then use
the inclusion N(x) ⊆ Ni,j(x) to see that si(y) = sj(y).

Local coefficient systems

Covering spaces come up naturally in our study of topological manifolds. For any space X, we
can probe the structure of X in the neighborhood of x ∈ X by studying the graded R-module
H∗(X,X − x;R), the local homology of X at x; where, to lighten notation, we have written X − x
in place of X − {x}. By excision, this group depends only on the structure of X “locally at x”: For
any neighborhood U of x, excising the complement of U gives an isomorphism

H∗(U,U − x)
∼=−→ H∗(X,X − x) .

When the space is an n-manifold – let’s write M for it – the local homology is very simple. It’s
nonzero only in dimension n. This has a nice immediate consequence, by the way: there is a well-
defined locally constant function dim : M → N, sending x to the dimension in which H∗(M,M −x)
is nontrivial. For an n-manifold, it’s the constant function with value n.

In fact the whole family of homology groupsHn(M,M−x) is “locally constant.” This is captured
in the statement that taken together, as x varies over M , they constitute a covering space over M .
To see this, begin by defining

oM =
∐
x∈MHn(M,M − x)

as sets. There is an evident projection map p : oM → M . We aim to put a topology on oM with
the property that this map is a covering space. This will use an important map jA,x, defined for
any closed set A ⊆M and x ∈ A as the map induced by an inclusion of pairs:

jA,x : Hn(M,M −A)→ Hn(M,M − x) .
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Define a basis of opens VU,x,α in oM indexed by triples (U, x, α) where U is open in M , x ∈ U , and
α ∈ Hn(M,M − U):

VU,x,α = {jU,x(α) : x ∈ U} .

Each α ∈ Hn(M,M −U) thus defines a “sheet” of oM over U . We leave it to you to check that this
is indeed a covering space.

This covering space has more structure: each fiber is an abelian group, an infinite cyclic abelian
group (or it’s an R-module, free on one generator, if we have coefficients in a commutative ring
R). These structures vary continuously as you move from one fiber to another. To illuminate this
structure, observe that the category CovB has finite products; the product of E′ ↓ B and E ↓ B
is given by the fiber product or pullback, E′ ×B E ↓ B. The terminal object is the identity map
B ↓ B. This lets us define an “abelian group object” in CovB; it’s an object E ↓ B together with
maps E ×B E → E and B → E over B, satisfying some evident conditions that are equivalent to
requiring that they render each fiber an abelian group. If you have a ring around you can also ask
for a map (B ×R)×B E → E making each fiber an R-module.

The structure we have defined is a local coefficient system (of R-modules). We already have an
example; if M is an n-manifold, we have the orientation local system oM over M .

It’s useful to allow coefficients in a commutative ring R; so denote by

oM ⊗R

the local system of R-modules obtained by tensoring each fiber with R.
The classification theorem for covering spaces has as a corollary:

Theorem 31.11. Let B be semi-locally simply connected. Then forming the fiber over a point b
gives an equivalence of categories from the category of local coefficient systems of R-modules over B
and the category of modules over the group algebra Rπ1(B, b).

AssumeM is a connected n-manifold. The fibers of our local coefficient system oM are quite sim-
ple: they are free of rank 1. Since any automorphism of such an R-module is given by multiplication
by a unit in R, we find that the local coefficient system is defined by giving a homomorphism

π1(M, b)→ R×

or, what is the same (by Corollary 31.7) an element of H1(M ;R×).
The set of abelian group generators of the fibers of oM form a sub covering space, a double cover

of M , denoted by o×M . It is the “orientation double cover.” If M is orientable it is trivial; it consists
of two copies of M . An orientation consists of a choice of one or the other of the components. If
M is nonorientable the orientation double cover is again connected. An interesting and simple fact
is that its total space is a manifold in its own right, and is orientable; in fact it carries a canonical
orientation.

Similarly we can form the sub covering space of R-module generators of the fibers of oM ⊗ R;
write (oM ⊗R)× for it.

Orientations

A “local R-orientation at x” is a choice of R-module generator of Hn(M,M − x;R), and we make
the following definition.

Definition 31.12. An R-orientation of an n-manifoldM is a section of (oM⊗R)×. If an orientation
exists, the manifold is R-orientable.
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For example, when R = F2, every manifold is orientable, and uniquely so, since F×2 = {1}. A
Z-orientation (or simply “orientation”) is a section of the orientation double cover. A manifold is
“R-orientable” if it admits an R-orientation.

This relates to the “globalization” project we started out talking about. A section over B is in
fact called a “global section.” In the case of the orientation local system, we have a canonical map

j : Hn(M ;R)→ Γ(M ; oM ⊗R) ,

described as follows. The value of j(a) at x ∈M is the restriction of a to Hn(M,M − x). The first
“local-to-global” theorem, a special case of Poincaré duality, is this:

Theorem 31.13 (Orientation Theorem). If M is compact, the map j : Hn(M ;R)→ Γ(M ; oM ⊗R)
is an isomorphism.

We will prove this theorem in the next lecture.
When R = Z we will usually drop the “R-.” A connected n-manifold is either non-orientable,

or admits exactly two orientations. Euclidean space is orientable, and an orientation is determined
by a choice of ordered basis.

Still with R = Z, the homomorphism

w1 : π1(M, b)→ Z× = {±1} ,

regarded as an element of H1(M ;F2), is the “first Stiefel-Whitney class.” If it is trivial, you can
pick consistent generators for Hn(M,M − x;Z) as x runs over M : the manifold is “orientable,” and
is oriented by one of the two possible choices, which is then called an orientation. If the orientation
local system is nontrivial, the manifold is nonorientable. I hope it’s clear that the Möbius band is
nonorientable, and hence any surface containing the Möbius band is as well.

For general R, the representation of π1(B) on the fiber of oM⊗R over b is given by the composite
π1(B) → {±1} → R×. If this is the trivial homomorphism, the fixed points of this representation
on R form all of R. If not, the fixed points are the subgroup of R of elements of order 2, written
R[2].

Corollary 31.14. If M is a compact connected n-manifold, then

Hn(M ;R) ∼=

{
R if M is orientable
R[2] if not .

In the first case, a generator of Hn(M ;R) is a fundamental class for the manifold. You should
think of the manifold itself as a cycle representing this homology class. It is characterized as the
class that restricts to the chosen generator of Hn(M,M − x) for all x; this is saying that the cycle
“covers” each point x exactly once, with the correct orientation.

The first isomorphism in Corollary 31.14 depends upon this choice of fundamental class. But
in the second case, the isomorphism is canonical. Over F2, any compact connected manifold has a
unique fundamental class, the generator of Hn(M ;F2) = F2.

Exercises

Exercise 31.15. Check that oM is a covering space of the manifold M .
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Exercise 31.16. Show that if p : N ↓ M is a covering space of manifolds then p∗oM ∼= oN , where
p∗ denotes the pull-back functor CovM → CovN . Define a canonical orientation on the total space
of o×M .

Exercise 31.17. Show that any Lie group is orientable.

32 Proof of the orientation theorem

We are studying the way in which local homological information gives rise to global information,
especially on an n-manifold M . The tool is the map

j : Hn(M ;R)→ Γ(M ; oM ⊗R)

sending a class c to the section of the orientation local coefficient system given at x ∈ M by the
restriction jx(c) ∈ Hn(M,M − x). We asserted that if M is compact then j is an isomorphism and
that Hq(M) = 0 for q > n. The proof will be by an induction that requires us to formulate a more
general statement.

Let A ⊆M be a compact subset. A class in Hn(M,M −A) is represented by an n-chain whose
boundary lies outside of A. Does it cover A evenly? We can give meaning to this question as follows.
Let x ∈ A. Then M −A ⊆M − x, so we have a restriction map

jA,x : Hn(M,M −A)→ Hn(M,M − x)

that tests whether the chain covers x. As x ranges over A, these maps together give us a map to
the group of sections of oM over A,

jA : Hn(M,M −A)→ Γ(A; oM ) .

(The topology of oM is set up so that jA(c) is continuous for any c ∈ Hn(M,M − A).) Because
Hn(M,M −A) deals with chains that “stretch over A” – with boundary in M −A – we will employ
the following notation

Notation 32.1. Hn(M,M −A) = Hn(M |A).

Here is our more general assertion.

Theorem 32.2. LetM be an n-manifold and let A be a compact subset ofM . Then Hq(M |A;R) = 0
for q > n, and the map jA : Hn(M |A;R)→ Γ(A; oM ⊗R) is an isomorphism.

If M is compact, we may take A = M and learn that Hq(M ;R) = 0 for q > n and

jM : Hn(M ;R)
∼=−→ Γ(M ; oM ⊗R) .

But the theorem covers much more exotic situations as well; perhaps A is a Cantor set in some
Euclidean space, for example.

We follow [10] in proving this, and refer you to that reference for the modifications appropriate
for the more general statement when A is assumed merely closed rather than compact.

First we establish two general facts about the statement of Theorem 32.2.

Proposition 32.3. Let A and B be compact subspaces of the n-manifold M , and suppose the result
holds for A, B, and A ∩B. Then it holds for A ∪B.
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Proof. The relative Mayer-Vietoris theorem (Exercise 11.9) and the hypothesis that Hn+1(M |A ∩
B) = 0 gives us exactness of the top row in the (clearly commutative) ladder

0 // Hn(M |A ∪B)

jA∪B
��

// Hn(M |A)⊕Hn(M |B)

jA⊕jB
��

// Hn(M |A ∩B)

jA∩B
��

0 // Γ(A ∪B; oM ) // Γ(A; oM )⊕ Γ(B; oM ) // Γ(A ∩B; oM ) .

Exactness of the bottom row is clear: A section over A ∪ B is precisely a section over A and a
section over B that agree on the intersection. So the five-lemma shows that jA∪B is an isomorphism.
Looking further back in the Mayer-Vietoris sequence gives the vanishing of Hq(M |A ∪ B) for q >
n.

Proposition 32.4. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subsets of M , and
assume that the theorem holds for each Ai. Then it holds for the intersection A =

⋂
Ai.

The proof of this proposition entails two lemmas, which we’ll dispose of first.

Lemma 32.5. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of closed subsets of a space X, with
intersection A. Then

lim−→
i

Hq(X,X −Ai)
∼=−→ Hq(X,X −A) .

Proof. Let σ : ∆q → X be any q-simplex in X − A. The subsets X − Ai form an open cover of
im(σ), so since it is compact it lies in some single X−Ai. The criterion of Lemma 23.11 shows that

lim−→
i

Sq(X −Ai)
∼=−→ Sq(X −A) .

Thus
lim−→
i

Sq(X,X −Ai)
∼=−→ Sq(X,X −Ai)

by exactness of direct limit and the five-lemma. The claim then follows again using exactness of
direct limit.

Lemma 32.6. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subsets in a Hausdorff space
X and let A be their intersection. For any open neighborhood U of A there exists i such that Ai ⊆ U .

Proof. A is compact, being a closed subset of the compact Hausdorff space A1. Since A is the
intersection of the Ai, and A ⊆ U , the intersection of the decreasing sequence of compact sets
Ai −U is empty. Thus by the finite intersection property one of them, say U −Ai, must be empty;
but that says that Ai ⊆ U .

Proof of Proposition 32.4. By Lemma 32.5, Hq(M |A) = 0 for q > n. In dimension n, we contem-
plate the commutative diagram

lim−→
i

Hn(M |Ai)
∼= //

∼=

��

Hn(M |A)

��
lim−→
i

Γ(Ai; oM )
∼= // Γ(A; oM ) .
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The top map an isomorphism by Lemma 32.5, and the left one by the hypothesis of the Proposition.
To see that the bottom map is an isomorphism, we’ll verify the two conditions for a map to

be a direct limit from Lecture 23. Lemmas 31.10 and 32.5 imply that any section over A is the
restriction of a section over some Ai. On the other hand, suppose that a section σ ∈ Γ(Ai; oM )
vanishes on A. Then it vanishes on some open set containing A, again Lemma 31.10. Some Aj lies
in that open set, again by Lemma 32.5. We may assume that j ≥ i, and conclude that σ already
vanishes on Aj .

Proof of Theorem 32.2. There are five steps. In describing them, we will call a subset of M “Eu-
clidean” if it lies inside some open set homeomorphic to Rn.
(1) M = Rn, A a compact convex subset.
(2) M = Rn, A a finite union of compact convex subsets.
(3) M = Rn, A any compact subset.
(4) M arbitrary, A a finite union of compact Euclidean subsets.
(5) M arbitrary, A an arbitrary compact subset.

Notes on the proofs: (1) To be clear, “convex” implies nonempty. By translating A, we may
assume that 0 ∈ A. The compact subset A lies in some disk, and by a homothety we may assume
that the disk is the unit disk Dn. Then we claim that the inclusion i : Sn−1 → Rn − A is a
deformation retract. A retraction is given by r(x) = x/||x||, and a homotopy from ir to the identity
is given by

h(x, t) =

(
t+

1− t
||x||

)
x .

It follows that Hq(Rn,Rn − A) ∼= Hq(Rn,Rn − Dn) for all q. This group is zero for q > n.
In dimension n, note that restricting to the origin gives an isomorphism Hn(Rn,Rn − Dn) →
Hn(Rn,Rn − 0) since Rn −Dn is a deformation retract of Rn − 0. The local system oRn is trivial,
since Rn is simply connected, so restricting to the origin gives an isomorphism Γ(Dn, oRn) →
Hn(Rn,Rn − 0). This implies that jDn : Hn(Rn,Rn −Dn) → Γ(Dn, oRn) is an isomorphism. The
restriction Γ(Dn, oRn)→ Γ(A, oRn) is also an isomorphism, since A→ Dn is a deformation retract.
So by the commutative diagram

Hn(Rn,Rn −Dn)
∼= //

jDn∼=
��

Hn(Rn,Rn −A)

jA
��

Γ(Dn, oRn)
∼= // Γ(A, oRn)

we find that jA : Hn(Rn,Rn −A)→ Γ(A; oRn) is an isomorphism.
(2) by Proposition 32.3.
(3) For each j ≥ 1, let Cj be a finite subset of A such that

A ⊆
⋃
x∈Cj

B1/j(x) .

Since any intersection of convex sets is either empty or convex,

Ak =

k⋂
j=1

⋃
x∈Cj

B1/j(x)

is a union of finitely many convex sets, and since A is closed it is the intersection of this decreasing
family. So the result follows from (1), (2), and Proposition 32.4.
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(4) by (3) and (2).
(5) The compact subset A of M is the intersection of a decreasing family of finite unions of

compact Euclidean subsets, so the result follows from Proposition 32.4. To see this it’s convenient
to use the fact that if a manifold admits a finite cover by Euclidean spaces then it is metrizable.
(See for example [26, Theorem 2.68].) The union of elements in a finite Euclidean cover of A is thus
metrizable. It also admits a countable dense subset, so A does as well; pick one, say S. For each
x ∈ S there is an ε(x) > 0 such that the ball of radius ε(x) with center x is Euclidean. For any j,
the collection of balls with center in S and radius the minimum of 1/j and ε(x)/2 is a cover of A by
opens whose closures are compact and Euclidean. For each j pick a finite subcover, and let Bj be
the union of the closures. This sequence of unions of Euclidean compacts may not be decreasing,
but the sequence Ak =

⋂
j≤k Bk is.

33 A plethora of products

We are now heading towards a statement of Poincaré duality. It will use a certain action of coho-
mology on homology, which we set up now.

Kronecker pairing

Recall that we have the Kronecker pairing

〈−,−〉 : Hp(X;R)⊗Hp(X;R)→ R .

It can’t be “natural,” becauseHp is contravariant while homology is covariant. But given f : X → Y ,
b ∈ Hp(Y ), and x ∈ Hp(X), we can ask: How does 〈f∗b, x〉 relate to 〈b, f∗x〉?

Claim 33.1. 〈f∗b, x〉 = 〈b, f∗x〉.

Proof. This is easy, and true on the level of chains! I find it useful to write out diagrams to show
where things are. We want the diagram

Hom(Sp(Y ), R)⊗ Sp(X)
1⊗f∗ //

f∗⊗1

��

Hom(Sp(Y ), R)⊗ Sp(Y )

〈−,−〉
��

Hom(Sp(X), R)⊗ Sp(X)
〈−,−〉 // R

to commute. Going to the right and then down gives

β ⊗ ξ 7→ β ⊗ f∗(ξ) 7→ β(f∗ξ) .

The other way gives
β ⊗ ξ 7→ f∗(β)⊗ ξ = (β ◦ f∗)⊗ ξ 7→ (β ◦ f∗)(ξ) .

This is exactly β(f∗ξ).

There’s actually another product in play here:

µ : H(C∗)⊗H(D∗)→ H(C∗ ⊗D∗)

given by [c]⊗[d] 7→ [c⊗d]. I used it to pass from the chain level computation we did to the homology
statement.
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Cross products

We also have the two cross products:

× : Hp(X)⊗Hq(Y )→ Hp+q(X × Y )

and
× : Hp(X)⊗Hq(Y )→ Hp+q(X × Y ) .

You might think this is fishy because both maps are in the same direction, while homology and
cohomology have opposite variances. But it’s OK, because we used different things to make these
constructions: for example, the Eilenberg-Zilber map ζ for homology and the Alexander-Whitney
map α for cohomology. Still, they’re related:

ζ : S∗(X)⊗ S∗(Y )� S∗(X × Y ) : α

are homotopy inverse chain homotopy equivalence covering the obvious isomorphism H0(X) ⊗
H0(Y )∼=H0(X × Y ) (Theorem 25.13). Moreover:

Lemma 33.2. Let a ∈ Hp(X), b ∈ Hq(Y ), x ∈ Hp(X), y ∈ Hq(Y ). Then:

〈a× b, x× y〉 = (−1)pq〈a, x〉〈b, y〉 .

Proof. Say a = [f ], b = [g], x = [ξ], y = [η]. Then 〈a× b, x× y〉 is represented by

(f ⊗ g)αζ(ξ ⊗ η) ' (f ⊗ g)(ξ ⊗ η) = (−1)pqf(ξ)g(η) .

We can use this to prove a restricted form of the Künneth theorem in cohomology.

Theorem 33.3. Let R be a PID. Assume that Hp(X) is a finitely generated free R-module for all
p. Then

× : H∗(X;R)⊗R H∗(Y ;R)→ H∗(X × Y ;R)

is an isomorphism.

Proof. Write M∨ for the R-linear dual of an R-module M . By our assumption about Hp(X), the
map

Hp(X)∨ ⊗Hq(Y )∨ → (Hp(X)⊗Hq(Y ))∨ ,

sending f ⊗ g to (x ⊗ y 7→ (−1)pqf(x)g(y)), is an isomorphism. The homology Künneth theorem
guarantees that the bottom map in the following diagram is an isomorphism.⊕

p+q=nH
p(X)⊗Hq(Y )

× //

∼=
��

Hn(X × Y )

∼=
��⊕

p+q=nHp(X)∨ ⊗Hq(Y )∨
∼= //

(⊕
p+q=nHp(X)⊗Hq(Y )

)∨
Hn(X × Y )∨

∼=oo

Commutativity of this diagram is exactly the content of Lemma 33.2.

We saw in Proposition 29.3 that the cohomology cross-product is an algebra map, so under the
conditions of the theorem it is an isomorphism of algebras. You do need some finiteness assumption,
even if you are working over a field. For example let T be an infinite set, regarded as a space with
the discrete topology. Then H0(T ;R) = Map(T,R). But

Map(T,R)⊗Map(T,R)→ Map(T × T,R)

sending f ⊗ g to (s, t)→ f(s)g(t) is not surjective; the characteristic function of the diagonal is not
in the image, for example (unless R = 0).
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Cup and cap products

There are more products around. For example, there is a map

Hp(Y )⊗Hq(X,A)→ Hp+q(Y ×X,Y ×A) .

Constructing this is on your homework. Suppose Y = X. Then I get

∪ : H∗(X)⊗H∗(X,A)→ H∗(X ×X,X ×A)
∆∗−−→ H∗(X,A)

where ∆ : (X,A) → (X × X,X × A) is the “relative diagonal.” This relative cup product makes
H∗(X,A) into a module over the graded algebra H∗(X). The relative cohomology is not a ring –
it doesn’t have a unit, for example – but it is a module. And the long exact sequence of the pair is
a sequence of H∗(X)-modules.

I want to introduce you to one more product, one that will enter into our expression of Poincaré
duality. This is the cap product. What can we do with Sp(X) ⊗ Sn(X)? Well, we can form the
composite:

∩ : Sp(X)⊗ Sn(X)
1×(α◦∆∗)−−−−−−→ Sp(X)⊗ Sp(X)⊗ Sn−p(X)

〈−,−〉⊗1−−−−−→ Sn−p(X) .

If we choose to use for α the Alexander-Whitney map, we can write:

∩ : β ⊗ σ 7→ β ⊗ (σ ◦ αp)⊗ (σ ◦ ωq) 7→ (β(σ ◦ αp)) (σ ◦ ωq) .

We are evaluating the cochain on part of the chain, leaving a lower dimensional chain left over.
This composite is a chain map, and so induces a map in homology:

∩ : Hp(X)⊗Hn(X)→ Hn−p(X) .

Notice how the dimensions work. Long ago a bad choice was made: If cohomology were graded
with negative integers, the way the gradations work here would look better.

There are also two slant products, but maybe I won’t talk about them.

Exercises

Exercise 33.4. Construct a fully relative cup product

H∗(X,A)⊗H∗(Y,B)→ H∗(X × Y,X ×B ∪A× Y )

under the hypothesis that A is open in X and B is open in Y . Conclude that if X and Y are pointed
spaces whose basepoints have contractible open neighborhoods there is a “smash product” map

∧ : H
∗
(X)⊗H∗(Y )→ H

∗
(X ∧ Y ) .

34 Cap product and Čech cohomology

We have a few more things to say about the cap product, and we will then use it to give a statement
of Poincaré duality.



34. CAP PRODUCT AND ČECH COHOMOLOGY 107

Proposition 34.1. The cap product enjoys the following properties.
(1) (a ∪ b) ∩ x = a ∩ (b ∩ x) and 1 ∩ x = x: H∗(X) is a module for H∗(X).
(2) Given a map f : X → Y , b ∈ Hp(Y ), and x ∈ Hn(X),

f∗(f
∗(b) ∩ x) = b ∩ f∗(x) .

(3) Let ε : H∗(X)→ R be the augmentation. Then

ε(b ∩ x) = 〈b, x〉 .

(4) Cap and cup are adjoint:

〈a ∪ b, x〉 = 〈a, b ∩ x〉 .

Proof. (1) Easy.
(2) Let β be a cocycle representing b, and σ an n-simplex in X. Then

f∗(f
∗(β) ∩ σ) = f∗((f

∗(β)(σ ◦ αp)) · (σ ◦ ωq))
= f∗(β(f ◦ σ ◦ αp) · (σ ◦ ω))

= β(f ◦ σ ◦ αp) · f∗(σ ◦ ωq)
= β(f ◦ σ ◦ αp) · (f ◦ σ ◦ ωq)
= β ∩ f∗(σ) .

This formula goes by many names: the “projection formula,” or “Frobenius reciprocity.” Our proof
shows that it holds on the chain level, provided you use the Alexander-Whitney map to construct
the chain level cap product.
(3) We get zero unless p = n. Again let σ ∈ Sinn(X), and compute:

ε(β ∩ σ) = ε(β(σ) · c0
σ(en)) = β(σ)ε(c0

σ(en)) = β(σ) = 〈β, σ〉 .

(4) Homework.

Here now is a statement of Poincaré duality. It deals with the homological structure of compact
topological manifolds. We recall the notion of an orientation, and Theorem 31.13 asserting the
existence of a fundamental class [M ] ∈ Hn(M ;R) in a compact R-oriented n-manifold.

Theorem 34.2 (Poincaré duality). Let M be a topological n-manifold that is compact and oriented
with respect to a PID R. Then there is a unique class [M ] ∈ Hn(M ;R) that restricts to the
orientation class in Hn(M,M − a;R) for every a ∈M . It has the property that

− ∩ [M ] : Hp(M ;R)→ Hq(M ;R) , p+ q = n ,

is an isomorphism for all p.

You might want to go back to Lecture 25 and verify that RP3 × RP3 satisfies this theorem.
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Relative cap product

Our proof of Poincaré duality will be by induction. In order to make the induction go we will prove
a substantially more general theorem, one that involves relative homology and cohomology. So we
begin by understanding how the cap product behaves in relative homology.

Suppose A ⊆ X is a subspace. We have:

0

��

0

��
Sp(X)⊗ Sn(A)

1⊗i∗
��

i∗⊗1 // Sp(A)⊗ Sn(A)
∩ // Sq(A)

i∗
��

Sp(X)⊗ Sn(X)
∩ //

��

Sq(X)

��
Sp(X)⊗ Sn(X,A)

��

// Sq(X,A)

��
0 0

The left sequence is exact because 0→ Sn(A)→ Sn(X)→ Sn(X,A)→ 0 splits and tensoring with
Sp(X) (which is not free!) therefore leaves it exact. The solid arrow diagram commutes precisely
by the chain-level projection formula. There is therefore a uniquely defined map on cokernels.

This chain map yields the relative cap product

∩ : Hp(X)⊗Hn(X,A)→ Hq(X,A)

It renders H∗(X,A) a module for the graded algebra H∗(X).
I want to come back to an old question, about the significance of relative homology. Suppose

that K ⊆ X is a subspace, and consider the relative homology H∗(X,X−K). Since the complement
of X −K in X is K, these groups should be regarded as giving information about K. If I enlarge
K, I make X −K smaller: K ⊆ L induces H∗(X,X − L)→ H∗(X −K); the relative homology is
contravariant in the variable K (regarded as an object of the poset of subspaces of X).

Excision gives insight into how H∗(X,X − K) depends on K. Suppose K ⊆ U ⊆ X with
K ⊆ Int(U). To simplify things, let’s just suppose that K is closed and U is open. Then X − U is
closed, X −K is open, and X − U ⊆ X −K, so excision asserts that the inclusion map

H∗(U,U −K)→ H∗(X,X −K)

is an isomorphism.
The cap product puts some structure on H∗(X,X − K): it’s a module over H∗(X). But we

can do better! We just decided that H∗(X,X −K) = H∗(U,U −K), so the H∗(X) action factors
through an action by H∗(U), for any open set U containing K. How does this refined action change
when I decrease U?
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Lemma 34.3. Let K ⊆ V ⊆ U ⊆ X, with K closed and U, V open. Then:

Hp(U)⊗Hn(X,X −K)

i∗⊗1

��

∩

**
Hq(X,X −K)

Hp(V )⊗Hn(X,X −K)

∩
44

commutes.

Proof. This is just the projection formula again!

Čech cohomology

Let UK be the set of open neighborhoods of K in X. It is partially ordered by reverse inclusion.
This poset is directed, since the intersection of two opens is open.

Definition 34.4. The Čech cohomology of K is

Ȟp(K) = lim−→
U∈UK

Hp(U) .

I apologize for this bad notation; its possible dependence on the way K is sitting in X is not
recorded. The maps in this directed system are all maps of graded algebras, so the direct limit
is naturally a commutative graded algebra. (Eduard Čech (1893–1960) was a Czech topologist,
working at Masaryk University in Brno and the Charles University in Prague.)

Since tensor product commutes with direct limits, we now get a cap product pairing

∩ : Ȟp(K)⊗Hn(X,X −K)→ Hq(X,X −K)

satisfying the expected properties. This is the best you can do. It’s the natural structure that this
relative homology has: H∗(X,X −K) is a module over Ȟ∗(K).

There are compatible restriction maps Hp(U)→ Hp(K), so there is a natural map

Ȟ∗(K)→ H∗(K) .

This map is often an isomorphism. Suppose K ⊆ X satisfies the following “regular neighborhood”
condition: For every open U ⊇ K, there exists an open V with U ⊇ V ⊇ K such that K ↪→ V is a
homotopy equivalence (or actually just a homology isomorphism).

Lemma 34.5. Under these conditions, Ȟ∗(K)→ H∗(K) is an isomorphism.

Proof. We will check that the map to Hp(K) satisfies the conditions we established in Lemma 23.11
to be a direct limit.

So let x ∈ Hp(K). Let U be a neighborood of K in X such that Hp(U) → Hp(K) is an
isomorphism. Then indeed x is in the image of Hp(U).

Then let U be a neighborhood of K and let x ∈ Hp(U) restrict to 0 in Hp(K). Let V be a sub-
neighborhood such that Hp(V )→ Hp(K) is an isomorphism. Then x restricts to 0 in Hp(V ).
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On the other hand, here’s an example that distinguishes Ȟ∗ from H∗. This is a famous example.
The “topologist’s sine curve” is the subspace of R2 defined as follows. It is union of three subsets,
A, B, and C. A is the graph of sin(2π/x) where 0 < x < 1. B is the interval 0 × [−1, 1]. C
is a continuous curve from (0,−1) to (1, 0) and meeting A ∪ B only at its endpoints. This is a
counterexample for a lot of things; you’ve probably seen it in your point-set topology course.

What is the singular homology of the topologist’s sine curve? Use Mayer-Vietoris! I can choose
V to be some connected portion of the continuous curve from (0,−1) to (1, 0), and U to contain
the rest of the space in a way that intersects V in two open intervals. Then V is contractible, and
U is made up of two contractible path components. (This space is not locally path connected, and
one of these path components is not closed.)

The Mayer-Vietoris sequence looks like

0→ H1(X)
∂−→ H0(U ∩ V )→ H0(U)⊕H0(V )→ H0(X)→ 0 .

The two path components of U ∩ V do not become connected in U , so ∂ = 0 and we find that
ε : H∗(X)

∼=−→ H∗(∗) and hence H∗(X) ∼= H∗(∗).
How about Ȟ∗? Let X ⊂ U be an open neighborhood. The interval 0 × [−1, 1] has an ε-

neighborhood, for some small ε, that’s contained in U . This implies that there exists a neighborhood
X ⊆ V ⊆ U such that V ' S1. Consequently

Ȟ∗(X) = lim−→
U∈UX

H∗(U) ∼= H∗(S1)

by a cofinality argument that we will detail in Lemma 35.6. So Ȟ∗(X) 6= H∗(X).
Nevertheless, under quite general conditions the Čech cohomology of a compact Hausdorff space

is a topological invariant. The “Čech construction” provides an intrinsic definition of Čech cohomol-
ogy, one that is a topological invariant by construction. See Dold’s beautiful book [15] for this and
other topics discussed in this lecture.

Exercises

Exercise 34.6. Verify the remaining parts of Proposition 34.1.

35 Čech cohomology as a cohomology theory

Let X be any space, and let K ⊆ X be a closed subspace. We’ve defined the Čech cohomology of
K as the direct limit of H∗(U) as U ranges over the poset UK of open neighborhoods of K. This
often coincides with H∗(K) but will not be the same in general. Nevertheless it behaves like a
cohomology theory. To expand on this claim, we should begin by defining a relative version.
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Suppose L ⊆ K is a pair of closed subsets of a space X. Let (U, V ) be a “neighborhood pair”
for (K,L):

L ⊆ K⊆ ⊆

V ⊆ U

with U and V open. These again form a directed set UK,L, with partial order given by reverse
inclusion of pairs. Then define

Ȟp(K,L) = lim−→
(U,V )∈UK,L

Hp(U, V ) .

We will want to verify versions of the Eilenberg-Steenrod axioms for these functors. For a start,
I have to explain how maps induce maps.

Let I be a directed set and A : I → Ab a functor. If we have an order-preserving map – a
functor – ϕ : J → I from another directed set, we get Aϕ : J → Ab; so (Aϕ)j = Aϕ(j). I can form
two direct limits: lim−→J Aϕ and lim−→I A. I claim that they are related by a map

lim−→
J
Aϕ→ lim−→

I
A .

Using the universal property of direct limits, we need to come up with compatible maps fj : Aϕ(j) →
lim−→I A. We have compatible maps ini : Ai → lim−→I A for i ∈ I, so we can take fj = inϕ(j).

These maps are compatible under composition of order-preserving maps.

Example 35.1. A closed inclusion i : L ⊆ K induces an order-preserving map ϕ : UK → UL. The
functor Hp : UK → Ab restricts to Hp : UL → Ab, so we get maps

lim−→
UK

Hp = lim−→
UK

Hpϕ→ lim−→
UL

Hp .

i.e.
i∗ : Ȟp(K)→ Ȟp(L) .

This makes Ȟp into a contravariant functor on the partially ordered set of closed subsets of X.

I can do the same thing for relative cohomology, and get the maps involved in the following two
theorems, whose proofs will come in due course.

Theorem 35.2 (Long exact sequence). Let (K,L) be a closed pair in X. There is a long exact
sequence

· · · → Ȟp(K,L)→ Ȟp(K)→ Ȟp(L)
δ−→ Ȟp+1(K,L)→ · · ·

that is natural in the pair.

Theorem 35.3 (Excision). Suppose A and B are closed subsets of a normal space, or compact
subsets of a Hausdorff space. Then the map

Ȟp(A ∪B,A)
∼=−→ Ȟp(B,A ∩B)

induced by the inclusion is an isomorphism.

Each of these theorems relates direct limits defined over different directed sets. To prove them, I
will want to rewrite the various direct limits as direct limits over the same directed set. This raises
the following . . .
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Question 35.4. When does ϕ : J → I induce an isomorphism lim−→J Aϕ→ lim−→I A?

This is a lot like taking a sequence and a subsequence and asking when they have the same
limit. There’s a cofinality condition in analysis, that has a similar expression here.

Definition 35.5. ϕ : J → I is cofinal if for all i ∈ I, there exists j ∈ J such that i ≤ ϕ(j).

For example, any surjective order-preserving map is cofinal. For another example, let (N>0, <)
be the positive integers with their usual order, and (N>0, |) the same set but with the divisibility
order. There is an order-preserving map ϕ : (N>0, <)→ (N>0, |) given by n 7→ n!. This map is far
from surjective, but any integer n divides some factorial (n divides n!, for example), so ϕ is cofinal.
We claimed that both these systems produce Q as direct limit. Here’s why.

Lemma 35.6. If ϕ : J → I is cofinal then lim−→J Aϕ→ lim−→I A is an isomorphism.

Proof. Check that {Aϕ(j) → lim−→I A} satisfies the necessary and sufficient conditions to be lim−→J Aϕ.

1. Let a ∈ lim−→I A. We know that there exists some i ∈ I and ai ∈ A such that ai 7→ a. Pick j
such that i ≤ ϕ(j). Let aϕ(j) be the image of ai in Aϕ(j). By compatibility, aϕ(j) 7→ a.

2. Suppose a ∈ Aϕ(j) maps to 0 ∈ lim−→I A. Then there is some i ∈ I such that ϕ(j) ≤ i and
a 7→ 0 in Ai. But then there is j′ ∈ J such that i ≤ ϕ(j′), and a 7→ 0 ∈ Aϕ(j′) as well.

Proof of Theorem 35.2. Let (K,L) be a closed pair in the space X. We have

Ȟp(K,L) = lim−→
(U,V )∈UK,L

Hp(U, V ) , Ȟp(K) = lim−→
U∈UK

Hp(U) , and Ȟp(L) = lim−→
V ∈UL

Hp(V ) .

We can rewrite the entire sequence as the direct limit of a directed system of exact sequences indexed
by UK,L, since the order-preserving maps

UK ← UK,L → UL

U 7→(U, V ) 7→ V

are both surjective and hence cofinal. So the long exact sequence of a pair in Čech cohomology is
the direct limit of the system of long exact sequences of the neighborhood pairs (U, V ) and so is
exact.

The proof of the excision theorem depends upon another pair of cofinalities.

Lemma 35.7. Assume that X is a normal space and A,B closed subsets, or that X is a Hausdorff
space and A,B compact subsets. Then the order-preserving maps

U(A∪B,B) ← UA × UB → U(A,A∩B)

given by
(W ∪ Y, Y ) 7→(W,Y ) 7→ (W,W ∩ Y )

are both cofinal.

Proof. The left map is surjective, because if (U, V ) ∈ UA∪B,B then U ∈ UA, V ∈ UB, and (U, V ) =
(U ∪ V, V ).

To see that the right map is cofinal, start with (U, V ) ∈ UA,A∩B.
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Note that A is disjoint from B ∩ (X − V ), so by normality, or compactness in a Hausdorff space,
there exist non-intersecting open sets S and T with A ⊆ S and B ∩ (X − V ) ⊆ T . Then take W =
U ∩S ∈ UA and Y = V ∪T ∈ UB, and observe thatW ∩Y = V ∩S and so (W,W ∩Y ) ⊆ (U, V ).

Proof of Theorem 35.3. Combine Lemma 35.7 with excision for singular cohomology:

lim−→(W,Y )∈UA×UB
Hp(W ∪ Y, Y )

∼= //

∼=
��

lim−→(W,Y )∈UA×UB
Hp(W,W ∩ Y )

∼=
��

lim−→(U,V )∈UA∪B,B
Hp(U, V ) // lim−→(U,V )∈UA,A∩B

Hp(U, V )

Ȟp(A ∪B,B) // Ȟp(A,A ∩B) .

The diagram commutes, and completes the proof.

The Mayer-Vietoris long exact sequence is a consequence of these two results.

Corollary 35.8 (Mayer-Vietoris). Suppose A and B are closed subsets of a normal space, or com-
pact subsets of a Hausdorff space. There is a natural long exact sequence:

· · · → Ȟp−1(A ∪B)→ Ȟp−1(A)⊕ Ȟp−1(B)→ Ȟp−1(A ∩B)→ Ȟp(A ∪B)→ · · · .

Proof. Apply Lemma 11.6 to the ladder

· · · // Ȟp−1(A ∪B)

��

// Ȟp−1(B)

��

// Ȟp(A ∪B,B)

∼=
��

// Ȟp(A ∪B)

��

// Ȟp(B)

��

// · · ·

· · · // Ȟp−1(A) // Ȟp−1(A ∩B) // Ȟp(A,A ∩B) // Ȟp(A) // Ȟp(A ∩B) // · · · .

36 Fully relative cap product

Čech cohomology appeared as the natural algebra acting on H∗(X,X − K), where K is a closed
subspace of X:

∩ : Ȟp(K)⊗Hn(X,X −K)→ Hq(X,X −K) , p+ q = n .

If we fix xK ∈ Hn(X,X −K), then capping with xK gives a map

− ∩ xK : Ȟp(K)→ Hq(X,X −K) , p+ q = n .
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We will be very interested in showing that this map is an isomorphism under certain conditions.
This is a kind of duality result, comparing cohomology and relative homology in complementary
dimensions. We’ll try to show that such a map is an isomorphism by embedding it in a map of long
exact sequences and using the five-lemma.

For a start, let’s think about how these maps vary as we change K. So let L be a closed subset
of K, so X −K ⊆ X − L and we get a “restriction map”

i∗ : Hn(X,X −K)→ Hn(X,X − L) .

Define xL as the image of xK . The diagram

Ȟp(K) //

−∩xK
��

Ȟp(L)

−∩xL
��

Hq(X,X −K) // Hq(X,X − L)

commutes by the projection formula (Proposition 34.1). This embeds into a ladder shown in the
theorem below. We will accompany this ladder with a second one, to complete the picture.

Theorem 36.1 (Fully relative cap product). Let L ⊆ K be closed subspaces of a space X. There
is a “fully relative” cap product

∩ : Ȟp(K,L)⊗Hn(X,X −K)→ Hq(X − L,X −K) , p+ q = n ,

such that for any xK ∈ Hn(X,X −K) the ladder

· · · // Ȟp(K,L) //

∩xK
��

Ȟp(K) //

∩xK
��

Ȟp(L)
δ //

∩xL
��

Ȟp+1(K,L) //

∩xK
��

· · ·

· · · // Hq(X − L,X −K) // Hq(X,X −K) // Hq(X,X − L)
∂ // Hq−1(X − L,X −K) // · · ·

commutes, where xL is the restriction of xK to Hn(X,X − L); and for any x ∈ Hn(X)

· · · // Ȟp(X,K)

∩x
��

// Ȟp(X,L)

∩x
��

// Ȟp(K,L)

∩xK
��

δ // Ȟp+1(X,K)

∩x
��

// · · ·

· · · // Hq(X −K) // Hq(X − L) // Hq(X − L,X −K)
∂ // Hq−1(X −K) // · · ·

commutes, where xK is the restriction of x to Hn(X,X −K).

Proof. What I have to do is define a cap product along the bottom row of the diagram (with
p+ q = n)

Ȟp(K)⊗Hn(X,X −K)
∩ // Hq(X,X −K)

Ȟp(K,L)⊗Hn(X,X −K)

OO

∩ // Hq(X − L,X −K) .

OO

This requires going back to the origin of the cap product. Our map Ȟp(K)⊗Hn(X,X −K)→
Hq(X,X−K) came (via excision) from compatible chain maps Sp(U)⊗Sn(U,U−K)→ Sq(U,U−K)
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where U ⊇ K, defined by β ⊗ σ 7→ β(σ ◦ αp) · (σ ◦ ωq). Now given inclusions

L ⊆ K⊆ ⊆

V ⊆ U

we can excise X − U from X − L to see that

H∗(U − L,U −K)
∼=−→ H∗(X − L,X −K) .

So we try to construct a map

Hp(U, V )⊗Hn(U,U −K)→ Hq(U − L,U −K)

compatible with Hp(U)⊗Hn(U,U −K)→ Hq(U,U −K). We can certainly fill in the bottom row
of the diagram

Sp(U)⊗ Sn(U)/Sn(U −K) // Sq(U)/Sq(U −K)

Sp(U)⊗ Sn(U − L)/Sn(U −K) //

OO

Sq(U − L)/Sq(U −K) .

OO

We now restrict to the subgroup Sp(U, V ) ⊆ Sp(U). Since cochains in Sp(U, V ) kill chains in V , we
can form the diagram

Sp(U)⊗ Sn(U)/Sn(U −K) // Sq(U)/Sq(U −K)

Sp(U, V )⊗ (Sn(U − L) + Sn(V ))/Sn(U −K) //

'
��

OO

Sq(U − L)/Sq(U −K)

OO

Sp(U, V )⊗ Sn(U)/Sn(U −K)

But L ⊆ V ⊆ U , so (U − L) ∪ V = U , and the locality principle (11.4) then guarantees that
Sn(U − L) + Sn(V )→ Sn(U) is a quasi-isomorphism. This gives us maps

Hq(S
∗(U, V )⊗ S∗(U,U −K))→ Hq(U − L,U −K)

and composing with our standard map µ : H∗(C)⊗H∗(D)→ H∗(C ⊗D) gives the required maps.
They are compatible as we change the neighborhood pair (U, V ), and give us the fully relative cap
product. We leave the checks of commutativity to the listener.

The diagram

Ȟp(L)
δ //

−∩xL
��

Ȟp+1(K,L)

−∩xK
��

Hq(X,X − L)
∂ // Hq−1(X − L,X −K)

provides us with the memorable formula

(δb) ∩ xK = ∂(b ∩ xL) .

The construction of the Mayer-Vietoris sequences now gives:
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Theorem 36.2. Let A,B be closed in a normal space or compact in a Hausdorff space. The
Čech cohomology and singular homology Mayer-Vietoris sequences are compatible: for any xA∪B ∈
Hn(X,X − A ∪ B), there is a commutative ladder (where again we use the notation Hq(X|A) =
Hq(X,X −A), and again p+ q = n)

· · · // Ȟp(A ∪B) //

∩xA∪B
��

Ȟp(A)⊕ Ȟp(B) //

(∩xA)⊕(∩xB)

��

Ȟp(A ∩B) //

∩xA∩B
��

Ȟp+1(A ∪B) //

∩xA∪B
��

· · ·

· · · // Hq(X|A ∪B) // Hq(X|A)⊕Hq(X|B) // Hq(X|A ∩B) // Hq−1(X|A ∪B) // · · ·

in which the homology classes xA, xB, xA∩B are restrictions of the class xA∪B in the diagram

Hn(X,X −A ∪B) //

��

Hn(X,X −A)

��
Hn(X,X −B) // Hn(X,X −A ∩B) .

Exercises

Exercise 36.3. Check commutativity in Theorem 36.1.

37 Poincaré duality

Let M be a n-manifold and K a compact subset. By Theorem 32.2,

jK : Hn(M,M −K;R)
∼=−→ Γ(K; oM ⊗R) .

An R-orientation along K is a section of oM ⊗R over K that restricts to a generator of Hn(M,M −
x;R) for every x ∈ K. The corresponding class in Hn(M,M −K;R) is a fundamental class along
K, which we will denote by [M ]K . We recall also the fully relative cap product pairing (in which
p+ q = n and L is a closed subset of K)

∩ : Ȟp(K,L;R)⊗R Hn(M,M −K;R)→ Hq(M − L,M −K;R) .

If [M ]K is a fundamental class along K, its restriction to L is a fundamental class along L, which
we will denote by [M ]L.

We now combine all of this in the following climactic result.

Theorem 37.1 (Fully relative Poincaré duality). Let M be an n-manifold and K ⊇ L a pair of
compact subsets. Assume given an R-orientation along K, with corresponding fundamental class
[M ]K . With p+ q = n, the map

− ∩ [M ]K : Ȟp(K,L;R)→ Hq(M − L,M −K;R) .

is an isomorphism.

We have seen that these isomorphisms are compatible; they form the rungs of the ladder

· · · // Ȟp−1(L) //

∩[M ]L
��

Ȟp(K,L) //

∩[M ]K
��

Ȟp(K) //

∩[M ]K
��

Ȟp(L) //

∩[M ]L
��

· · ·

· · · // Hq+1(M,M − L) // Hq(M − L,M −K) // Hq(M,M −K) // Hq(M,M − L) // · · · .
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Also, if M is compact and R-oriented with fundamental class [M ] restricting along K to [M ]K , we
have the ladder of isomorphisms

· · · // Ȟp(M,L) //

∩[M ]

��

Ȟp(K,L) //

∩[M ]K
��

Ȟp+1(M,K) //

∩[M ]

��

Ȟp+1(M,L) //

∩[M ]

��

· · ·

· · · // Hq(M − L) // Hq(M − L,M −K) // Hq−1(M −K) // Hq−1(M − L) // · · ·

To prove this theorem, we will follow the same five-step process we used to prove the Orientation
Theorem 32.2. We have already prepared the Mayer-Vietoris ladder 36.2 for this purpose. We will
also need:

Lemma 37.2. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subspaces of M , with
intersection A. Then

lim−→
k

Ȟp(Ak)→ Ȟp(A)

is an isomorphism.

Proof. This follows from the observation that a direct limit of direct limits is a direct limit.

Proof of Theorem 37.1. By the top ladder and the five-lemma, we may assume L = ∅; so we want
to prove that

− ∩ [M ]K : Ȟp(K;R)→ Hq(M,M −K;R)

is an isomorphism.
(1) M = Rn, K a compact convex set. We claim that

Ȟ∗(K)
∼=−→ H∗(K)

(which is of course isomorphic to H∗(∗)). For any ε > 0, let Uε denote the ε-neighborhood of K,

Uε =
⋃
x∈K

Bε(x) .

For any y ∈ Uε there is a closest point in K, since the distance function to y is continuous and
bounded below on the compact set K and so achieves its infimum. If x′, x′′ ∈ K are the same
distance from y, then the midpoint of the segment joining x′ and x′′ is closer, but lies in K since
K is convex. So there is a unique closest point, f(y). We let the listener check that f : Uε → K is
continuous. It is also clear that if i : K → Uε is the inclusion then i ◦ f is homotopic to the identity
on Y , by an affine homotopy.

Now let Dn be a disk centered at the origin and containing the compact set K, and consider
the commutative diagram

Hp(K)
∩[Rn]K // Hq(Rn,Rn −K)

Hp(Dn)

∼=

OO

∩[Rn]Dn //

∼=
��

Hq(Rn,Rn −Dn)

∼=

OO

∼=
��

Hp(∗) // Hq(Rn,Rn − ∗) .
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The groups are zero unless p = 0, q = n. By naturality of the cap product, the bottom map is given
by 1 7→ 1 ∩ [Rn]∗, and this is [Rn]∗ since capping with 1 is the identity. This fundamental class is a
generator of Hn(Rn,Rn − ∗), so the top map in the diagram is an isomorphism.

(2) K a finite union of compact convex subsets of Rn. This follows by induction and the five
lemma applied to the Mayer-Vietoris ladder 36.2.

(3) K is any compact subset of Rn. This follows as before by a limit argument, using Lemmas
32.5 and 37.2.

(4) M arbitrary, K is a finite union of compact Euclidean subsets of M . This follows from (3)
and Theorem 36.2.

(5) M arbitrary, K an arbitrary compact subset. This follows just as in the proof of Theorem
32.2.

Let me point out some special cases. With K = M , we get:

Corollary 37.3. Suppose that M is a compact R-oriented n-manifold, and let L be a closed subset.
Then (with p+ q = n) we have the commuting ladder whose rungs are isomorphisms:

· · · // Ȟp−1(L)

∩[M ]L
��

// Ȟp(M,L)

∩[M ]

��

// Hp(M)

∩[M ]

��

// Ȟp(L)

∩[M ]L
��

// · · ·

· · · // Hq+1(M,M − L) // Hq(M − L) // Hq(M) // Hq(M,M − L) // · · ·

With L = ∅, we get:

Corollary 37.4. Suppose thatM is an n-manifold, and let K be a compact subset. An R-orientation
[M ]K along K determines (with p+ q = n) an isomorphism

− ∩ [M ]K : Ȟp(K;R)→ Hq(M,M −K;R) .

The intersection of these two special cases is:

Corollary 37.5 (Poincaré duality). LetM be a compact R-oriented n-manifold. Then (with p+q =
n)

− ∩ [M ] : Hp(M ;R)→ Hq(M ;R)

is an isomorphism.

Lefschetz duality

Continuing the theme that everything is more useful in a relative form, we end by stating a relative
version of Poincaré duality. It will use the notion of a manifold-with-boundary. In the definition, a
“Euclidean half-space” is a topological space of the form Rn−1 × [0,∞).

Definition 37.6. A manifold-with-boundary is a Hausdorff space such that every point has a neigh-
borhood that is homeomorphic to either a Euclidean space or a Euclidean half-space.

The boundary of a manifold-with-boundary M of dimension n is the set of points that do not
admit a Euclidean neighborhood; in any Euclidean half-space neighborhood they lie on Rn−1×{0} ⊆
Rn−1 × [0,∞). This subspace is written ∂M . It is an (n− 1)-manifold, compact if M is compact.
It may be empty, in which case M is a manifold. The complement of the boundary is the interior.
It is an n-manifold, non-compact if ∂M 6= ∅.

An R-orientation of a manifold-with-boundary is an orientation of the interior.
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Theorem 37.7 (Lefschetz duality, e.g. [72, Theorem 18.6.1] or [10, VI Theorem 9.2]). Let M
be an R-oriented compact manifold-with-boundary of dimension n. There is a unique class [M ] ∈
Hn(M,∂M ;R) that maps to the orientation class in Hn(M,M − x) for every x ∈ M − ∂M . The
boundary ∂[M ] ∈ Hn−1(∂M ;R) serves as a fundamental class [∂M ] for the (n − 1)-manifold ∂M .
There are cap product maps making the following ladder commute (at least up to sign), with p+q = n.

· · · // Hp(M,∂M)

∩[M ]

��

// Hp(M)

∩[M ]

��

// Hp(∂M)

∩[∂M ]

��

// Hp+1(M,∂M)

∩[M ]

��

// · · ·

· · · // Hq(M) // Hq(M,∂M) // Hq−1(∂M) // Hq−1(M) // · · ·

Exercises

Exercise 37.8. Prove this theorem. Begin by attaching a “collar” toM : form P = M∪∂M (∂M×I)
where ∂M is embedded into ∂M × I along t = 0.

38 Applications

Today we harvest consequences of Poincaré duality. We’ll use the form

Theorem 38.1. Let M be an n-manifold and K a compact subset. An R-orientation along K
determines a fundamental class [M ]K ∈ Hn(M,M −K), and capping gives an isomorphism:

− ∩ [M ]K : Ȟn−q(K;R)
∼=−→ Hq(M,M −K;R) .

Corollary 38.2. Ȟp(K;R) = 0 for p > n.

We can contrast this with singular (co)homology. Here’s an example:

Example 38.3 (Barratt-Milnor [7]). Let K be a two-dimensional version of the “Hawaiian earring,”
i.e., nested spheres all tangent to a point whose radii are going to zero. What they proved is that
Hq(K;Q) is uncountable for every q > 1. But Čech cohomology is much more well-behaved:

Theorem 38.4 (Alexander duality). For any compact subset K of Rn, the composite

Ȟn−q(K;R)
∩[Rn]K−−−−→ Hq(Rn,Rn −K;R)

∂−→ H̃q−1(Rn −K;R)

is an isomorphism.

Proof. H̃∗(Rn;R) = 0.

This is extremely useful! For example

Corollary 38.5. If K is a compact subset of Rn then Ȟn(K;R) = 0.

Corollary 38.6. The complement of a knot in S3 is a homology circle.

Example 38.7. Take the case q = 1:

Ȟn−1(K;R)
∼=−→ H̃0(Rn −K;R) = ker(ε : Rπ0(Rn −K)→ R) .

The augmentation is a split surjection, so this is a free R-module. This shows, for example, that
RP2 can’t be embedded in R3 – at least not with a regular neighborhood.

If we take n = 2 and suppose that Ȟ∗(K) = H∗(S1), we find that the complement of K has two
path components. This is the Jordan Curve Theorem.
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Perfect pairings

There is a useful purely cohomological consequence of Poincaré duality, obtained by combining it
with the Universal Coefficient Theorem 27.1

0→ Ext1
Z(Hq−1(X),Z)→ Hq(X)→ Hom(Hq(X),Z)→ 0 .

First, note that Hom(Hq(X),Z) is always torsion-free. If we assume that Hq−1(X) is finitely
generated, then Ext1

Z(Hq−1(X),Z) is a finite abelian group. So the UCT implies that

Hq(X)/tors
∼=−→ Hom(Hq(X)/tors,Z) .

That is to say, the Kronecker pairing descends to a perfect pairing

Hq(X)

tors
⊗ Hq(X)

tors
→ Z .

Let’s combine this with Poincaré duality. Let X = M be a compact oriented n-manifold, so
that

− ∩ [M ] : Hn−q(M)
∼=−→ Hq(M) .

We get a perfect pairing
Hq(X)

tors
⊗ Hn−q(X)

tors
→ Z .

And what is that pairing? It’s given by the composite

Hq(M)⊗Hn−q(M) //

1⊗(−∩[M ])

��

Z

Hq(M)⊗Hq(M)

〈−,−〉

77

and we’ve seen (Proposition 34.1) what this is:

〈a, b ∩ [M ]〉 = 〈a ∪ b, [M ]〉 .

We have used R = Z, but the same argument works for any PID – in particular for any field, in
which case torsV = 0. We have proven:

Theorem 38.8 (Poincaré duality, cohomological form). Let R be a PID and M a compact R-
oriented n-manifold. Then

a⊗ b 7→ 〈a ∪ b, [M ]〉

induces a perfect pairing (with p+ q = n)

Hp(M ;R)

tors
⊗R

Hq(M ;R)

tors
→ R .

Corollary 38.9. Let M be a compact manifold. Then H∗(M ;F2) is of finite type, and if M is
oriented so is H∗(M ; k) for any field k.

Proof. If M is k-oriented, then Hp(M ; k) is the dual of Hq(M ; k) and Hq(M ; k) is the dual of
Hp(M ; k), so Hp(M ; k) is its own double dual. This implies that it is finite dimensional, and so the
homology is too.
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Remark 38.10. In fact a compact manifold has the homotopy type of a finite CW complex [78].

Example 38.11. The complex projective plane CP2 is a compact 4-manifold, orientable since it is
simply connected. It has a cell structure with cells in dimensions 0, 2, and 4, so its homology is Z
in those dimensions and 0 elsewhere, and so the same is true of its cohomology. Up till now the cup
product structure has been a mystery. But now we know that

H2(CP2)⊗H2(CP2)→ H4(CP2)
∼=−→ Z

is a perfect pairing. So if we write b for a generator of H2(CP2), then b ∪ b = b2 is a free generator
for H4(CP2). We have discovered that

H∗(CP2) = Z[b]/b3 .

By the way, notice that if we had chosen −b as a generator, we would still produce the same
generator for H4(CP2): so there is a preferred orientation, the one whose fundamental class pairs
to 1 against b2.

This calculation shows that while CP2 and S2 ∨ S4 are both simply connected and have the
same homology, they are not homotopy equivalent. This implies that the attaching map S3 → S2

for the top cell in CP2 – the Hopf map – is essential.
How about CP3? It just adds a 6-cell, so now H6(CP3) ∼= Z. The pairing H2(CP3)⊗H4(CP3)→

H6(CP3) = Z is perfect, so we find that b3 generates H6(CP3). Continuing in this way, we have

H∗(CPn) = Z[b]/(bn+1) .

Example 38.12. Exactly the same argument shows that

H∗(RPn;F2) = F2[a]/(an+1)

where |a| = 1.

I’ll end with the following application.

Theorem 38.13 (Borsuk-Ulam). Think of Sn as the space of unit vectors in Rn+1. For any
continuous function f : Sn → Rn, there exists x ∈ Sn such that f(x) = f(−x).

Proof. Suppose that no such x exists. Then we may define a continuous function g : Sn → Sn−1 by

g : x 7→ f(x)− f(−x)

||f(x)− f(−x)||
.

Note that g(−x) = −g(x): g is equivariant with respect to the antipodal action. It descends to a
map g : RPn → RPn−1.

We claim that g∗ : H1(RPn) → H1(RPn−1) is nontrivial. To see this, pick a basepoint b ∈ Sn
and choose a 1-simplex σ : ∆1 → Sn such that σ(e0) = b and σ(e1) = −b. The group H1(RPn) is
generated by the class of the cycle pσ, where p : Sn → RPn is the covering map. The image of this
cycle in H1(RPn−1) is represented by the loop gpσ at b = pb, which is the image of the 1-simplex
gσ in Sn−1 joining gb to g(−b) = −g(b). The class of this 1-simplex thus generates H1(RPn−1).

Therefore g is nontrivial in H1(−;F2), and hence also in H1(−;F2). Writing an for the generator
of H1(RPn;F2), we must have an = g∗an−1, and consequently ann = (g∗an−1)n = g∗(ann−1). But
Hn(RPn−1;F2) = 0, so ann−1 = 0; while ann 6= 0. This is a contradiction.



122 CHAPTER 3. COHOMOLOGY AND DUALITY

Exercises

Exercise 38.14. Let M be a compact connected n-manifold. Show that if M is orientable then
Hn−1(M) is free abelian, while if it is not orientable there is a unique nonzero element of finite
order in Hn−1(M).



Chapter 4

Basic homotopy theory

39 Limits, colimits, and adjunctions

Limits and colimits

I want to begin by developing a little more category theory. I still refer to the classic text Categories
for the Working Mathematician by Saunders Mac Lane [34] for this material.

Definition 39.1. Suppose I is a small category (so that it has a set of objects), and let C be
another category. Let X : I → C be a functor. A cone under X is a natural transformation e
from X to a constant functor; to be explicit, this means that for every object i of I we have a map
ei : Xi → Y , and these maps are compatible in the sense that for every f : i→ j in I the following
diagram commutes:

Xi

f∗
��

ei // Y

=

��
Xj

ej // Y

A colimit of X is an initial cone (L, ti) under X; to be explicit, this means that for any cone (Y, ei)
under X, there exists a unique map h : L→ Y such that h ◦ ti = ei for all i.

Any two colimits are isomorphic by a unique isomorphism compatible with the structure maps;
but existence is another matter. Also, as always for category theoretic concepts, some examples are
in order.

Example 39.2. If I is a discrete category (that is, the only maps are identity maps; I is entirely
determined by its set of objects), the colimit of a functor I → C is the coproduct in C (if this
coproduct exists!).

Example 39.3. In Lecture 23 we discussed directed posets and the direct limit of a directed
system X : I → C. The colimit simply generalizes this to arbitrary indexing categories rather than
restricting to directed partially ordered sets.

Example 39.4. Let G be a group; we can view this as a category with one object, where the
morphisms are the elements of the group and composition is given by the group structure. If C is
the category of topological spaces, a functor G→ C is simply a group action on a topological space
X. The colimit of this functor is the orbit space of the G-action on X (together with the projection
map to the orbit space).

123
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Similarly, a functor from G into vector spaces over a field k is a representation of G on a vector
space. Question for you: What is the colimit in this case?

Example 39.5. Let I be the category whose objects and non-identity morphisms are described by
the following directed graph:

b← a→ c .

The colimit of a diagram I → C is called a pushout. With C = Top, again, a functor I → C is
determined by a diagram of spaces:

B
f←− A g−→ C .

The colimit of such a functor is just given by B ∪A C = B tC/ ∼, where f(a) ∼ g(a) for all a ∈ A.
We have already seen this in action before: a special case of this construction appears in the process
of attaching cells to build up a CW-complex.

If C is the category of groups, instead, the colimit of such a functor is the free product quotiented
out by a certain relation; this is called the amalgamated free product.

Example 39.6. Suppose I is the category with two objects and two parallel morphisms:

a b .

The colimit of a diagram I → C is called the coequalizer of the diagram. If C = Top, the coequalizer
of f, g : A⇒ B is the quotient of B by the equivalence relation generated by f(a) ∼ g(a) for a ∈ A.

One can also consider cones over a diagram X : I → C: this is simply a cone in the opposite
category.

Definition 39.7. The limit of a diagram X : I → C is a terminal object in cones over X.

Definition 39.8. A category C is cocomplete if all functors from small categories to C have colimits.
Similarly, C is complete if all functors from small categories to C have limits.

All the large categories we typically deal with are both cocomplete and complete; in particular
both Set and Top are, as well as algebraic categories like Gp and ModR.

Adjoint functors

The notion of a colimit as a special case of the more general concept of an adjoint functor, as long
as we are dealing with a cocomplete category.

Let’s write CI for the category of functors from I to C, and natural transformations between
them. There is a functor c : C → CI , given by sending any object to the constant functor taking
on that value. The process of taking the colimit of a diagram supplies us with a functor colimI :
CI → C. (To be precise, we pick a specific colimit for each diagram, and then observe that a natural
transformation of diagrams canonically defines a morphism between the corresponding colimits; and
that these morphisms compose correctly.) We can characterize this functor via the formula

C(colim
i∈I

Xi, Y ) = CI(X, cY ) ,

where X is any functor from I to C, Y is any object of C, and cY denotes the constant functor with
value Y . This formula is reminiscent of the adjunction operation in linear algebra, and is in fact
our first example of a category-theoretic adjunction.
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Definition 39.9. Let C,D be categories, and suppose given functors F : C → D and G : D → C.
An adjunction between F and G is an isomorphism

D(FX, Y ) = C(X,GY )

that is natural in X and Y . In this situation, we say that F is a left adjoint of G and G is a right
adjoint of F .

This notion was invented by the late MIT Professor Dan Kan, in 1958 [30]. The name was
suggested by Kan’s thesis advisor Sammy Eilenberg.

We’ve already seen one example of adjoint functors. Here is another one.

Example 39.10 (Free groups). There is a forgetful functor u : Grp → Set. Any set X gives rise
to a group FX, the free group on X. It is determined by a universal property: For any group Γ,
set maps X → uΓ are the same as group homomorphisms FX → Γ. This is exactly saying that the
free group functor the left adjoint to the forgetful functor u.

In general, “free objects” come from left adjoints of forgetful functors.
As a general notational practice, try to write the left adjoint as the top arrow:

F : C � D : G or G : D � C : F .

These examples suggest that if a functor G has a left adjoint then any two left adjoints are
canonically isomorphic. This is true and easily checked. We’ll always speak of the left adjoint, or
the right adjoint.

Lemma 39.11. Suppose that

C
F
�
G
D

F ′

�
G′
E

is a composable pair of adjoint functors. Then F ′F,GG′ form an adjoint pair.

Proof. Compute:
E(F ′FX,Z) = D(FX,G′Y ) = C(X,GG′Y ) .

Proposition 39.12. Let F : C → D be a functor. If F admits a right adjoint then it preserves
colimits, in the sense that if X : I → C is a diagram in C with colimit cone X → cL, then
F ◦X → F (cL) is a colimit cone in D. Dually, if F admits a left adjoint then it preserves limits.

Proof. The key observation is that an adjoint pair F : C � D : G induces an adjoint pair on functor
categories. So we can compute (using GcY = cGY ):

DI(FX, cY ) = CI(X, cGY ) = C(L,GY ) = D(FL, Y ) .

For example, the free group on a disjoint union of sets is the free product of the two groups
(which is the coproduct in the category of groups). The dual statement says, for example, that the
product (in the category of groups) of groups is a group structure on the product of their underlying
sets.
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The Yoneda lemma

An important and rather Wittgensteinian principle in category theory is that an object is determined
by the collection of all maps out of it. The Yoneda lemma is a way of making this precise. Observe
that for any X ∈ C the association Y 7→ C(X,Y ) gives us a functor C → Set. This functor is said to
be corepresented by X. Suppose that G : C → Set is any functor. An element x ∈ G(X) determines
a natural transformation

θx : C(X,−)→ G

in the following way. Let Y ∈ C and f : X → Y , and define

θx(f) = f∗(x) ∈ G(Y ) .

Lemma 39.13 (Yoneda Lemma). The association x 7→ θx provides a bijection

G(X)
∼=−→ nt(C(X,−), G).

Proof. The inverse sends a natural transformation θ : C(X,−)→ G to θX(1X) ∈ G(X).

In particular, if G is also corepresentable – G = C(Y,−), say – then

nt(C(X,−), C(Y,−)) ∼= C(Y,X) .

That is, each natural transformation C(X,−) → C(Y,−) is induced by a unique map Y → X.
Consequently any natural isomorphism C(X,−)

∼=−→ C(Y,−) is induced by a unique isomorphism
Y
∼=−→ X.

Exercises

Exercise 39.14. Revisit the examples provided above: what is the limit of each diagram? For
instance, a product is a limit over a discrete category, and the limit of a group action is just the
fixed points. If the indexing category is the opposite of a directed poset, the limit is called the
inverse limit and may be denoted lim

←
. A diagram indexed by the category b→ a← c is a diagram

B
f−→ A

g←− C, and its limit is the “pullback,” denoted B ×A C. In Set, or Top,

B ×A C = {(b, c) ∈ B × C : f(b) = g(c) ∈ A} .

Exercise 39.15. Show that any limit in a complete category can be expressed as an equalizer of
two maps between products.

Exercise 39.16. Let C be a cocomplete category. Carry out the construction of a functor colimI :
CI → C suggested above, and show that any two choices of such a functor are canonically isomorphic.

Exercise 39.17. Let C and D be two categories and F : C → D and G : D → C two functors. An
adjunction between F and G is an isomorphism

D(FX, Y )∼= C(X,GY )

that is natural in both variables. Show that this is equivalent to giving natural transformations

αX : X → GFX , βY : FGY → Y ,
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such that the following two diagrams commute.

FX
FαX//

1FX %%

FGFX

βFX
��

GY
αGY //

1GY $$

GFGY

GβY
��

FX GY

The map α is the “unit” of the adjunction, and β is the “counit.” They are called “adjunction
morphisms.”

Exercise 39.18. Suppose that F and F ′ are both left adjoint to G : D → C. Show that there is a
unique natural isomorphism F → F ′ that is compatible with the adjunction morphisms.

40 Cartesian closure and compactly generated spaces

The category of topological spaces has a lot to recommend it, but it does not accommodate certain
constructions from algebraic topology gracefully. For example, the product of two CW complexes
may fail to have a CW structure. (This is a classic example due to Clifford Dowker, 1952, nicely
explained in [24, Appendix]. The CW complexes involved are one-dimensional!) This is closely
related to the observation that if X → Y is a quotient map, the induced map W × X → W × Y
may fail to be a quotient map.

It turns out that these problems can be avoided by working in a carefully designed subcategory
of Top, the category kTop of “compactly generated spaces.” The key idea is that the unwanted
behavior of Top is related to the fact that there isn’t a well-behaved topology on the set of continuous
maps between two spaces. The compact-open topology is available to us – and we’ll recall it later.
But it suffers from some defects. To clarify how a mapping object should behave in an ideal world, I
want to make another category-theoretic digression. Again, Mac Lane’s book [34] is a good reference.

Cartesian closure

How should function objects behave? In the category Set, for example, the set of maps from X to
Y can be characterized by the natural bijection

Set(W ×X,Y ) = Set(W,Set(X,Y ))

under which f : W × X → Y corresponds to w 7→ (x 7→ f(w, x)) and g : W → Set(X,Y )
corresponds to (w, x) 7→ g(w)(x). This suggests the following definition.

Definition 40.1. Let C be a category with finite products. It is Cartesian closed if for any object
X in C, the functor −×X has a right adjoint.

We’ll write the right adjoint to −×X using exponential notation,

Y 7→ Y X ,

so that there is a bijection natural in the pair (W,Y ):

C(W ×X,Y ) = C(W,Y X) .

In a Cartesian closed category, Y X serves as a “mapping object” from X to Y . Let me convince
you that this is reasonable. Take Y = W ×X: the identity map on W ×X then corresponds to a
map

ηW : W → (W ×X)X .



128 CHAPTER 4. BASIC HOMOTOPY THEORY

Take W = Y X : the identity map Y X → Y X corresponds to a map

εY : Y X ×X → Y .

These maps are natural transformations. In the example of Set, the first is given by

w 7→ (x 7→ (w, x)) , inclusion of a slice ,

and the second is given by
(f, x) 7→ f(x) , evaluation .

Here are some direct consequences of Cartesian closure. Note: the assumption that finite prod-
ucts exist in C includes the case in which the indexing set is empty, in which case the universal
property of the product characterizes the terminal object of C, which thus exist in a Cartesian
closed category. We’ll denote it by ∗. You might call C(∗, X) the “set of points” in X.

Proposition 40.2. Let C be Cartesian closed.
(1) (X,Z) 7→ ZX extends canonically to a functor Cop × C → C, and the bijection C(X × Y, Z) =
C(Y, ZX) is natural in all three variables.
(2) C(X,Z) = C(∗, ZX).
(3) X×− preserves colimits: If Y : I → C has a colimit, then the natural map X×Y → X×colimY
is a colimit cone.
(4) −X preserves limits: if Z : I → C has a limit, then the natural map (limZ)X → (ZX) is a limit
cone.

Many otherwise well-behaved categories are not Cartesian closed. A category is pointed if it has
an initial object ∅ and a final object ∗, and the unique map ∅ → ∗ is an isomorphism. There are
many pointed categories! – abelian groups Ab and groups Gp, for example. By (2), the only way
a pointed category can be Cartesian closed is if there is exactly one map between any two objects.

There are deep connections between Cartesian closure and the type theory of computer science;
see [52] for example.

k-spaces

The category Top is not Cartesian closed. We can see this using the observation (e.g. [51, p. 143])
that if X → Y is a quotient map, the induced map W × X → W × Y may fail to be a quotient
map. We can characterize quotient maps in Top categorically using the following definition.

Definition 40.3. An effective epimorphism in a category C is a map X → Y in C such that
the pullback X ×Y X exists and the map X → Y is the coequalizer of the two projection maps
X ×Y X → X.

It’s easy to check that in a Cartesian closed category, if X → Y is an effective epimorphism then
so is W ×X →W × Y .

Lemma 40.4. A map in Top is a quotient map if and only if it is an effective epimorphism.

So, sadly, Top is not Cartesian closed.
On the other hand, Henry Whitehead showed that crossing with a locally compact Hausdorff

space does preserve quotient maps. (See e.g. [51, pp. 186 and 289].) This will often suffice, but often
not: for example CW complexes may fail to be locally compact. And the convenience of working
in a Cartesian closed category is compelling.

Inspired by Whitehead’s theorem, we agree to accept only properties of a space that can be
observed by mapping compact Hausdorff spaces into it.
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Definition 40.5. Let X be a space. A subspace F ⊆ X is said to be compactly closed, or k-closed,
if for any map k : K → X from a compact Hausdorff space K the preimage k−1(F ) ⊆ K is closed.

It is clear that any closed subset is compactly closed, but there might be compactly closed sets
that are not closed in the topology on X. This motivates the definition of a k-space:

Definition 40.6. A topological space X is compactly generated or is a k-space if every compactly
closed set is closed.

The k comes from the German “kompact,” though it might have referred to the general topologist
John Kelley, who explored this condition.

A more categorical characterization of this property is: X is compactly generated if and only if a
map X → Y is continuous precisely when for every compact Hausdorff space K and map k : K → X
the composite K → X → Y is continuous. For instance, compact Hausdorff spaces are k-spaces.
First countable spaces (so for example metric spaces) and CW complexes are also k-spaces.

While not all topological spaces are k-spaces, any space can be “k-ified.” The procedure is
simple: endow the underlying set of a space X with an new topology, one for which the closed sets
are precisely the sets that are compactly closed with respect to the original topology. You should
check that this is indeed a topology on X. The resulting topological space is denoted kX. This
construction immediately implies that the identity kX → X is continuous, and is the terminal map
to X from a k-space.

Let kTop be the category of k-spaces, as a full subcategory of Top. We will write j : kTop→
Top for the inclusion functor. The process of k-ification gives a functor k : Top→ kTop with the
property that

kTop(X, kY ) = Top(jX, Y ) .

This is another example of an adjunction! In this case the unit η : X → kjX is a homeomorphism.
We can conclude from this that limits in kTop may be computed by k-ifying limits in Top: For

any functor X : I → kTop,

lim kTopX
∼=−→ lim kTopkjX

∼=←− k lim TopjX .

The second map is an isomorphism because k is a right adjoint. In particular, the product in kTop
is formed by k-ifying the product in Top. Similarly, colimit (in kTop) of any diagram of k-spaces
can be computed by k-ifying the colimit in Top:

colimkTopX
∼=−→ kj colimkTopX

∼=←− k colimTop jX .

The second map is an isomorphism because j is a left adjoint.
The category kTop has good categorical properties inherited from Top: it is a complete and

cocomplete category. In fact it has even better categorical properties than Top does:

Proposition 40.7. The category kTop is Cartesian closed.

Proof. See [65, 21].

I owe you a description of the mapping object Y X . It consists of the set of continuous maps
from X to Y endowed with a certain topology. For general topological spaces X and Y , the set
Top(X,Y ) can be given the “compact-open topology”: a basis for open sets for the compact-open
topology is given by

V (F,U) = {f : X → Y : f(F ) ⊆ U}
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where F runs over compact subsets of X and U runs over open subsets of Y . This space is not
generally compactly generated, however, and does not serve as a right adjoint to the product.

If X and Y are k-spaces, it’s natural to make a slight modification: To start with, replace the
compact subsets F in this definition by “k-compact” subsets, that is, subsets that are compact from
the perspective of compact Hausdorff spaces: A subset F ⊆ X is k-compact if there exists a compact
Hausdorff space K and a map k : K → X such that k(K) = F . This is to overcome the sad fact
that there are compact spaces that do not accept surjections from compact Hausdorff spaces.

The sets V (F,U) where F runs over k-compact subsets of X and U runs over open subsets of
Y form the basis of a new topology on Top(X,Y ). Even if we assume that X and Y are k-spaces,
this new topology may not be compactly generated. But we know what to do: k-ify it. This defines
a k-space Y X , and this turns out to witness the fact that kTop is Cartesian closed.

Exercises

Exercise 40.8. Verify that in the category of topological spaces effective epimorphisms and quotient
maps coincide. Then check that in a Cartesian closed category if X → Y is an effective epimorphism
then so is W ×X →W × Y .

Exercise 40.9. We have used the notation ZX for a mapping object in a Cartesian closed category,
and CI for the category of functors to C from a small category I. Does this constitute a conflict of
notation? Explain.

Exercise 40.10. Let C be a Cartesian closed category.

(a) Verify the exponential laws: construct natural isomorphisms

ZX×Y ∼=(ZX)Y , (Y × Z)X ∼=Y X × ZX .

The first of these shows that the adjunction bijection C(X × Y, Z)∼= C(Y,ZX) “enriches” to an
isomorphism in C. The second says that the product in C is actually an “enriched” product.

(b) Construct a “composition” natural transformation

Y X × ZY → ZX

using the evaluation maps, and show that it is associative and unital.

Exercise 40.11. Construct left and right adjoints to the forgetful functor

u : Top→ Set ,

and conclude that for any small category I, the limit and the colimit of a functor X : I → Top
consists of the corresponding limit or colimit of underlying sets endowed with a suitable topology.

Exercise 40.12. Show that the colimit (in Top) of any diagram of k-spaces is again a k-space,
and serves as the colimit in kTop. (Suggestion: Show that in Top any coproduct of k-spaces is a
k-space and that any quotient of a k-space is a k-space, and then use the dual of Exercise 39.15.)
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41 Basepoints and the homotopy category

More on k-spaces

The ancients (mainly Felix Hausdorff, in 1914) came up with a good definition of a topology – but
k-spaces are better!

Most spaces encountered in real life are k-spaces already, and many operations in Top preserve
the subcategory kTop.

Proposition 41.1 (see [65, 21]). (1) Any locally compact Hausdorff space is compactly generated.
(2) Quotient spaces and closed subspaces of compactly generated spaces are compactly generated.
(3) If X is a locally compact Hausdorff space and Y is compactly generated then X ×Y is again

compactly generated.
(4) The colimit of any diagram of compactly generated spaces is compactly generated.

As a result of (4), in the homeomorphism

k colimTop jX• → colimkTopX•

that we considered in the last lecture, the space colimTop jX• is in fact already compactly generated;
no k-ification is necessary – the colimit constructed in Top is the same as the colimit constructed
in kTop.

When we say “space” in this course, we will always mean k-space, and the various constructions
– products, mapping spaces, and so on – will take place in kTop.

I should add that there is a version of the Hausdorff condition that is well suited to the compactly
generated setting. Check out the sources [65, 21] for this.

Here’s a simple example of how useful the formation of mapping spaces can be. We already know
5.2 that a homotopy between maps f, g : X → Y is a map h : I ×X → Y such that h(0, x) = f(x)
and h(1, x) = g(x). This gives us an equivalence relation on the set Top(X,Y ), and we write
[X,Y ] = Top(X,Y )/ ∼ for the set of homotopy classes of maps from X to Y . The maps f and g
are points in the space Y X , and the homotopy h is the same thing as a path ĥ : I → Y X from f to
g. So

[X,Y ] = π0(Y X) .

There is another important reason why k-spaces are useful.

Theorem 41.2 (see [24, Theorem A.6]). Let X and Y be CW complexes with skeleta SkiX and
SkjY . Then the k-space product X × Y admits the structure of a CW complex in which

Skn(X × Y ) =
⋃

i+j=n

SkiX × SkjY .

Basepoints

To talk about the fundamental group and higher homotopy groups we have to get basepoints
(Definition 10.4 into the picture. The term “basepoint” leads some people refer to “based spaces,”
but to my ear this makes it sound as if we are doing chemistry, or worse, and I prefer “pointed.” We
may put restrictions on the choice of basepoint; for example we may require that {∗} be a closed
subset. We will put a further restriction on {∗} ↪→ X in 44.2.
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This gives a category kTop∗ where the morphisms respect the basepoints. This category is
complete and cocomplete. For example

(X, ∗)× (Y, ∗) = (X × Y, (∗, ∗))

The coproduct is not the disjoint union; which basepoint would you pick? So you identify the two
basepoints; the coproduct in kTop∗ is the wedge

X ∨ Y =
X t Y
∗X ∼ ∗Y

.

The one-point space ∗ is the terminal object in kTop∗, as in kTop, but it is also initial in
kTop∗: kTop∗ is a pointed category. As we saw, this precludes it from being Cartesian closed. But
we still know what we would like to take as a “mapping object” in kTop∗: Define Y X

∗ to be the
subspace of Y X consisting of the pointed maps. In general we may have to k-ify this subspace, but
if {∗} is closed in Y then Y X

∗ is closed in Y X and hence is already a k-space. As a replacement for
Cartesian closure, let’s ask: For fixed X ∈ kTop∗, does the functor Y 7→ Y X

∗ have a left adjoint?
This would be an analogue in kTop∗ of the functor A⊗− in Ab. Compute:

kTop(W,Y X) = {f : W ×X → Y }

kTop(W,Y X
∗ ) =

⊆

{f : f(w, ∗) = ∗ ∀w ∈W}
⊆

kTop∗(W,Y
X
∗ ) =

⊆ {
f :

f(w, ∗) = ∗ ∀w ∈W
f(∗, x) = ∗ ∀x ∈ X

}
.

⊆

So the map W ×X → Y corresponding to f : W → Y X
∗ sends the wedge W ∨X ⊆ X ×W to the

basepoint of Y , and hence factors (uniquely) through the smash product

W ∧X =
W ×X
W ∨X

obtained by pinching the “axes” in the product to a point. We have an adjoint pair

− ∧X : kTop∗ � kTop∗ : (−)X∗ .

A good way to produce a pointed space is to start with a pair (X,A) (with A a closed subspace
of X) and collapse A to a point. Thus

kTop∗(X/A, Y ) = {f : X → Y : f(A) ⊆ {∗}} = map((X,A), (Y, ∗)) .

We have another adjoint pair!
It’s often useful to know that if A ⊆ X and B ⊆ Y then

(X/A) ∧ (Y/B) =
X × Y

(A× Y ) ∪A×B (X ×B)
.

For example, if we think of Im/∂Im as our model of Sm as a pointed space, we find that

Sm ∧ Sn = (Im/∂Im) ∧ (In/∂In) =
Im+n

(∂Im × In) ∪ (Im × ∂In)
= Im+n/∂Im+n = Sm+n .
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Smashing with S1 is a critically important operation in homotopy theory, known as (reduced)
suspension:

ΣX = S1 ∧X =
I ×X

(∂I ×X) ∪ (I × ∗)
.

That is, the suspension is obtained from the cylinder by collapsing the top and the bottom to a
point, as well as the line segment along a basepoint.

You are invited to check the various properties enjoyed by the smash product, analogous to
properties of the tensor product. So it’s functorial in both variables; the two-point pointed space
serves as a unit; and it is associative and commutative. Associativity is a blessing bestowed by
assuming compact generation; notice that in forming it we are mixing limits (the product) with
colimits (the quotient by the axes), and indeed the smash product turns out not to be associative
in the full category of spaces. By induction, the n-fold suspension is thus

ΣnX = S1 ∧ Σn−1X = S1 ∧ (Sn−1 ∧X) = (S1 ∧ Sn−1) ∧X = Sn ∧X .

The smash product and its adjoint render kTop∗ a “closed symmetric monoidal category.”
We can also think about the loop space of a pointed space,

ΩX = XS1

∗ ,

or the iterated loop space ΩnX, which we claim equals XSn
∗ : by induction,

ΩnX = Ω(Ωn−1X) = (XSn−1

∗ )S
1

∗ = XSn−1∧S1

∗ = XSn

∗ .

You may be alarmed at the prospect of trying to understand the algebraic topology of a function
space like ΩX. Perhaps the following theorem of John Milnor will be of some solace.

Theorem 41.3 (Milnor; see [20]). If X is a pointed countable CW complex, then ΩX has the
homotopy type of a pointed countable CW complex.

The homotopy category

From now on, Top will mean kTop.
In Lecture 5 we introduced the homotopy category (of spaces) HoTop. The objects of HoTop

are the same as those of Top, but the set of morphisms from X to Y is given by [X,Y ]. You should
check that composition in Top descends to composition in HoTop.

Be warned that the homotopy category has rather poor categorical properties. Products and
coproducts in Top provide products and coproducts in HoTop, but most other types of limits and
colimits do not exist in HoTop.

If we have basepoints around, we will naturally want our homotopies to respect them. A pointed
homotopy between pointed maps is a function h : I × X → Y such that h(t,−) is pointed for all
t. This means that it factors through the quotient of I ×X obtained by pinching I × ∗ to a point.
This quotient space may be expressed in terms of the smash product:

I ×X
I × ∗

= I+ ∧X .

Pointed homotopy is again an equivalence relation, and we have the pointed homotopy category,
or, more properly, the homotopy category of pointed spaces HoTop∗. We’ll write [X,Y ]∗ for the set
of maps in this category.
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Definition 41.4. Let (X, ∗) be a pointed space and n a positive integer. The nth homotopy group
of X is

πn(X) = [Sn, X]∗ .

We could add that the set π0(X) of path-components of X acquires a basepoint if X is pointed.
The next case, π1(X, ∗), is the fundamental group or Poincaré group of the pointed space X (Lecture
31). It is a group under concatenation of loops.

Note the long list of aliases for this set: for any k with 0 ≤ k ≤ n,

πn(X) = [Sn, X]∗ = [Sk,Ωn−kX]∗ = πk(Ω
n−kX) .

Since π1 is group-valued, πn(X) is indeed a group for any n ≥ 1. These groups look innocuous, but
they turn out to hold the solutions to many important geometric problems, and are correspondingly
difficult to compute. For example, if a simply connected finite complex is not contractible then
infinitely many of its homotopy are nonzero [61], and only finitely many of them are known.

Exercises

Exercise 41.5. Show that the smash product is associative as a functor kTop∗×kTop∗ → kTop∗.

Exercise 41.6. Let W be a pointed k-space. Show that the functors

W ∧ − : kTop∗ → kTop∗

and
(−)W∗ : kTop∗ → kTop∗

are homotopy functors: they descend to well-defined functors

W ∧ − : ho(kTop∗)→ ho(kTop∗)

and
(−)W∗ : ho(kTop∗)→ ho(kTop∗) .

Hint: Construct a map A ∧ (XW
∗ ) → (A ∧ X)W∗ . (Careful about the definition of XW

∗ : if (god
forbid) the basepoint of X is not closed, this may not be a closed subspace of XW and so may not
be a k-space. But we know how to fix that: k-ify it!)

42 Fiber bundles

Much of this course will revolve around variations on the following concept.

Definition 42.1. A fiber bundle is a map p : E → B with the property that for every b ∈ B
there exists an open subset U ⊆ B containing b and a map p−1(U) → p−1(b) such that p−1(U) →
U × p−1(b) is a homeomorphism.

When p : E → B is a fiber bundle, E is called the total space, B the base space, and p the
projection. The point pre-image p−1(b) ⊆ E for b ∈ B is the the fiber over b. We may use the
symbol ξ for the bundle, and write ξ : E ↓ B.

An isomorphism from p : E → B to p′ : E′ → B is a homeomorphism f : E → E′ such that
p′ ◦ f = p. The map p : E → B is a fiber bundle if it is “locally trivial,” i.e. locally (in the base)
isomorphic to a “trivial” bundle pr1 : U × F → U .

Fiber bundles are naturally occurring objects. For instance, a covering space E → B is precisely
a fiber bundle with discrete fibers.



42. FIBER BUNDLES 135

Example 42.2. The “Hopf fibration” provides a beautiful example of a fiber bundle. Let S3 ⊂ C2

be the unit 3-sphere. Write p : S3 → CP1 ∼= S2 for the map sending a vector v to the complex line
through v and the origin. This is a fiber bundle whose fiber is S1.

We said “the fiber” of p is S1. It’s not hard to see that any two fibers of a fiber bundle over a
path connected base space are homeomorphic, so this language isn’t too bad. If we envision S3 as
the one-point compactification of R3, we can visualize how the various fibers relate to each other.
The fiber through the point at infinity is a line in R3; imagine it as the z-axis. All the other fibers
are circles. It’s a great exercise to envision [29] how they fill up Euclidean space.

This map S3 → S2 is the attaching map for the 4-cell in the standard CW structure on CP 2. The
nontriviality of the cup-square in H∗(CP 2) shows that it is essential, that is, not null-homotopic.
This example is due to Heinz Hopf (1894–1971), a German mathematician working mainly at ETH
in Zürich. He discovered the Hopf fibration and its nontriviality during a visit to Princeton in
1927–28. This was the first indication that spheres might have interesting higher homotopy groups.

Example 42.3. The Stiefel manifold Vk(Rn) is the space of orthogonal “k-frames,” that is, ordered
k-element orthonormal sets of vectors in Rn. Equivalently, it is the space of linear isometric embed-
dings of Rk into Rn; or the set of n× k matrices A such that AAT = Ik. It is a compact manifold.
(Eduard Stiefel (1909–1978) was a Swiss mathematician at ETH Zürich.)

We also have the Grassmannian Grk(Rn), the space of k-dimensional vector subspaces of Rn.
(Hermann Grassmann (1809–1877) discovered much of the theory of linear algebra, but his work
was not appreciated during his lifetime. He taught at a Gymnasium in Stettin, Poland, and wrote
on linguistics.) By forming the span, we get a map

Vk(Rn)→ Grk(Rn)

generalizing the double cover Sn−1 → RPn−1 (which is the case k = 1). There is of course a complex
analogue,

Vk(Cn)→ Grk(Cn)

generalizing the Hopf bundle (which is the case n = 2, k = 1).

These maps are fiber bundles (with fiber over V given by the space of ordered orthonormal bases
of V ). We can regard fact this as a special case of the following general theorem about homogeneous
spaces of compact Lie groups (such as O(n), U(n), or a finite group).

Proposition 42.4. Let G be a compact Lie group and let G ⊇ H ⊇ K a sequence of closed subgroups
(also then compact Lie groups in their own right). Then the projection map between homogeneous
spaces G/K → G/H is a fiber bundle. The fiber over H/H ∈ G/H is the subspace H/K of G/K.

The orthogonal groupO(n) acts on the Stiefel manifold Vk(Rn) from the left, by postcomposition.
This action is transitive, and the isotropy group of the k-frame {en−k+1, . . . , en} is the subgroup
O(n− k)× Ik ⊆ O(n). This means that

Vk(Rn) = O(n)/(O(n− k)× Ik) ,

and we have a fibration O(n)→ Vk(Rn) with fiber O(n−k). For example, V1(Rn) is the unit sphere
Sn−1 in Rn, so we have a fibration O(n) → Sn−1 with fiber O(n − 1). This will be useful in an
analysis of this topological group.

Another interesting map occurs if we forget all but the first vector in a k-frame. This gives us
a map Vk(Rn) → Sn−1. This is the bundle of tangent (k − 1)-frames on the (n − 1)-sphere. The
problem of determining the maximal number of everywhere linearly independent vector fields on
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Sn−1 was a touchstone challenge in algebraic topology, resolved in a famous paper [2] by Frank
Adams.

The Grassmannian Grk(Rn) is obtained by dividing by the larger subgroup O(n − k) × O(k),
and Proposition 42.4 implies that the map Vk(Rn)→ Grk(Rn) is a fiber bundle.

Proposition 42.4 is a corollary of the following general criterion.

Theorem 42.5 (Ehresmann, 1951; see [17]). Suppose E and B are smooth manifolds, and let
p : E → B be a smooth (i.e., C∞) map. If p is a proper (preimages of compact sets are compact)
submersion (that is, dp : TeE → Tp(e)B is a surjection for all e ∈ E), then it is a fiber bundle.

Much of this course will consist of a study of fiber bundles such as these through various essen-
tially algebraic lenses. To bring them into play, we will always demand a further condition of our
bundles.

Definition 42.6. An open cover U of a space X is numerable if there exists subordinate partition
of unity; that is, a family of functions ϕU : X → [0, 1], indexed by the elements of U , such that
ϕ−1
U ((0, 1]) = U and any x ∈ X belongs to only finitely many U ∈ U . The space X is paracompact if

any open cover admits a numerable refinement. A fiber bundle is numerable if it admits a numerable
trivializing cover.

So any fiber bundle over a paracompact space is numerable. This isn’t too restrictive for us:

Proposition 42.7 (Miyazaki; see Theorem 1.3.5 in [20]). CW complexes are paracompact.

Exercises

Exercise 42.8. Show that the fiber bundle SO(n) → Sn−1 sending an orthogonal matrix with
determinant 1 to its first column has a section if and only if Sn−1 is parallelizable. What is the
situation for n = 3? for n = 4?

43 Fibrations, fundamental groupoid

Fibrations and path liftings

During the 1940s, much effort was devoted to extracting homotopy-theoretic features of fiber bun-
dles. It came to be understood that the desired consequences relied entirely on a “homotopy lifting
property.” One of the revolutions in topology around 1950 was the realization that it was advanta-
geous to simply take that property as a definition. This extension of the notion of a fiber bundle
included wonderful new examples, but still retained the homotopy theoretic consequences. Here is
the definition.

Definition 43.1. A fibration is a map p : E → B that satisfies the homotopy lifting property
(“HLP”): Given any f : W → E and any homotopy h : I ×W → B with h(0, w) = pf(w), there is
a map h that lifts h and extends f : that is, making the following diagram commute.

W
f //

in0

��

E

p

��
I ×W h //

h

;;

B
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For example, for any space X (even the empty space!) the unique map X → ∗ is a fibration –
a lift is given by h(t, w) = f(w) – as is the unique map ∅ → X (Why?). In general, though, this
seems like an alarming definition, since the HLP has to be checked for all spaces W , all maps f ,
and all homotopies h!

On the other hand, an advantage of this type of definition, by means of a lifting condition, is
that it enjoys various easily checked persistence properties.

• Base change: If p : E → B is a fibration and X → B is any map, then the induced map
E ×B X → X is again a fibration. In particular, any product projection is a fibration.

• Products: If pi : Ei → Bi is a family of fibrations then the product map
∏
pi is again a

fibration.

• Exponentiation: If p : E → B is a fibration and A is any space, then EA → BA is again
fibration.

• Composition: If p : E → B and q : B → X are both fibrations, then the composite qp : E → X
is again a fibration.

Not all of these persistence properties are true for fiber bundles. Which ones fail?
There is a nice geometric interpretation of what it means for a map to be a fibration, in terms

of “path liftings.” We’ll use Cartesian closure! The adjoint of the solid arrow part of the diagram
in Definition 43.1 is

W
f //

ĥ
��

E

p

��
BI ev0 // B

By the definition of the pullback, the data of this diagram is equivalent to a map W → BI ×B E.
Explicitly,

BI ×B E = {(ω, e) ∈ BI × E : ω(0) = p(e)} .

This space comes equipped with a map from EI , given by sending a path ω : I → E to

p̃(ω) = (pω, ω(0)) ∈ BI ×B E .

In these terms, giving a lift h as in Definition 43.1 is equivalent to giving a lift

EI

p̃
��

W //

h̃

::

BI ×B E

This again needs to be checked for every W and every map to BI ×B E. But at least there is now
a universal case to consider: W = BI ×B E mapping by the identity map! So p is a fibration if and
only if a lift λ exists in the following diagram; that is, a section of p̃:

EI

p̃
��

BI ×B E

λ

88

1 // BI ×B E
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The section λ is called a path lifting function. To understand why, suppose (ω, e) ∈ BI ×B E, so
that ω is a path in B with ω(0) = p(e). Then λ(ω, e) is a path in E lying over ω and starting
at e. The path lifting function provides a continuous lift of paths in B. The existence (or not) of
a section of p̃ provides a single condition that needs to be checked if you want to see that p is a
fibration.

There is no mention of local triviality in this definition. However:

Theorem 43.2 (Albrecht Dold, 1963; see [72], Chapter 13). Let p : E → B be a continuous map.
Assume that there is a numerable cover of B, say U , such that for every U ∈ U the restriction
p|p−1(U) : p−1U → U is a fibration. Then p itself is a fibration.

Corollary 43.3. Any numerable fiber bundle is a fibration.

Comparing fibers over different points

If p : E → B, let’s write Fb for the fiber p−1(b) over b. If p is a covering space, then unique path
lifting provides, for any path ω from a to b, a homeomorphism Fa → Fb depending only on the path
homotopy class of ω. Our next goal is to construct an analogous map for a general fibration.

Consider the solid arrow diagram:

Fa

in0

��

// E

p

��
I × Fa

h

66

pr1 // I
ω // B .

This commutes since ω(0) = a. By the homotopy lifting property, there is a dotted arrow that
makes the entire diagram commute. If x ∈ Fa, the image h(1, x) is in Fb. This supplies us with a
map f : Fa → Fb, given by f(x) = h(1, x).

Since we are not working with a covering space, there will in general be many lifts h and so
many choices of f . But we may at least hope that the homotopy class of f is determined by the
path homotopy class of ω.

So suppose we have two paths ω0, ω1, with ω0(0) = ω1(0) = a and ω0(1) = ω1(1) = b, and
a homotopy g : I × I → B between them (so that g(0, t) = ω0(t), g(1, t) = ω1(t), g(s, 0) = a,
g(s, 1) = b). Here’s a picture.

a

ω1

b

ω0t

s

g

Choose lifts h0 and h1 as above. These data are captured by a diagram of the form

((∂I × I) ∪ (I × {0}))× Fa
in0

��

// E

p

��
I × I × Fa

pr1 //

33

I × I g // B
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The map along the top is given by h0 and h1 on ∂I × I × Fa and by pr2 : I × Fa → Fa followed by
the inclusion on the other summand.

If the dotted lift exists, it would restrict on I × {1} × Fa to a homotopy between f0 and f1.
Well, the subspace (∂I × I) ∪ (I × {0}) of I × I wraps around three edges of the square. It’s easy
enough to create a homeomorphism with the pair (I × I, {0} × I), so the HLP (with W = I × Fa)
gives us the dotted lift.

So the map Fa → Fb is well-defined up to homotopy by the path homotopy class of the path ω
from a to b. Let’s denote that homotopy class by fω.

The fundamental groupoid

We can set this up in categorical terms. The space B defines a category whose objects are the points
of B and in which a morphism from a to b is a homotopy class of paths from a to b. Composition
is given by the juxtaposition rule

(σ · ω)(t) =

{
ω(2t) 0 ≤ t ≤ 1/2

σ(2t− 1) 1/2 ≤ t ≤ 1.

The constant path ca serves as an identity up to homotopy: Here are pictures of the homotopy
between cb · ω and ω, and between σ · ca and σ.

ω

b

cbω

a
b

ω

ω

b

ωca

a

a

ω

Similar pictures show that (α · σ) ·ω ' α · (σ ·ω) and that every morphism has an inverse, given by
ω(t) = ω(1− t).

This gives us a groupoid – a small category in which every morphism is an isomorphism – called
the fundamental groupoid of B, and written with a capital π: Π1(X).

Our work can be succinctly summarized as follows.

Proposition 43.4. Formation of fibers of a fibration p : E → B determines a functor Π1(B) →
HoTop.

Proof. We should check functoriality: if ω : a ∼ b and σ : b ∼ c, then hopefully the induced
homotopy classes compose:

fσω = fσ ◦ fω .

To see this, pick lifts hω and hσ in

Fa

in0

��

// E

��

Fb

in0

��

// E

��
I × Fa

hω

<<

ω // B I × Fb

hσ

<<

σ // B
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so that fω(e) = hω(1, e) and fσ(e) = hσ(1, e). Then construct a lifting in

Fa

in0

��

// E

��
I × Fa

<<

σω // B

by using hω in the left half of the interval and hσ ◦ fω in the right half. The resulting map Fa → Fb
is then precisely fσ ◦ fω.

Remark 43.5. In Lecture 31 we defined the product of loops as juxtaposition but in the reverse
order. That convention would have produced a contravariant functor Π1(X)→ HoTop.

Remark 43.6. Since any functor carries isomorphisms to isomorphisms, Proposition 43.4 implies
that a path from a to b determines a homotopy class of homotopy equivalences from Fa to Fb.

Homotopy invariance

Fix a map p : E → Y . The pullback of E along a map f : X → Y can vary wildly as f is deformed;
it is far from being a homotopy invariant. Just think of the case X = ∗, for example, when the
pullback along f : ∗ → Y is the point preimage p−1(f(∗)). One of the great features of fibrations is
this:

Proposition 43.7. Let p : E → Y be a fibration and f0, f1 : X → Y two maps. Write E0 and
E1 for pullbacks of E along f0 and f1. If f0 and f1 are homotopic then E0 and E1 are homotopy
equivalent.

Proof. We construct a fibration over Y X whose fiber over f is f∗E, the pullback of E → Y along
f . It occurs as the middle vertical composite in the following diagram of pullbacks.

f∗E //

��

E ×Y (Y X ×X) //

��

E

p

��
∗ ×X

inf×1
//

��

Y X ×X ev //

pr1
��

Y

∗
inf // Y X

The middle horizontal composite is the map f , so the pullback is f∗E as shown. Now a homotopy
between f0 and f1 is a path in Y X from f0 to f1, and so by Lemma 43.4 the fibers over them are
homotopy equivalent.

Remark 43.8. We could ask for more: We could ask that E0 and E1 are homotopy equivalent by
maps and homotopies respecting the projections to X: that there is a fiber homotopy equivalence
between them. This is in fact the case, as you will show for homework.

Corollary 43.9. Let p : E → B be a fibration. If B is contractible to ∗ ∈ B, then the inclusion of
the fiber p−1(∗) ↪→ E is a homotopy equivalence.

Proof. The identity map 1B and the constant map c : B → B with value ∗ are homotopic, so pulling
back E ↓ B along them produce homotopy equivalent spaces. One gives E, the other B × p−1(∗).
The projection pr2 : B × p−1(∗) → p−1(∗) is a homotopy equivalence since B is contractible. We
leave you to check that the resulting equivalence is the inclusion.
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Exercises

Exercise 43.10. Which of the properties of fibrations listed above are true for fiber bundles? Which
fail?

Exercise 43.11. Let p : E → B and p′ : E′ → B be fibrations, and let f : E → E′ be a homotopy
equivalence such that p′ ◦ f = p. Show that f is in fact a fiber-homotopy equivalence.

In particular, suppose that B is contractible. Then the identity map 1B is homotopic to a map
factoring through ∗. The pullback of E along this trivial map is B × p−1(∗), while the pullback
along the identity is E. So any fibration over a contractible space is fiber homotopical equivalent
to a product projection.

Hint: First show that it suffices to find a map g : E′ → E such that p ◦ g = p′ and f ◦ g is
fiber-homotopic to 1E′ .

Then reduce this to the following (where E will be what used to be E′, and f is something else
again): Suppose that p : E → B is a fibration and that f : E → E is such that pf = p and f ∼ 1E .
Then there is a map g : E → E such that pg = p and fg is fiber homotopic to the identity.

Further hint: Dualize the proof in [36, §6.5].

44 Cofibrations

Let i : A→ X be a map of spaces, and Y some other space. When is the induced map Y X → Y A

a fibration? For example, if a ∈ X, does evaluation at a produce a fibration Y X → Y ?
By the definition of a fibration, we want a lifting in the solid-arrow diagram

W //

in0

��

Y X

��
I ×W

::

// Y A .

Adjointing over, we get:

A×W i×1 //

1×in0

��

X ×W

��

��

A× I ×W //

++

X × I ×W

&&
Y .

Adjointing over again, this diagram transforms to:

A //

��

X

��

��

A× I //

**

X × I

$$
Y W .

This discussion motivates the following definition of a cofibration, “dual” to the notion of fibration.
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Definition 44.1. A cofibration is a map i : A → X that satisfies homotopy extension property
(sometimes abbreviated as “HEP”): for any solid-arrow commutative diagram as below, a dotted
arrow exists making the whole diagram commutative.

A
i //

��

X

��

��

A× I //

))

X × I

##
Z .

How shall we check that a map is a cofibration? By the universal property of a pushout, A→ X
is a cofibration if and only if there is an extension in

(X × 0) ∪A (A× I)
j //

f

((

X × I

��
Z

for every map f . Now there is a universal example, namely Z = (X × 0) ∪A (A× I), f = id. So a
map i is a cofibration if and only if the map j : (X × 0)∪A (A× I)→ X × I admits a retraction: a
map r : X × I → (X × 0) ∪A (A× I) such that rj = 1.

The space involved here is called the mapping cylinder. It’s not hard to check (using the mapping
cylinder) that any cofibration is a subspace embedding. But the map j may not be an embedding;
the map (X × 0) ∪A (A × I) → im(j) ⊆ X × I is a continuous bijection but it may not be a
homeomorphism. If A ⊆ X is a closed subset then A×I ⊆ X×I is a closed map, and X×0 ⊆ X×I
is also, so the map from the pushout is a closed map and hence is then a homeomorphism to its
image. In fact the image of a cofibration A→ X is automatically closed if X is Hausdorff [67].

So the inclusion of a closed subspace A ⊆ X is a cofibration if and only if there is a retraction
from X × I onto its subspace (X × 0) ∪ (A× I).

Definition 44.2. A basepoint ∗ in X is nondegenerate if {∗} ↪→ X is a closed cofibration. One also
says that (X, ∗) is well-pointed.

Any point in a CW complex, for example, will serve as a nondegenerate basepoint. If ∗ is a
nondegenerate basepoint of A, the evaluation map ev : XA → X is a fibration. The fiber of ev over
the basepoint of X is then exactly the space of pointed maps XA

∗ .
Whenever it’s convenient we will assume our basepoints are nondegenerate.

Example 44.3. i : Sn−1 ↪→ Dn is a cofibration: The map

j : Dn ∪Sn−1 (Sn−1 × I) ↪→ Dn × I

is the inclusion of the open tin can into the closed can full of soup –
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The illustrated retraction of Dn × I onto the open can sends a point in the soup to its shadow on
the open tin can.

In particular, setting n = 1 in this example, {0, 1} ↪→ I is a cofibration, so evaluation at the
pair of endpoints,

ev0,1 : Y I → Y × Y ,
is a fibration. Every point in I is nondegenerate, so eva : Y I → Y is a fibration for any a ∈ I.

The class of cofibrations is closed under the following operations.

• Cobase change: if A→ X is a cofibration and A→ B is any map, the pushout B → X ∪A B
is again a cofibration.

• Coproducts: if Aj → Xj is a cofibration for every j, then the coproduct map
∐
Aj →

∐
Xj

is again a cofibration.

• Product: If A → X is a cofibration and B is any space, then A × B → X × B is again a
cofibration.

• Composition: If A → B and B → X are both cofibrations, then the composite A → X is
again a cofibration.

It follows from these inheritance properties and the single example Sn−1 ↪→ Dn that if X is a
CW complex and A is a subcomplex then A→ X is a cofibration.

Cofibrance provides a natural condition under which a contractible subspace can be collapsed
without damage.

Proposition 44.4. Let A→ X be a cofibration, and write X/A for the pushout of ∗ ← A→ X. If
A is contractible then X → X/A is a homotopy equivalence.

Proof. Pick a contracting homotopy h : A × I → A, so that h(a, 0) = a and h(a, 1) = ∗ ∈ A for
all a ∈ A. By cofibrance there is an extension of f ◦ h to a homotopy g : X × I → X such that
g(x, 0) = x. The map g(−, 1) then factors through the projection p : X → X/A: there is a map
r : X/A→ X such that r ◦ p is homotopic the identity.

To construct a homotopy from p ◦ r to 1 : X/A→ X/A, note that the homotopy g sends A× I
into A, so its composite with p : X → X/A factors through a map g : (X/A)× I → X/A. At t = 0
this is the identity; at t = 1 it is just p ◦ r.

Exercises

Exercise 44.5. Let C ⊂ [0, 1] be the Cantor set. This is a closed subset; but show that the
inclusion is not a cofibration. (Hint: the Hahn-Mazurkiewicz Theorem (e.g. [26, Theorem 3-30])
may be useful.)
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45 Cofibration sequences and co-exactness

There is a pointed version of the cofibration condition: but you only ask to extend pointed homo-
topies; so the condition is weaker than the unpointed version. (It’s true that we seek an extension
to a pointed homotopy, but since the basepoint is in the source space this is automatic.) A pointed
homotopy can be thought of as a pointed map

X ∧ I+ =
X × I
∗ × I

→ Y

The condition that the embedding of a closed subspace i : A ⊆ X is a pointed cofibration can
again be expressed as requiring that the inclusion of the (now “reduced”) mapping cylinder

M(i) = (X × 0) ∪A×0 (A ∧ I+)

into X ∧ I+ admits a retraction. Today we’ll work entirely in the pointed context, and I’ll tend to
omit the adjectives “reduced” and “pointed.”

Any pointed map f : X → Y admits a canonical factorization as a closed pointed cofibration
followed by a pointed homotopy equivalence:

X
f

||
i
��

Y M(f)
'oo

where i embeds X along t = 1. For example, the cone on a space X is a mapping cylinder:

CX = M(X → ∗) = X ∧ I .

The mapX → ∗ factors as the cofibrationX → CX followed by the homotopy equivalence CX → ∗.
Since i is a cofibration, we should feel entitled to collapse X to a point; that is, form the pushout

in
X

f

||
i
��

// ∗

��
Y M(f)

'oo // C(f) .

C(f) is the mapping cone of f . If the mapping cylinder is a top hat, the mapping cone is a witch’s
hat. One example: the suspension functor is given by

ΣX = C(X → ∗) .

Since i is a cofibration, the pushout ∗ → C(f) is again a cofibration; the cone point is always
nondegenerate.

This pushout can be expressed differently: Instead of replacing f : X → Y with a cofibration,
let’s replace X → ∗ with a cofibration, namely, the inclusion X ↪→ CX. So we have a pushout
diagram

∗

X

;;

in1 //

f
��

CX

'

OO

��
Y

i(f) // C(f) .



45. COFIBRATION SEQUENCES AND CO-EXACTNESS 145

This pushout is homeomorphic to the earlier one; but notice that the homeomorphism uses the
automorphism of the unit interval sending t to 1− t.

If f is already a cofibration, the cobase change property implies that CX → C(f) is again
cofibration. CX is contractible, so by Proposition 44.4, collapsing it to a point is a homotopy
equivalence. But collapsing CX in C(f) is the same as collapsing Y in X:

Lemma 45.1. If f : X → Y is a cofibration then the collapse map C(f) → Y/X is a homotopy
equivalence.

Co-exactness

Definition 45.2. A cofibration sequence is a diagram that is homotopy equivalent to

X
f−→ Y

i(f)−−→ C(f)

for some map f .

The composite X → C(f) is null-homotopic; that is, it’s homotopic to the constant map (with
value the basepoint). The homotopy is given by h : (x, t) 7→ [x, t]: When t = 0 we can use
[x, 0] ∼ f(x) to see the composite, while when t = 1 we get the constant map.

The pair (i(f), h) is universal with this property: giving a map g : Y → Z along with a null-
homotopy of the composite g ◦ f is the same thing as giving a map C(f)→ Z that extends g.

An implication of this is the following:

Lemma 45.3. For any pointed map f : X → Y and any pointed space Z, the sequence of pointed
sets

[X,Z]∗
f∗←− [Y, Z]∗

i(f)∗←−−− [C(f), Z]∗

is exact, in the sense that
im(i(f)∗) = {g : Y → Z : g ◦ f ' ∗} .

A sequence of composable arrows with this property is “co-exact”: so cofibration sequences are
coexact.

The map f : X → Y functorially determines the map i(f) : Y → C(f), and we may form its
mapping cone; and continue:

X
f−→ Y

i(f)−−→ C(f)
i2(f)−−−→ C(i(f))

i3(f)−−−→ C(i2(f))
i4(f)−−−→ · · · .

This looks like it will lead off into the wilderness, but luckily there is a kind of periodicity at work.
Here’s a picture of C(i(f)):

CX

CY
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The map i(f) is the pushout of the cofibration X → CX along X → Y , so it is a cofibration.
Therefore, by Lemma 45.1 the collapse map C(i(f))→ C(f)/Y is a homotopy equivalence. But

C(f)/Y = ΣX ,

the suspension of X. So we have the commutative diagram

X
f // Y

i(f) // C(f)
i2(f)//

π(f)

%%

C(i(f))

'
��

ΣX .

Now we have two ways to continue! I combine them in the homotopy commutative diagram

X
f // Y

i(f) // C(f)
i2(f) //

π(f)

$$

C(i(f))

'
��

π(i(f))

%%

i3(f) // C(i2(f))

'
��

π(i2(f))

##

i4(f) // · · ·

ΣX
−Σf // ΣY

−Σi(f) // · · ·

Notice the minus sign! It means that instead of [t, x] 7→ [t, f(x)], we have to use [t, x] 7→ [1−t, f(x)].
This is needed to make the triangle commute, even up to homotopy, as you can see by being careful
with the parametrization of the cones.

The resulting long sequence of maps

X → Y → C(f)→ ΣX → ΣY → ΣC(f)→ Σ2X → · · ·

is the Barratt-Puppe sequence associated to the map f . Each two-term subsequence is a cofibration
sequence and is co-exact. (Michael Barratt (1927–2015), professor at Manchester and then North-
western, and Dieter Puppe (1930–2005), professor at Heidelberg, were two visionary topologists.)

The Barratt-Puppe sequence is a “homotopy theoretic” version of the long exact homology
sequence of a pair. Suppose that A is a subspace of X. Then I claim that

H∗(X ∪ CA)∼=H∗(X,A)

If you combine that with the suspension isomorphism in reduced homology, the Barratt-Puppe
sequence gives you the homology long exact sequence of the pair.

To see the equality, just use homotopy invariance and excision:

H∗(X ∪ CA) = H∗(X ∪ CA, ∗) = H∗(X ∪ CA,CA)

= H∗(X ∪ C≤(1/2)A,C≤(1/2)A) = H∗(X ∪A× I, A× I) = H∗(X,A) .

Since X ∪ CA ' X/A if A→ X is a cofibration, this is a good condition to guarantee that

H∗(X,A) = H∗(X/A) .

Exercise 45.4. (a) Use a homotopy h : A× I → Y between the branches of the diagram

A
i //

f
��

X

g

��
B

j // Y



46. WEAK EQUIVALENCES AND WHITEHEAD’S THEOREMS 147

to construct a map C(f)→ C(g) such that in the diagram

X

g

��

// C(i)

��

// ΣA

Σf

��
Y // C(j) // ΣB

the left square commutes and the right one commutes up to homotopy.
(b) Use a homotopy f ' g : X → Y to construct a homotopy equivalence C(f) ' C(g). [See e.g.
[4, Proposition 3.2.15].]

46 Weak equivalences and Whitehead’s theorems

We now have defined the homotopy groups of a pointed space,

πn(X) = [Sn, X]∗ .

So π0(X) is the pointed set of path components. For n > 0, πn only sees the path component of
the basepoint. It’s a group for n = 1, and hence also for n ≥ 1 since πn(X) = π1(Ωn−1X).

Here’s another very useful way to represent an element of πn(X, ∗). Recall our description of
the n-sphere as a pointed space:

Sn = In/∂In .

So an element of πn(X, ∗) is a homotopy class of maps of pairs

(In, ∂In)→ (X, ∗) .

The Eckmann-Hilton argument

Lemma 46.1. For n ≥ 2, πn(X) is abelian.

Proof. I’ll give you two proofs of this fact; both variants of the “Eckmann-Hilton argument.” Since
πn(X) = π2(Ωn−2X), it suffices to consider n = 2.

First, geometric: Given f, g : I2 → X, both sending ∂I2 to ∗, we can form another one by
putting the two side by side (and compressing the horizontal coordinate by a factor of 2 in each).
This is the sum in πn(X). This is homotopic to the map that does f and g in much smaller
rectangles and fills in the rest of the square with maps to the basepoint. Now I’m free to move these
two smaller rectangles around one another, exchanging positions. Then I can re-expand, to get the
addition g + f .

f g f g
f

g
g f g f

Now, algebraic: An H-space is a pointed space Y together with map µ : Y × Y → Y such that

Y
1

##

in1 // Y × Y
µ

��

Y
in2oo

1

{{
Y
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commutes in Ho(Top∗). The relevant example here is Y = ΩX. Then π1(Y, ∗) has extra structure:
Since π1(Y × Y, ∗) = π1(Y, ∗) × π1(Y, ∗) (as groups) we get a group G together with a group
homomorphism µ : G×G→ G such that

G
1

##

in1 // G×G
µ

��

G
1

{{

in2oo

G

commutes. That is to say, µ(a, 1) = a, µ(1, d) = d, and, since (a, b) · (c, d) = (ac, bd) in G×G,

µ(ac, bd) = µ(a, b) · µ(c, d) .

Take b = 1 = c so µ(a, d) = ad : that is, the “multiplication” µ is none other than the group
multiplication. Then take a = 1 = d so µ(c, b) = bc : that is, the group structure is commutative.

Change of basepoint

We can trace what happens when we move the basepoint. Let ω : I → X be a path from a to b. It
induces a map

ω# : πn(X, a)→ πn(X, b)

in the following way. Given f : In → X representing α ∈ πn(X, ∗), define a map

(In × 0) ∪ (∂In × I)→ X

by

(v, t) 7→

{
f(v) for v ∈ In, t = 0

ω(t) for v ∈ ∂In .

Precompose this map with the map from the face In × 1 given by projecting from the point (b, 2),
where b is the center of In. The result is a new map In → X; it sends the middle part of the cube
by f , and the peripheral part by ω.

f

ω

ω

ω ω

It’s easy to check that this gives rise to a functor Π1(X) → Set, and hence to an action of
π1(X, ∗) on πn(X, ∗). For n = 1, this is the conjugation action,

ω · α = ωαω−1 .

For all n ≥ 1 it is an action by group homomorphisms; for n ≥ 2, πn(X, ∗) is a Z[π1(X, ∗)]-module.

Definition 46.2. A space is simple if this action is trivial for every choice of basepoint.

Example 46.3. If all path components are simply connected, the space is simple. A topological
group is a simple space.
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This action can be used to explain how homotopic maps act on homotopy groups.

Proposition 46.4. Let h : f0 ∼ f1 be a (“free,” as opposed to pointed) homotopy of maps X → Y .
Let ∗ ∈ X, and let ω : I → X by ω(t) = h(∗, t). Then

πn(Y, f0(∗))

ω#

��

πn(X, ∗)

f0∗
77

f1∗

''
πn(Y, f1(∗))

commutes.

Proof. The homotopy h fills in the cube In × I, and provides a pointed homotopy from ω · f0 to
f1.

Weak homotopy equivalence

While it may be hard to compute homotopy groups, we can think about what sort of maps induce
isomorphisms in them.

Definition 46.5. A map f : X → Y is a weak equivalence or weak homotopy equivalence if it
induces an isomorphism in π0 and in πn for all n ≥ 1 and every choice of basepoint in X.

A space that is weakly equivalent to a point is said to be weakly contractible.
Of course it suffices to pick one point in each path component.
Weak equivalences may not have any kind of map going in the opposite direction. The definition

seems very base-point focused, but in fact it is not. For example:

Proposition 46.6. Any homotopy equivalence is a weak equivalence.

Proof. Let f : X → Y be a homotopy equivalence with homotopy inverse g : Y → X, and pick a
homotopy h : 1X ∼ gf . Define ω : I → X by ω(t) = h(∗, t). Then by Proposition 46.4 we have a
commutative diagram

πn(X, ∗) f∗ //

ω#

''

πn(Y, f(∗))
g∗
��

πn(X; gf(∗))

in which the diagonal is an isomorphism. Picking a homotopy 1Y ∼ fg gives the rest of the diagram

πn(X, ∗) f∗ //

∼=

''

πn(Y, f(∗))
g∗
��

∼=

((
πn(X, gf(∗)) f∗ // π∗(Y, fgf(∗)) .

It follows that f∗ and g∗ are inverse isomorphisms.

Here are three fundamental theorems about weak equivalences, all due more or less to J.H.C.
Whitehead.
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Theorem 46.7. Any weak equivalence induces an isomorphism in singular homology.

Since H0(X) is the free abelian group generated by π0(X), this is obvious in dimension 0, and
on each path component Poincaré’s theorem implies it in dimension 1. See Exercise 64.6 for the
general case.

Theorem 46.8. Let X and Y be simple spaces. Any map from X to Y that induces an isomorphism
in homology is a weak equivalence.

Theorem 46.9. Let X and Y be CW complexes. Any weak equivalence from X to Y is in fact a
homotopy equivalence.

Theorem 46.8 clearly provides a powerful way to construct weak equivalences, and, when com-
bined with Theorem 46.9, homotopy equivalences. We will prove a vast generalization of Theorem
46.8 in Lecture 69.

Here is a useful strengthening of Theorem 46.9:

Theorem 46.10 (“Whitehead’s little theorem”). A map f : X → Y is a weak equivalence if and
only if f ◦ − : [W,X]→ [W,Y ] is bijective for all CW complexes W .

We will prove this in Lecture 48.

Proof of 46.10⇒46.9. We assume that

f ◦ − : [W,X]→ [W,Y ]

is bijective for every CW complex W . Taking W = Y , we find that there is a map g : Y → X such
that f ◦ g = 1Y . We claim that g ◦ f = 1X as well. To see this we take W = X: so

f ◦ − : [X,X]→ [X,Y ]

is a monomorphism. Under it 1 7→ f , but g ◦ f does as well:

g ◦ f 7→ f ◦ (g ◦ f) = (f ◦ g) ◦ f = 1Y ◦ g = f .

So g ◦ f = 1X .

Remark 46.11. There is a deep shift of focus involved here. In the beginning, homotopy theory
dealt with what happens when you define an equivalence relation (“homotopy”) on maps. Focusing
on weak equivalences is an entirely different perspective: we are picking out a collection of maps that
will be regarded as “equivalences.” They are to become the isomorphism in the homotopy category.
The fact that they satisfy 2-out-of-3 makes the collection of weak equivalences an appropriate choice.

This change in perspective may be attributed to Daniel Quillen, who, in Homotopical Algebra
[54] (written while Quillen (1940–2011, Fields Medal 1978) was a professor at MIT, in collaboration
with his colleague Dan Kan), set out an axiomatization of homotopy theory using three classes of
maps, which he termed “weak equivalences,” “cofibrations,” and “fibrations.” They are assumed to
be related to each other through appropriate factorization and lifting properties that axiomatize
what we have just been doing. The resulting theory of “model categories” dominated the underlying
framework of homotopy theory for thirty years, and is still a critically important tool.
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Exercises

Exercise 46.12. Verify the claim that a topological group is a simple space.

Exercise 46.13. Show that weak equivalences satisfy “2 out of 3”: in

X
f //

gf

33Y
g // Z

if two of f , g, and gf are weak equivalences then so is the third.

Exercise 46.14. Let ω ∈ π1(S1 ∨ S2) and α ∈ π2(S1 ∨ S2) be represented by the inclusion of the
two spheres into the wedge. Form a new CW complex X by attaching a 3-cell by means of a map
representing the homotopy class 2α − ω · α ∈ π2(S1 ∨ S2). Show that the inclusion of S1 into X
induces isomorphisms in π1 and in homology, but that X is not weakly equivalent to the circle.

So no simple adjustment to the Whitehead theorem will work. Notice however that the map on
universal covers is not an isomorphism in homology.

47 Homotopy long exact sequence and homotopy fibers

Relative homotopy groups

We’ll continue to think of πn(X, ∗) as a set of homotopy classes of maps of pairs:

πn(X, ∗) = [(In, ∂In), (X, ∗)] .

As usual in algebraic topology, there is much to be gained from establishing a “relative” version.
We will use the sequence of subspaces

In ⊇ ∂In ⊇ ∂In−1 × I ∪ In−1 × 0

in this definition. We will write Jn for the last subspace, so for example J1 = {0} ⊂ I. In general
it’s an “open box”:

Definition 47.1. Let (X,A, ∗) be a pointed pair. For n ≥ 1, define a pointed set

πn(X,A, ∗) = [(In, ∂In, Jn), (X,A, ∗)] .

This definition is set up in such a way that

πn(X, {∗}, ∗) = πn(X, ∗)
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so that the inclusion {∗} ↪→ A induces a map

πn(X, ∗)→ πn(X,A, ∗) .

Also, restricting to the “back face” In−1 × 0 provides a map

∂ : πn(X,A, ∗)→ πn−1(A, ∗)

and the composite of these two is obviously “trivial,” meaning that its image is the basepoint
∗ ∈ πn−1(A, ∗). We get a sequence of pointed sets

· · · // π3(X,A, ∗)
∂

tt
π2(A, ∗) // π2(X, ∗) // π2(X,A, ∗)

∂

tt
π1(A, ∗) // π1(X, ∗) // π1(A,X, ∗)

∂

tt
π0(A, ∗) // π0(X, ∗)

We claim that this is an exact sequence of pointed sets: the long exact homotopy sequence of a
pair. For example, an element of π1(X,A, ∗) is represented by a path starting at the basepoint and
ending in A. Its boundary is the component of that point in A. Saying that the component of
a ∈ A maps to the base point component of X is exactly saying that [a] ∈ π0(A) is in the image of
∂ : π1(X,A, ∗)→ π0(A, ∗).

We will investigate the structure of these relative homotopy groups, and explain why the sequence
is exact, by developing an analogue of the Barratt-Puppe sequence that will turn out to give rise to
the homotopy long exact sequence of a pair.

Fiber sequences

In the pointed category, we could redefine “fibration” slightly (as is done in [36], for example) so
that p : E → B is a fibration if every pointed solid arrow diagram

W //

in0

��

E

p

��
I+ ∧W //

;;

B

admits a lift. There are fewer diagrams, but more is demanded of the lift.
Instead we’ll leave the fibrations as they are, but in compensation insist that our basepoints

should be nondegenerate. Lifting is then contained in the following lemma. See [67] for the proof,
which we forgo, preferring to give the proof of similar result 48.6 later.

Lemma 47.2 (Relative homotopy lifting property). Let A ⊆ X be a closed cofibration and E → B
a fibration. Then a lifting exists in any solid arrow diagram

(X × 0) ∪ (A× I) //

��

E

��
X × I //

77

B .
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Exactly the same proof we did before shows that if A → B is a pointed cofibration and the
basepoints are nondegenerate then XB

∗ → XA
∗ is a fibration. For example we can take (B,A, ∗) =

(I, ∂I, 0) to see that the map from the path space

P (X) = XI
∗ = {ω : I → X : ω(0) = ∗}

to X by evaluation at 1 is a fibration.
Taking A to be a singleton in Lemma 47.2:

Corollary 47.3. Let p : E → B be a fibration and suppose given g : W → E and f : W → B such
that pg ' f : so g is a lift of f up to homotopy. Then g is homotopic to a lift “on the nose,” that is,
a function g : W → E such that pg = f .

So if g : W → E is such that pg ' ∗, then g is homotopic to a map that lands in the fiber
p−1(∗) = F of p over ∗. This shows that the sequence – the “fiber sequence” – of pointed spaces

F → E → B

is “exact,” in the sense that for any well-pointed space W the sequence

[W,F ]∗ → [W,E]∗ → [W,B]∗

is exact.
Not every map is a fibration, but every map factors as

X
' //

f

!!

T (f)

p

��

= {(x, ω) ∈ X × Y I : ω(1) = f(x)}

Y

where X → T (f) is a homotopy equivalence and p is a fibration.
The fiber of p is the homotopy fiber of f , written F (f):

F (f) = {(x, ω) ∈ X × Y I
∗ : ω(1) = f(x)} .

Here we take 0 ∈ I as the basepoint, so ω is a path in Y from ∗ to f(x).
As in our discussion of the Barratt-Puppe cofibration sequence, there is an equivalent way of

constructing F (f), by replacing ∗ → Y with a fibration, namely the path space Y I
∗ , and forming

the pullback over X:
F (f) //

��

P (Y )

��

= Y I
∗

X // Y

Lemma 47.4. Let p : E → B be a fibration and ∗ ∈ B. The natural map p−1(∗) → F (p) is a
homotopy equivalence.

Proof. Regard F (p) as the pullback of p along PB ↓ B. The induced map on fibers is a homeomor-
phism; but PB is contractible so the inclusion of the fiber of F (p) ↓ PB into F (p) is a homotopy
equivalence, by Corollary 43.9.
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Continuing with the analogy with cofibrations, the map p(f) : F (f) → X is a fibration, with
fiber ΩX, and we have the Barratt-Puppe fibration sequence

Y
f←− X p←− F (f)

i←− ΩY
Ωf←−− ΩX

Ωp←− ΩF (f)
Ωi←− · · · .

It is exact, and it gives rise to the long exact homotopy sequence by virtue of the following lemma.

Lemma 47.5. Let (X,A, ∗) be a pointed pair, and let F denote the homotopy fiber of the inclusion
A→ X. For each n ≥ 1 there is a natural isomorphism

πn(X,A)
∼=−→ πn−1(F, ∗)

such that
πn(X, ∗) //

∼=

��

πn(X,A, ∗)
∂

''
∼=

��

πn−1(A, ∗)

πn−1(ΩX, ∗) i // πn−1(F, ∗)

p
77

commutes.

Corollary 47.6. The sequence homotopy long exact sequence of a pair is in fact exact; for n ≥ 2
the set πn(X,A, ∗) is a group, abelian for n ≥ 3; and all the maps between groups in the sequence
are homomorphisms.

Proof of Lemma 47.5. To begin with, notice that π1(X,A, ∗) is the set of path components of the
space of maps

(I, ∂I, J1)→ (X,A, ∗) .

This is the space of paths in X from ∗ to some element of a: that is, it’s precisely F (A→ X).
In fact, for any n ≥ 1, the space of maps

(In, ∂In, Jn)→ (X,A, ∗)

is precisely Ωn−1F (A → X). For example, when n = 2, an element in the given space is given by
a map I2 → X that is the basepoint along the bottom and takes values in A along the top – so
a path in F (A → X) – and also is the basepoint along the left and right edges – so it’s a loop in
F (A→ X).

The diagram is easily seen to commute.

There is another perspective on the homotopy long exact sequence, arising from Lemma 47.4.

Lemma 47.7. Let p : E → B be a fibration and ∗ ∈ E. Write ∗ also for the image of ∗ in B, and
let F be the fiber over ∗. Then

p∗ : π∗(E,F, ∗)→ π∗(B, ∗)

is an isomorphism.
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Proof. F (p)→ E is a fibration, so by Proposition 43.7 and Lemma 47.4,

hofib(F → E) ' hofib(F (p)→ E) ' fib(F (p)→ E) = ΩB .

We leave to you the check that the resulting composite isomorphism

πn(E,F )→ πn−1(hofib(F → E))→ πn−1(ΩB)→ πn(B)

is indeed the map induced by p∗.

We saw that π1(A, ∗) acts on πn(A, ∗). The map πn(A, ∗) → πn(X, ∗) is equivariant, if we let
π1(A, ∗) act on πn(X, ∗) via the group homomorphism π1(A, ∗) → π1(X, ∗). The group π1(A, ∗)
also acts on πn(X,A, ∗), compatibly, as illustrated by the following diagram.

f

ω

ωω

It’s clear from the picture that the maps in the homotopy long exact sequence are equivariant.

Exercises

Exercise 47.8. Let f : ΣX → Y be a pointed map, and let f̂ : X → ΩY be its adjoint. Construct
a map g : CX → PY from the cone to the path space PY = Y I

∗ such that the diagram

X //

f̂
��

CX //

g

��

ΣX

f
��

ΩY // PY // Y

commutes.

Exercise 47.9. Let p : E → B be a fibration and A ⊆ B a subset, and write EA for the pullback
of E to a fibration over A. Show that

πn(E,EA)→ πn(B,A)

is an isomorphism for any n ≥ 1.

Exercise 47.10. By passing to π0, the action described in Exercise 47.11 provides a right action
of the group π1(Y ) on π0(F (f)).
(a) Show that two elements in π0(F (f)) map to the same element of π0(X) if and only if they are
in the same orbit under this action.
(b) Suppose ω is a path in Y from ∗ to y. Write ω# : π1(Y, ∗)→ π1(Y, y) for the group isomorphism
sending σ to ωσω−1. Show that the isotropy group of the component of (x, ω) in F (f, ∗) is

ω−1
# im(π1(X,x)→ π1(Y, f(x))) ⊆ π1(Y, ∗) .

(c) Suppose that X is path connected, and pick ∗ ∈ X. Conclude from (a) that the evident
surjection πn(X, ∗)→ [Sn, X] can be identified with the orbit projection for the action of π1(X, ∗)
on πn(X, ∗).
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Exercise 47.11. Let f : X → Y and fix ∗ ∈ Y . Assume that Y is path-connected. We’ve defined
the homotopy fiber of f over ∗ to be the space

F (f) = {(x, ω) ∈ X × Y I : ω(0) = ∗, ω(1) = f(x)} .

It comes equipped with a fibration p : F (f)→ X sending (x, ω) to x. The loop space ΩY “acts” on
the homotopy fiber F (f) from the right: let ω ∈ ΩY and (x, σ) ∈ F (f, ∗), and define

(x, σ) · ω = (x, σ · ω)

where

(σ · ω)(t) =

{
ω(2t) 0 ≤ t ≤ 1/2
σ(2t− 1) 1/2 ≤ t ≤ 1 .

In particular, taking X = ∗, we get the usual “multiplication” ΩY × ΩY → ΩY , which is
known to be associative and unital up to homotopy (and to admit a homotopy inverse, sending ω
to ω : t 7→ ω(1− t)). The same proof shows that the action of ΩY on F (f) is associative and unital
up to homotopy.

Suppose a group G acts on a set S (from the right) with orbit space X. The fiber product
S ×X S consists of pairs of elements in the same orbit. The action is free exactly when the map
S ×G→ S ×X S, sending (s, g) to (s, sg), is bijective.

Returning to the story of the homotopy fiber, note that p((x, σ) · ω) = x = p(x, σ). We get a
map

F (f)× ΩY → F (f)×X F (f)

to the fiber product by sending ((x, σ), ω) to ((x, σ), (x, σ) · ω).
Finally, the problem: Show that this map is a homotopy equivalence.
So in a sense there is a “free” (a better word would be “principal”) action of ΩY on F (f) with

orbit space X. In particular, F (1X) is the contractible path space PX; so X is the “orbit space” of
an action of ΩX on a contractible space. This entitles us to regard X as the “classifying space” of
ΩX.



Chapter 5

The homotopy theory of CW complexes

48 Serre fibrations and relative lifting

Relative CW complexes

We will do many proofs by induction over cells in a CW complex. We might as well base the
induction arbitrarily. This suggests the following definition.

Definition 48.1. A relative CW complex is a pair (X,A) together with a filtration

A = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X,

such that (1) for all n the space Xn sits in a pushout square:∐
α∈In S

n−1
α

//

��

∐
α∈In D

n
α

��
Xn−1

// Xn ,

and (2) X = lim−→Xn topologically.

The maps Sn−1 → Xn−1 are “attaching maps” and the mapsDn → Xn are “characteristic maps.”
If A = ∅, this is just the definition of a CW complex. Often X will be a CW complex and A a

subcomplex.
Our inductive strategy will involve constructing lifts inductively.

Definition 48.2. A map p : E → B is said to satisfy the relative homotopy lifting property with
respect to i : A→ X if every solid arrow diagram

X × 0 ∪A× I //

��

E

p

��
X × I //

88

B

admits a “filler” as shown.

The absolute case is A = ∅.
This is in turn a special case of the following very general language, due to Quillen.

157
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Definition 48.3. Fix maps p : E → B and j : V → W . The map p satisfies the right lifting
property with respect to j, and j satisfies the left lifting property with respect to p, if every solid
arrow diagram

V //

j
��

E

p

��
W //

>>

B

admits a filler as shown.

Serre fibrations

If we’re going to restrict our attenton to CW complexes, we might as well weaken the lifting condition
defining fibrations.

Definition 48.4. A map p : E → B is a Serre fibration if it has the homotopy lifting property
(“HLP”) with respect to all CW complexes. That is, for every CW complex X and every solid arrow
diagram

X //

in0

��

E

p

��
X × I //

;;

B

there is a lift as indicated.

For contrast, what we called a fibration is also known as a Hurewicz fibration. (Witold Hurewicz
(1904–1956) was a faculty member at MIT from 1945 till his death from a fall from the top of the
Uxmal Pyramid in Mexico.)

Clearly things like the homotopy long exact sequence of a fibration extend to the context of
Serre fibrations. So for example:

Lemma 48.5. Suppose that p : E → B is both a Serre fibration and a weak equivalence. Then each
fiber is weakly contractible; i.e. the map to ∗ is a weak equivalence.

Proof. Since π0(E) → π0(B) is bijective, we may assume that both E and B are path connected.
The long exact homotopy sequence shows that ∂ : π1(B) → π0(F ) is surjective with kernel given
by the image of the surjection π1(E)→ π1(B): so π0(F ) = ∗. Moving up the sequence then shows
that all the higher homotopy groups of F are also trivial.

No new ideas are required to prove the following two facts.

Proposition 48.6. Let p : E → B. The following are equivalent.

1. p is a Serre fibration.

2. p has the HLP with respect to Dn for all n ≥ 0.

3. p has the relative HLP with respect to Sn−1 ↪→ Dn for all n ≥ 0.

4. p has the relative HLP with respect to A ↪→ X for all relative CW complexes (X,A).
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Proposition 48.7 (Relative straightening). Assume that (X,A) is a relative CW complex and that
p : E → B is a Serre fibration, and that the diagram

A //

j
��

E

p

��
X

g // B

commutes. If g is homotopic to a map g′ still making the diagram commute and for which there is
a filler, then there is a filler for g.

Proof of “Whitehead’s little theorem”

We are moving towards a proof of this theorem of J.H.C. Whitehead.

Theorem 48.8. Let f : X → Y be a weak equivalence and W any CW complex. The induced map
[W,X]→ [W,Y ] is bijective.

The key fact is this:

Proposition 48.9. Suppose that j : A ↪→ X is a relative CW complex and p : E → B is both a
Serre fibration and a weak equivalence. Then a filler exists in any diagram

A //

j
��

E

p

��
X //

==

B .

In the language of Quillen’s Homotopical Algebra, this says that j satisfies the left lifting property
with respect to “acyclic” Serre fibrations, and acyclic Serre fibrations satisfy the right lifting property
with respect to relative CW complex inclusions.

Proof (following [48]). The proof will of course go by induction. The inductive step is this: Assum-
ing that p : E → B is a Serre fibration and a weak equivalence, any diagram

Sn−1 //

j
��

E

p

��
Dn //

<<

B

admits a filler.
First let’s think about the special case in which B = ∗. Then E is path connected, and for any

choice of basepoint ∗ ∈ E, πn(E, ∗) = 0, so the extension exists.
For the general case, we begin by using Lemma 48.7 replacing the map g by a homotopic map

g′ with properties that will let us construct a filler. To define g′, let ϕ : Dn → Dn by

ϕ : v 7→

{
0 if |v| ≤ 1/2

(2|v| − 1)v if |v| ≥ 1/2 .

This map is homotopic to the identity (by a piecewise linear homotopy that fixes Sn−1), so g′ =
g ◦ ϕ ' g.
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The virtue of g′ is that we can treat the two parts of Dn separately. The annulus {v ∈ Dn : |v| ≥
1/2} is homeomorphic to I ×Sn−1, so a lifting exists on it since p is a Serre fibration. On the other
hand g′ is constant on the inner disk Dn

1/2, with value g(0). We just constructed a lift on Sn−1
1/2 , but

it actually lands in the fiber of p over g(0). We can fill in that map with a map Dn
1/2 → p−1(g(0))

since the fiber is weakly contractible.

Proof of Theorem 48.8. Begin by factoring f : X → Y as a homotopy equivalence followed by a
fibration; so as a weak equivalence followed by a Serre fibration p. Weak equivalences satisfy “2
out of 3” (Exercise 46.13) so p is again a weak equivalence. Thus we may assume that f is a Serre
fibration (as well as being a weak equivalence).

To see that the map is onto, apply Proposition 48.9 to

∅

��

// X

f
��

W //

>>

Y

To see that the map is one-to-one, apply Proposition 48.9 to

W × ∂I //

��

X

f
��

W × I //

::

Y

This style of proof – using lifting conditions and factorizations – is very much in the spirit of
Daniel Quillen’s formalization of homotopy theory in his development of “model categories” [54].

49 Connectivity and approximation

The language of connectivity

An analysis of the proof of “Whitehead’s little theorem” shows that if the CW complex we are using
as a source has dimension at most n, then we only needed to know that the map X → Y was an
“n-equivalence” in the following sense.

Definition 49.1. Let n be a positive integer. A map f : X → Y is an n-equivalence provided
that f∗ : π0(X) → π0(Y ) is an isomorphism, and for every choice of basepoint a ∈ X the map
f∗ : πq(X, a) → πq(Y, f(a)) is an isomorphism for q < n and an epimorphism for q = n. It is a
0-equivalence if f∗ : π0(X)→ π0(Y ) is an epimorphism.

So a map is a weak equivalence if it is an n-equivalence for all n. We restate:

Theorem 49.2. Let n be a nonnegative integer and W a CW complex. If f : X → Y is an n-
equivalence then the map f∗ : [W,X]→ [W,Y ] is bijective if dimW < n and surjective if dimW = n.

The odd edge condition in the definition of n-equivalence might be made more palatable by
noticing that the long exact homotopy sequence shows that (for n > 0) f is an n-equivalence if and
only if π0(X)→ π0(Y ) is bijective and for any b ∈ Y the group πq(F (f, b)) is trivial for q < n.

This suggests some further language.
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Definition 49.3. Let n be a positive integer. A space X is n-connected if it is path connected and
for any choice of basepoint a the set πq(X, a) is trivial for all q ≤ n. A space X is 0-connected if it
is path connected.

So “1-connected” and “simply connected” are synonymous. The homotopy long exact sequence
shows that for n > 0 a map X → Y is an n-equivalence if it is bijective on connected components
and for every b ∈ Y the homotopy fiber F (f, b) is n-connected.

The language of connectivity extends to pairs:

Definition 49.4. Let n be a non-negative integer. A pair (X,A) is n-connected if π0(A)→ π0(X)
is surjective and for every basepoint a ∈ A the set πq(X,A, a) is trivial for q ≤ n.

That is, (X,A) is n-connected if the inclusion map A→ X is an n-equivalence.

Skeletal approximation

Theorem 49.5 (Skeletal approximation theorem). Let (X,A) and (Y,B) be relative CW complexes.
Any map f : (X,A)→ (Y,B) is homotopic rel A to a skeletal map – a map sending Xn into Yn for
all n. Any homotopy between skeletal maps can be deformed rel A to one sending Xn into Yn+1 for
all n.

I will not give a proof of this theorem. You have to inductively push maps off of cells, using
smooth or simplicial approximation techniques. See for example [10, p. 208]. I am following Norman
Steenrod in calling such a map “skeletal” rather than the more common “cellular,” since it is after
all not required to send cells to cells. With A = ∅:

Corollary 49.6. Any map X → Y of CW complexes is homotopic to a skeletal map, and any
homotopy between skeletal maps can be deformed to one sending Xn to Yn+1.

For example, the n-sphere In/∂In has a CW structure in which Skn−1S
n = ∗ and SknS

n = Sn.
The characteristic map is given by a choice of homeomorphism Dn → In. So if q < n, then any
map Sq → Sn factors through the basepoint up to homotopy. This shows that

πq(S
n) = 0 for q < n

– the n-sphere is (n− 1)-connected. So also is any CW complex with one 0-cell and no other q-cells
for q < n.

As a special case:

Proposition 49.7. Let (X,A) be a relative CW complex in which all the cells of X are in dimension
greater than n. Then (X,A) is n-connected.

For example (with A = ∅) π0(X0)→ π0(X) is surjective: every path component of X contains
a vertex. And π1(X1)→ π1(X) is surjective: any path between vertices can be deformed onto the
1-skeleton. Moreover, any homotopy between paths in the 1-skeleton can be deformed to lie in the
2-skeleton; π1(X2)→ π1(X) is an isomorphism.

For n > 0, this is saying that for any choice of basepoint in X, πq(X,Xn) is trivial for q ≤ n.
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CW approximation

Any space is weakly equivalent to a CW complex. In fact:

Theorem 49.8. Any map f : A→ Z admits a factorization as

A
i //

f

33X
j // Z

where i is a relative CW inclusion and j is a weak equivalence.

This is analogous to the factorization as a cofibration followed by a homotopy equivalence. This
factorization is part of the “Quillen model structure” [54] on spaces, while the earlier one is part of
the “Strøm model structure” [68]. An important special case: A = ∅: so any space admits a weak
equivalence from a CW complex. For a functorial way to do this, see Lecture 58.

Proof. Fix a space Y . To begin with, pick a point in each path component of Y not meeting A
and adjoin to A a discrete set mapping surjectively to those points. This gives us a factorization
A → X0 → Y in which X0 is obtained from A by attaching 0-simplices and X0 → Y is a 0-
equivalence.

Next, for each pair of distinct path components of A that map to the same path component in
Y pick points a, b in them and a path in Y from f(a) to f(b). These data determine a map to Y
from the pushout ∐

S0 //

��

X0

��∐
D1 // X ′1

that is bijective on π0.
These constructions let us assume that both A and Y are path connected, and we do so hence-

forth. Pick a point in A to use as a basepoint, and use its image in Y as a basepoint there.
We want to add 1-cells to A to obtain a path-connected space X, along with an extension of

f to a 1-equivalence X → Y . This just means a surjection in π1. So pick a subset of π1(Y ) that
together with im(π1(A)→ π1(Y )) generate π1(Y ), and pick a representative loop for each element
of that set. This defines a map X = A ∨

∨
S1 → Y that is surjective on π1.

Now suppose that f : A→ Y is a 1-equivalence. We will adjoin 2-cells to A to produce a space
X, together with an extension of f to a 2-equivalence.

As a convenience, we first factor f as A ↪→ Y ′ → Y in which the first map is a closed cofibration
and the second is a homotopy equivalence. This lets us assume that A is in fact a subspace of Y .

We want to adjoin 2-cells to produce an extension of f to a 2-equivalence X → Y . The group
π2(Y,A) measures the failure of f itself to be a 2-equivalence. It is a group with an action of π1(A).
Pick generators of it as such, and for each pick a representative map

(D2, S1, ∗)→ (Y,A, ∗)

Together they determine a map to Y from the pushout in∐
S1 //

��

A

��∐
D2 // X
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We want to see that π1(X)→ π1(Y ) is an isomorphism and π2(X)→ π2(Y ) is an epimorphism.
The factorization A→ X → Y determines a map of homotopy long exact sequences of groups:

π2(A)

����

// π2(X)

��

// π2(X,A)

����

∂ // π1(A)

=

��

// π1(X)

��

// ∗

π2(A) // π2(Y ) // π2(Y,A)
∂ // π1(A) // π1(Y ) // ∗

By construction, the middle arrow is surjective. The usual diagram chases show that π1(X)→ π1(Y )
is an isomorphism and that π2(X)→ π2(Y ) is an epimorphism.

An identical argument continues the induction. We carried out this case because it’s slightly
nonstandard, involving nonabelian groups.

At the end, we have to observe that the direct limit of a sequence of cell attachments enjoys the
property that

lim
→
πq(Xn)→ πq(lim→

Xn)

is an isomorphism.

Notice that if we only want to get to an n-equivalence, we need only add cells up to dimension
n: Any space is n-equivalent to a CW complex of dimension at most n.

This construction is of course very ineffective: at each stage you have to compute some relative
homotopy group! And since finite complexes have infinitely much homotopy, it seems that this
process might go on for ever even for very simple spaces. In the simply connected case, though, you
can do much better; indeed, as well as can be hoped for (Exercise 51.8).

Exercises

Exercise 49.9. Construct a CW approximation for ΩS1.

50 The Postnikov tower

Postnikov sections

The cell attaching method used in the proof of CW approximation has other applications.

Theorem 50.1 (Postnikov sections). For any space X and any nonnegative integer n, there is a
map X → Pn(X), the nth Postnikov section of X, with the following properties.
(1) For every basepoint ∗ ∈ X, πq(X, ∗)→ πq(Pn(X), ∗) is an isomorphism for q ≤ n.
(2) For every basepoint ∗ ∈ Pn(X), πq(Pn(X), ∗) = 0 for q > n.
(3) (Pn(X), X) is a relative CW complex with cells of dimension not less than (n+ 2).

When n = 0, the space P0(X) is “weakly discrete”; a CW approximation to it is given by a map
π0(X)→ P0(X).

When X is path connected and n = 1, this is asserting the existence of a path connected space
P1(X) with π1(P1(X)) = π1(X) and no higher homotopy groups, and a map X → P1(X) inducing
an isomorphism on π1. Assuming P1(X) is nice enough to have a universal cover, its universal
cover will be weakly contractible. Such a space is said to be “aspherical.” Thus any group π is the
fundamental group of an aspherical space, because it occurs as π1(X) for a suitable 2-dimensional
CW complex (remark following Proposition 18.6).
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Proof. Work one connected component at a time. We’ll progressively clean out the higher homotopy
of the space X, constructing a sequence of spaces

X = X(n)→ X(n+ 1)→ X(n+ 2)→ · · ·

all sharing the same πq for q ≤ n but with

πq(X(t)) = 0 for n < q ≤ t .

We can take X(n) = X. Thereafter X(t) will be built from X(t− 1) by attaching (t+ 1)-cells,
so by Corollary 49.7 the pair (X(t), X(t− 1)) is t-connected: the inclusion induces isomorphisms in
πq for q < t and πt(X(t), X(t− 1)) = 0.

So we just want to be sure to kill πt(X(t− 1)), while not introducing anything new in πt(X(t)).
Pick a set of generators for πt(X(t− 1)), and pick representatives St → X(t− 1) for them. Attach
(t+1)-cells to X(t−1) using these maps as attaching maps, to form a space X(t). Here’s a fragment
of the homotopy long exact sequence.

πt+1(X(t), X(t− 1))
∂−→ πt(X(t− 1))→ πt(X(t))→ πt(X(t), X(t− 1)) = 0 .

By construction, the boundary map is surjective, so πt(X(t)) = 0.
Now pass to the limit;

Pn(X) = lim
→
X(t) .

If X was a CW complex, we can use skeletal approximation to make all the attaching maps
skeletal. They then join any cells of the same dimension in X, and the resulting space Pn(X)
admits the structure of a CW complex in which X is a subcomplex.

What’s this about passing to the limit?

Lemma 50.2. Any compact subspace of a CW complex lies in a finite subcomplex.

Proof. The “interior” of Dn is Dn − Sn−1 (so for example the interior of D0 is D0 itself). A CW
complex X is, as a set, the disjoint union of the interiors of its cells. These subspaces are sometimes
called “open cells,” but since they are rarely open in X I prefer “cell interiors.” Any subset of X
that meets each cell interior in a finite set is a discrete subspace of X. So any compact subset of
X meets only finitely many cell interiors. In particular a CW complex is compact if and only if it
is finite.

The boundary of an n-cell (i.e. the image of the corresponding attaching map) is a compact
subspace of the (n − 1)-skeleton. It meets only finitely many of the cell interiors in that (n − 1)-
dimensional CW complex. By induction on dimension, all of those cells lie in finite complexes, so
the n-cell we began with lies in a finite subcomplex.

Now let K be a compact subspace of X. It lies in the union of the finite subcomplexes containing
the finite number of cell interiors meeting K. This union is a finite subcomplex of X.

If (X,A) is a relative CW complex, the quotient X/A is a CW complex, where we can apply
this lemma.

Corollary 50.3. Let X(0) ⊆ X(1) ⊆ · · · be a sequence of relative CW inclusions. Then for each q

lim
→
πq(X(n))

∼=−→ πq(lim→
X(n))

Proof. Both Sq and Dq+1 are compact.
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Now we have really gotten into homotopy theory! The space Pn(X) is called the nth Postnikov
section of X. (Mikhail Postnikov (1927–2004) worked at Steklov Institute in Moscow.) Most of the
time they are infinite dimensional, and you usually can’t compute their cohomology, even if you
know the cohomology of X.

The Postnikov tower

How unique is the map X → Pn(X)? How natural is this construction? To answer these questions,
observe:

Proposition 50.4. Let n be a nonnegative integer, and let Y be a space such that πq(Y, ∗) = 0 for
every choice of basepoint and all q > n. Let (X,A) be a relative CW complex. If all the cells in
X −A are of dimension at least n+ 2 then the map

[X,Y ]→ [A, Y ] .

is bijective. If there are also (n+ 1)-cells, the map is still injective.

Proof. This uses the fact that if πq(Y, ∗) = 0 then any map Sq → Y landing in the path component
containing ∗ extends to a map from Dq+1.

Surjectivity: We extend a map A → Y to a map from X. For each attaching map g : Sq−1 →
Skq−1X (where q ≥ n+ 2) the composite f ◦g : Sq−1 → Y extends over the disk Dq since q−1 > n.

Injectivity: Regard (X × I,X × ∂I ∪A× I) as a relative CW complex, in which the cells are of
dimension one larger than those of X.

Corollary 50.5. Let X be an n-connected CW complex and Y a space with homotopy concentrated
in dimension at most n. Then every map from X to Y is homotopic to a constant map.

Proof. By CW approximation, we may assume that X has a 0-cell and no other cells of dimension
less than n+ 1. The pair (X, ∗) satisfies the requirement necessary to conclude that [X,Y ]→ [∗, Y ]
is injective.

Now let f : X → Y be any map. Construct X → Pm(X) and Y → Pn(Y ), so that Pm(X) is
attached using cells of dimension at least m + 2 and πq(Pn(Y )) = 0 for q > n. If m ≥ n, then by
Proposition 50.4 there is a unique homotopy class of maps Pm(X)→ Pn(X) making

X
f //

��

Y

��
Pm(X) // Pn(Y )

commute.
For example we could take X = Y and use the identity map: For m ≥ n there is a unique

homotopy class Pm(X)→ Pn(X) making

X

{{ ##
Pm(X) // Pn(X)
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commute. When m = n, this shows that the map X → Pm(X) is unique up to a unique weak
equivalence. When m = n+ 1, it gives us a tower of spaces, the Postnikov tower:

...

��
P2(X)

��
P1(X)

��
X //

;;

EE

P0(X) .

As you go up in the tower you capture more and more of the homotopy groups of X. The Postnikov
tower is functorial on the level of the homotopy category. We have a lot of control over how each
space Pn(X) is constructed, but very little control over what the resulting space looks like – e.g.
what its homology is in high dimensions. There is likely to be a lot, even if X is a finite complex.

In a weak sense this tower is Eckmann-Hilton dual to a skeleton filtration: instead of building up
a space as a direct limit of a sequence of spaces approximating the homology dimension by dimension,
we are building it as the inverse limit of a sequence approximating the homotopy dimension by
dimension.

Proposition 50.4 shows that X → Pn(X) is the initial map (in HoTop) to a space with nontrivial
homotopy only in dimension at most n.

Another common notation for Pn(X) is τ≤nX: the “truncation” of X at dimension n.

51 Hurewicz, Eilenberg, Mac Lane, and Whitehead

Hurewicz theorem

I have claimed that homotopy groups carry a lot of geometric information, but are correspondingly
hard to compute. Homology groups are much easier; they are “local,” in the sense that you can
compute the homology of pieces of a space and glue the results together using Mayer-Vietoris. A
cell structure quickly determines the homology (as we’ll recall in the next lecture).

So it would be great if we had a way to compare homotopy and homology, maybe by means of
a map

h : πn(X)→ Hn(X) .

First we have to fix an orientation for the sphere Sn = In/∂In (for n > 0). Do this by declaring
the standard ordered basis to be positively ordered. This gives us a preferred generator σn ∈ Hn(Sn).

Now let α ∈ πn(X). This homotopy class of maps Sn → X determines a map Hn(Sn)→ Hn(X).
Define

h(α) = α∗(σn) .

This is a well-defined map h : πn(X)→ Hn(X), the Hurewicz map.

Lemma 51.1. h is a homomorphism.
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Proof. The product in πn(X) (or sum if n > 1) is given by the composite

Sn
αβ //

δ
��

X

Sn ∨ Sn α∨β // X ∨X

∇

OO

where δ pinches an equator and ∇ is the fold map. Apply Hn and trace where σn goes:

σn_

��

h(α) + h(β)

(σn, σn) � // (h(α), h(β)) .
_

OO

When n = 1, the Hurewicz homomorphism factors through the abelianization of π1(X).

Theorem 51.2 (Hurewicz). If X is path-connected, π1(X)ab → H1(X) is an isomorphism. If X is
(n− 1)-connected for n > 1, πn(X)→ Hn(X) is an isomorphism.

This can be proved by “elementary means,” but we’ll prove an improved form of this theorem
later and I’d prefer to defer the proof. The n = 1 case is due to Poincaré; see [72, Theorem 9.2.1]
for example.

This lowest dimension in which homotopy can occur is the “Hurewicz dimension.” If X is an
(n − 1)-connected CW complex, it has a CW approximation that begins in dimension n, and the
reduced homology (being isomorphic to the cellular homology) vanishes below dimension n.

In the simply connected case there is a converse.

Corollary 51.3. Let X be a simply connected space. If Hq(X) = 0 for q < n then X is (n − 1)-
connected.

Proof. If n > 2, the Hurewicz theoremsays that π2(X) = H2(X) = 0, so X is 2-connected. And so
on.

Simple connectivity is required here. A good example is provided by the “Poincaré sphere.” Let
I be the group of orientation-preserving symmetries of the regular icosahedron. It is a subgroup of
SO(3) of order 60. Its preimage Ĩ in the double cover S3 of SO(3) is a perfect group (of order 120).
The quotient space S3/Ĩ thus has H1 = 0. The group acts freely by oriented diffeomorphisms, so
the quotient is an oriented 3-manifold, and by Poincaré duality it has the same homology as S3.
But its fundamental group is Ĩ, so it is not homotopy equivalent to S3. You can’t decide whether or
not you need 1-cells or 2-cells by looking at homology alone, in this non-simply connected example.
In fact Ĩ can be presented with two generator and two relations, so S3/Ĩ has a CW structure with
two 1-cells and two 2-cells. The boundary map C2 → C1 is an isomorphism.

Eilenberg Mac Lane spaces

Now let M be a Moore space for π, n, as described in Lecture 18. Our construction of it began
with n-cells, so by skeletal approximation it has no homotopy below dimension n. (We don’t need
to appeal to Corollary 51.3 for this.) It probably has lots of homotopy above dimension n, but we
can kill all that by forming the Postnikov stage or truncation

Pn(M) = τ≤nM
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This is now a space with just one homotopy group, in dimension n. The Hurewicz theorem tells us
that this single homotopy group is canonically isomorphic to π.

If n = 1 we can start with any group π, abelian or not, build a 2-dimensional complex with
π1 = π as in the remark below Proposition 18.6, and form its Postnikov 1-section.

So we have now constructed a space with a single nonzero homotopy group, in dimension n.
This is an Eilenberg Mac Lane space, denoted

K(π, n) .

You know some examples of Eilenberg Mac Lane spaces already.

• K(Z, 1) = S1. K(Zn, 1) = (S1)n.

• Any closed surface other than S2 and RP 2 has contractible universal cover and so is aspherical.
There are many other examples of aspherical compact manifolds. But as soon as there is
torsion in a group, the Eilenberg Mac Lane space is infinite dimensional.

• The space RPn has Sn as universal cover, and as n→∞ the space Sn loses all its homotopy
groups. So

K(Z/2Z, 1) = RP∞ .

Similarly,
K(Z, 2) = CP∞ .

In contrast to the Moore space M(π, n), the Eilenberg Mac Lane space K(π, n) can be con-
structed functorially in π.

The Whitehead tower

One further thing we can do at this point: Endow X with a basepoint ∗ and form the homotopy
fiber of the map X → τ≤nX. By the homotopy long exact sequence, the map from the homotopy
fiber will induce isomorphisms in πq for q > n, while the homotopy groups of the homotopy fiber
will be trivial for q ≤ n: it is n-connected. Let’s write τ>nX for this space. For example, τ>0X is
the basepoint component of X (assuming X → π0(X) is continuous). τ≥2X is the universal cover
of X (assuming that X is path connected and is nice enough to admit a universal cover).

The example of covering spaces shows that τ>nX → X is not unique in quite the same sense
that X → τ>nX is; you need a basepoint condition. In the pointed homotopy category, τ>nX → X
is the terminal map from an n-connected space.

These spaces fit into a tower also, this time with X at the bottom:

...

��
τ≥2X

��

��

τ≥1X

�� ""
τ≥0X

= // X
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This is the Whitehead tower. (George Whitehead, 1918–2004, MIT faculty member, was a tran-
sitional figure in the development of algebraic topology [38], bridging the gap between an earlier
“geometric” era and the more algebraic methods that appeared in the 1950’s. He was apparently
related neither to Alfred North Whitehead nor to J.H.C. Whitehead.)

Moore-Postnikov factorization

The Postnikov and Whitehead towers are extreme cases of a general factorization, which may be
constructed just as we built the Postnikov system.

Theorem 51.4. Let f : X → Y be any map between pointed path connected spaces. There is a
diagram

X
f //

��

in

((

Y

T∞f // · · · // Tnf //

pn

66

· · · // T0f

OO

in which πq(in) is an isomorphism for all q < n and πq(pn) is an isomorphism for all q ≥ n.

As one progresses through the Moore-Postnikov system, the space X morphs into Y , through a
series of intermediate “gryphons,” with lower part from X and upper part from Y .

Exercises

Exercise 51.5. Verify the claims above about the Poincaré sphere.

Exercise 51.6. Identify each of the spaces τ>2CPn and τ≤2S
2 with known CW complexes (up to

homotopy type, of course).

Exercise 51.7. (a) Let N < G be a normal subgroup, with quotient group H. Show that there
is a fibration K(G, 1)→ K(H, 1) with fiber weakly equivalent to – a phrase we’ll neglect below! –
K(N, 1).
(b) Suppose that G is abelian. Then the same argument gives us a fibration K(G,n) → K(H,n)
with fiber K(N,n). But show also that there is a fibration K(N,n)→ K(G,n) with fiber K(H,n−
1), and a fibration K(H,n)→ K(N,n+ 1) with fiber K(G,n). For example, what is the homotopy
fiber of the map CP∞ → CP∞ represented by twice a generator of H2(CP∞)?

Exercise 51.8. Prove the following theorem of C.T.C. Wall [75], known as “homology approxima-
tion.” Let Y be a simply connected space such that Hn(Y ) is finitely generated for all n. Let βn
be the nth Betti number (the rank of Hn(Y )) and let τn be the nth torsion number (the number of
finite cyclic summands in Hn(Y )). Then there is a CW complex with (βn + τn + τn−1) n-cells for
each n that admits a weak equivalence to Y . This is clearly optimal, since in order to produce a
finite cyclic summand in the nth homology of a chain complex of finitely generated abelian groups
you need generators in dimension n and n+ 1.

52 Representability of cohomology

I want to think a little more about the significance of Eilenberg Mac Lane spaces. First, how unique
are they?
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Let π be an abelian group and n a positive integer. Pick a free resolution

0→ F1 → F0 → π → 0 ,

pick generators for F0 and F1, and build the corresponding cofiber sequence∨
j

Sn →
∨
i

Sn →M .

Our first model for K(π, n) is the Postnikov section τ≤nM .

Lemma 52.1. Let n be a positive integer and let Y be any pointed space such that πq(Y, ∗) = 0 for
q 6= n, and write G for πn(Y, ∗). Then

πn : [τ≤nM,Y ]∗ → Hom(π,G)

is an isomorphism.

Proof. SinceM → τ≤nM is universal among maps to spaces with homotopy concentrated in dimen-
sions at most n, it’s enough to show that

πn : [M,Y ]∗ → Hom(π,G)

is an isomorphism. Since the sequence defining M is co-exact, we have an exact sequence

[
∨
j

Sn, Y ]∗ ← [
∨
i

Sn, Y ]∗ ← [M,Y ]∗ ← [
∨
j

Sn+1, Y ]∗ .

Our assumptions on Y imply that this sequence reads

Hom(F1, G)← Hom(F0, G)← [M,Y ]∗ ← 0 .

But a homomorphism F0 → G that restricts to zero on F1 is exactly a homomorphism π → G.

In this proof π and G could be non-abelian if n = 1.
In particular, we could take G = π, and discover that there is a unique homotopy class of maps

τ≤nM → Y inducing the identity in πn. This map is a weak equivalence. So if Y is also a CW
complex, the map is a homotopy equivalence.

We learn from this that any two CW complexes of type K(π, n) are homotopy equivalent by a
homotopy equivalence inducing the identity on πn, and that such a homotopy equivalence is unique
up to homotopy. This leads to:

Corollary 52.2. For any positive integer n there is a functor

Ab→ Ho(CW∗)

sending π to a space of type K(π, n), unique up to isomorphism. When n = 1 this extends to a
functor

Gp→ Ho(CW∗) .

In fact it is possible to construct K(π, n) as a functor from Ab to the category of topological
abelian groups; see Lecture 58.

The case n = 1 is due to Heinz Hopf: There is, up to homotopy, a unique aspherical space with
any prescribed fundamental group. The theory of covering spaces can be used in that case to check
functoriality. This provides a collection of invariants of groups, Hn(K(π, 1);G) and Hn(K(π, 1);G).
More generally, any π-module M determines a local coefficient system M̃ over K(π, 1), and one
then has local homology and cohomology groups. It’s not hard to show these are the homology and
cohomology of the group with these coefficients:

Hn(K(π, 1); M̃) = TorZ[π]
n (Z,M) , Hn(K(π, 1); M̃) = ExtnZ[π](Z,M) .
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Fundamental classes

Let n be a positive integer and Y an (n− 1)-connected space. Then H̃q(Y ) = 0 for q < n. Let π be
an abelian group. The universal coefficient theorem asserts the existence of a short exact sequence

0→ Ext1(Hq−1(Y ), π)→ Hq(Y ;π)→ Hom(Hq(Y ), π)→ 0

for any q. This shows thatHq(Y ;π) = 0 for q < n. When q = n, the Ext term vanishes so the second
map is an isomorphism. If we take π = πn(Y ), for example, the inverse of the Hurewicz isomorphism
is an element in Hom, and so delivers to us a canonical cohomology class in Hn(Y ;πn(Y )).

In particular, with Y = K(π, n) we obtain a canonical class

ιn ∈ Hn(K(π, n);π)

called the fundamental cohomology class. Using it, we get a canonical natural transformation

[X,K(π, n)]→ Hn(X;π)

sending f to f∗(ιn).

Theorem 52.3. If X is a CW complex, this map is an isomorphism.

That is: On CW complexes, cohomology is a representable functor; the representing object is
the appropriate Eilenberg Mac Lane space; and ιn is the universal n-dimensional cohomology class
with coefficients in π.

Test cases: We decided thatK(Z/2Z, 1) = RP∞. So the claim is thatH1(X;Z/2Z) = [X,RP∞].
We’ll discuss this in more detail later, but RP∞ carries the universal real line bundle, so the set of
homotopy classes of maps into it (from a CW complex X) is in bijection with the set of isomorphism
classes of real line bundles over X.

Similar story for H2(X;Z) = [X,CP∞].
One other case is of interest:

H1(X,Z) = [X,S1] .

Other cases are less geometric!

Proof of Theorem 52.3. We’ll prove a pointed version of the statement:

[X,K(π, n)]∗
∼=−→ H

n
(X;π) .

Fix π, and pick any sequence of Eilenberg Mac Lane CW complexes, K(π, n), n ≥ 0. Thus for
example K(π, 0) is a CW complex that is homotopy equivalent to the discrete group π: we can take
it to be π as a discrete group if we want.

The space ΩK(π, n + 1) accepts a map from K(π, n) that is an isomorphism on πn; a CW
replacement for ΩK(π, n + 1) thus serves as another model for K(π, n). Thus K(π, n) has the
structure of an H-group. In fact one can use Ω2K(π, n+2), by the same argument; so this H-group
structure is abelian, and the functor [−,K(π, n)]∗ takes values in abelian groups.

The map [X,K(π, n)]∗ → H
n
(X;π) is a homomorphism. To see this, use the pinch map

ΣX → ΣX ∨ ΣX to produce a homomorphism

H
n+1

(ΣX;π)×Hn+1
(ΣX;π)→ H

n+1
(ΣX ∨ ΣX;π)→ H

n+1
(ΣX;π) .

The argument proving that π2 is abelian shows that this map coincides with the addition in the
group Hn+1

(ΣX;π) = H
n
(X;π).
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The group structure in

[X,K(π, n)]∗ = [X,ΩK(π, n+ 1)]∗ = [ΣX,K(π, n+ 1)]∗

has the same source; so the map is a homomorphism by naturality.
Now I will try to prove that the map is an isomorphism by induction on skelata.
When X = X0, we can agree that

map∗(X0, π) = H
0
(X0, π) , [X0,K(π, n)]∗ = 0 = H

n
(X0;π) for n > 0 .

We may henceforth assume thatX is connected. In general we have a cofiber sequence
∨
Sq−1 →

Xq−1 → Xq. It is co-exact and hence induces an exact sequence in [−,K(π, n)]∗. It also induces an
exact sequence in reduced cohomology, one that can be regarded as coming from the same geometric
source. Since both Sq−1 and Xq−1 are of dimension less than q, the map is an isomorphism for
them. So by the 5-lemma it’s an isomorphism on Xq.

There is still a limiting argument to worry about, if X is infinite dimensional, but I will not
address that here.

Remark 52.4. One can also prove directly that cohomology is a representable functor on CW
complexes, and then define Eilenberg Mac Lane spaces as the representing objects. The relevant
theorem is “Brown representability” [12]. The fact that contravariant functors satisfying the kind
of “descent” embodied by the Mayer-Vietoris theorem are representable gives homotopy theory a
special character. Most of the time you can just work with spaces, which are much more concrete
than functors!

Remark 52.5. Note that the suspension isomorphism in reduced cohomology is represented by the
weak equivalence

K(π, n)→ ΩK(π, n+ 1)

adjoint to the map representing the suspension of the fundamental class. A sequence of pointed
spaces . . . , E0, E1, . . . equipped with maps En → ΩEn+1 (or equivalently ΣEn → En+1) is a (topo-
logical) spectrum. It’s an Ω-spectrum if the maps En → ΩEn+1 are all weak equivalences. Much of
what we just did above carries over to Ω-spectra in general; the (abelian!) groups

En(X) := [X,En]∗

form the groups in a (reduced generalized) cohomology theory. There are many examples. Any
generalized cohomology theory is representable on CW complexes by an Ω spectrum.

Remark 52.6. One asset of representability is the Yoneda Lemma 39.13, which implies:

n.t.(Hm(−, A), Hn(−, B)) = [K(A,m),K(B,n)] = Hn(K(A,m);B) .

Understanding the natural transformations acting between different dimensions of H∗(−;F2), for
example, is addressing the optimal value category for mod 2 cohomology. It’s a graded F2 algebra,
yes, but much more as well. This is the story of Steenrod operations (Lecture 75) and it’s addressed
in full by computing H∗(K(F2, n);F2).
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53 Obstruction theory

Cellular homology

We replay some of Lecture 16 in the relative case. Let (X,A) be a relative CW complex with skelata

A = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X .

The inclusion Xn−1 ↪→ Xn is a cofibration, so H∗(Xn, Xn−1)∼=H∗(Xn/Xn−1). A choice of cell
structure establishes a homeomorphism

Xn/Xn−1 =
∨
i∈In

Sni ,

where In is the set of n-cells, so
H∗(Xn, Xn−1)∼= Z[In] .

This group is the cellular chain group Cn = Cn(X,A).
There is a boundary map d : Cn+1 → Cn, defined by

d : Cn+1 = Hn+1(Xn+1, Xn)
∂−→ Hn(Xn)→ Hn(Xn, Xn−1) = Cn .

This gives us the cellular chain complex. In terms of the basis given by a choice of cell structure,
the differential d : Cn+1 → Cn is giving exactly the data of the relative attaching maps

Sn
αi−→ Xn → Xn/Xn−1

where αi runs through the attaching maps of the (n + 1)-cells. Passage to the relative attaching
maps forgets a great deal of information about the homotopy type of X; homology is a rather weak
invariant in this sense.

Theorem 16.3 asserts (at least when A = ∅) that

Hn(X,A)∼=Hn(C∗(X,A)) .

Of course, the same story runs for cohomology: one gets a chain complex which, in dimension n, is
given by

Cn(X,A;π) = Hom(Cn(X,A), π) = Map(In, π) ,

where π is any abelian group, and

Hn(X,A;π) = Hn(C∗(X,A;π)) .

Obstruction theory

We’ve seen that when the dimension of the CW complex X is less than the connectivity of the space
Y , any map from X to Y is null-homotopic. What if there is some overlap? Here’s a more general
type of question we can try to answer.

Question 53.1. Let f : A → Y be a map from a space A to Y . Suppose (X,A) is a relative CW
complex. When can we find an extension in the diagram below?

A
f //� _

��

Y

X

>>
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We’ve seen that answering this kind of question can also lead to results about the uniqueness of
an extension, by considering X × ∂I ∪A× I ⊆ X × I.

Let’s try to make this extension skeleton by skeleton, and find what obstructions occur. We can
start easily enough! If Y is empty then A is too, and there’s an extension if and only if X is empty
as well.

More realistically, as long as Y is nonempty we can certainly extend to X0 by sending the new
points anywhere you like in Y .

So make such a choice: f : X0 → Y . Can we extend f further over X1? Well, we can extend if
and only if for every pair a and b of 0-cells in X0 that are in the same path component of X1, the
images f(a) and f(b) are in the same path component in Y . Note that we might do better at this
stage if we could go back and choose f better. This simple observation serves as a model for the
whole process.

Let’s now assume we have constructed f : Xn → Y , for n ≥ 1, and hope to extend it over Xn+1.
Pick attaching maps for the (n+ 1)-cells, so we have the diagram

∐
i∈In+1

Sn
α //

� _

��

Xn
f //

��

Y

∐
i∈In+1

Dn+1 // Xn+1

>>

The desired extension exists exactly when the composite Sn αi−→ Xn → Y is nullhomotopic for each
i ∈ In+1.

Now is the moment to assume that Y is path connected and simple, so that

[Sn, Y ] = πn(Y, ∗)

canonically for any choice of basepoint. We will therefore omit basepoints from the notation.
This procedure produces a map θg : In+1 → πn(Y ), that is, an (n+1)-cochain, θf ∈ Cn+1(X,A;πn(Y )),

and θf = 0 if and only if f extends to a map Xn+1 → Y .

Proposition 53.2. θf is a cocycle in Cn+1(X,A;πn(Y )).

Proof. θf is a homomorphism Hn+1(Xn+1, Xn)→ πn(Y ). We would like to show that the composite

Hn+2(Xn+2, Xn+1)
∂−→ Hn+1(Xn+1)→ Hn+1(Xn+1, Xn)

θf−→ πn(Y )

is trivial.
We’ll see this by relating the homotopy long exact sequence to the homology long exact sequence.

A relative homotopy class is represented by a map

(Iq, ∂Iq, Jq)→ (X,A, ∗) .

Our choice of orientation for Iq/∂Iq specifies a generator for Hq(I
q, ∂Iq). Evaluation of Hn then

determines a map
h : πq(X,A, ∗)→ Hq(X,A) ,

the relative Hurewicz homomorphism. It is again a homomorphism, extending the definition of the
absolute Hurewicz homomorphism, and gives us a map of long exact sequences.

The characteristic maps in the cell structure for X give us elements of πn+1(Xn+1, Xn) that
map to the generators of Hn+1(Xn+1, Xn).



53. OBSTRUCTION THEORY 175

These observations lead to part of the commutative diagram below.

πn+2(Xn+2, Xn+1)

∂
��

// Hn+2(Xn+2, Xn+1)

∂
��

d

xx

πn+1(Xn+1) //

��
0

&&

Hn+1(Xn+1)

��
πn+1(Xn+1, Xn) //

∂
��

Hn+1(Xn+1, Xn)

θf
��

πn(Xn)
f∗ // πn(Y )

The bottom square commutes by definition of θf . Tracing around the left side goes through two
successive maps in the homotopy long exact sequence, and so sends these elements to zero.

This cochain θf is the obstruction cocycle associated to f : Xn → Y . It obstructs the extension
of f over the (n + 1)-skeleton. This theorem gives a way of extending a map A → Y skeleton by
skeleton all the way to a map X → Y .

But it could happen that the extension you made to Xn doesn’t admit a further extension to
Xn+1, while some other extension to Xn would. In order to maintain some control, let’s fix the
extension to Xn−1, but allow the extension to Xn to vary.

Theorem 53.3. Let (X,A) be a relative CW complex and Y a path-connected simple space, and let
n ≥ 1. Let f : Xn → Y be a map from the n-skeleton of X, and let θf ∈ Cn+1(X,A;πn(Y )) be the
associated obstruction cocycle. Then f |Xn−1 extends to Xn+1 if and only if [θf ] ∈ Hn+1(X,A;πn(Y ))
is zero.

Proof. The proof begins with the construction a difference cochain δf ′,f ′′ associated to maps f ′, f ′′ :
Xn → Y together with a homotopy from f ′|Xn−1 to f ′′|Xn−1 rel A. It will not be a cocycle. Instead,
it will provide a homology between the obstruction cocycles associated to f ′ and f ′′.

We’ll lighten notation by dropping indication of the subspace A. Fix a cell structure on X. This
is about homotopies, so let’s begin by giving X × I the CW structure in which

(X × I)n = (Xn × ∂I) ∪ (Xn−1 × I) .

Each n-cell e in X produces in X × I an (n + 1)-cell e × I and two n-cells e × 0 and e × 1. Thus
there is a map

−× I : Cn(X)→ Cn+1(X × I) ,

given by linearly extending the assignment on cells. This is not a chain map; rather

d(e× I) = (de)× I + (−1)n(e× 1− e× 0)

(by choice of orientation of the unit interval).
This construction defines a map

Cn+1(X;πn(Y ))→ Cn(X;πn(Y )))

by sending a cochain c to e 7→ c(e× I).
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Define a map g : (X × I)n → Y as follows. Send Xn × 0 by f0, Xn × 1 by f1, and Xn−1 × I by
a homotopy between the restrictions of f0 and f1 to Xn−1. We then have the obstruction cocycle
θg ∈ Cn+1(X × I;πn(Y )) associated to the map g.

Our difference cochain δ ∈ Cn(X;πn(Y )) is defined by

δ(e) = θg(e× I) .

For any n-cell e in X, calculate as follows, using the definition of the differential in the cellular
cochain complex:

0 = (dθg)(e× I) = θg(d(e× I)) = θg((de)× I)± (θg(e× 0)− θg(e× 1)) .

The three terms can be re-expressed as follows.

θg((de)× I) = δ(de) = (dδ)(e) ,

θg(e× 0) = θf ′(e) , θg(e× 1) = θf ′′(e) .

This verifies that
dδ = ±(θf ′ − θf ′′) .

So for a map f : Xn → Y , the cohomology class of the obstruction cocycle θf depends only
on f |Xn−1 . In particular if f |Xn−1 does extend to a map from Xn+1, then this cohomology class
vanishes.

For the converse, we observe that for any f ′ : Xn → Y and δ ∈ Cn(X;πn(Y )) there exists an
extension f ′′ of f ′|Xn−1 such that δ is precisely the difference cochain associated to the pair (f ′, f ′′)
and the constant homotopy between their restrictions to Xn−1. We leave this to you; it uses the
homotopy extension property.

We can now argue as follows. Suppose that [θf ′ ] = 0 ∈ Hn+1(X;πn(Y )). Pick a null-homology δ
of θf ′ , and pick f ′′ in such a way that δ is the difference cocycle between f ′ and f ′′. Then (adjusting
the sign if necessary)

θf ′′ = θf ′ − dδ = 0 ,

so f ′′ extends to Xn+1.

The easiest way to check that an obstruction class vanishes is to know that it lies in a zero
group.

Corollary 53.4. Let Y be a path connected simple space and (X,A) a relative CW complex. If
Hn+1(X,A;πn(Y )) = 0 for all n ≥ 1 then any map A→ Y extends to a map X → Y . If moreover
Hn(X,A;πn(Y )) = 0 for all n ≥ 1 then such an extension is unique up to homotopy rel A.

Proof. The second assertion follows from the isomorphism

Hn+1(X × I, A× I ∪X × ∂I;π) = Hn(X,A;π) .

This raises important questions. The reduced cohomology of a space may well be trivial with
coefficients in a finite p-group, for a fixed prime p, for example. Are there homological conditions on
Y guaranteeing that each homotopy group is a finite p-group? The power to prove results of that
sort is part of the revolution in homotopy theory engineered by Jean-Pierre Serre, developments we
will get to later in this course.
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Two extensions

First, the difference cochain has other uses. Let X be an n-dimensional CW complex, Y any
space, and consider maps f : X → Y . We have seen that if Y is n-connected then any map from
X to Y is null-homotopic. If Y is only (n − 1) connected (with n ≥ 2), we obtain a difference
cochain δ∗,f ∈ Cn(X;πn(Y )), comparing the obstruction cocycles of f and the null map. Since
Cn+1(X;πn(Y )) = 0, this difference cochain is a cocyle.

Theorem 53.5 (“Hopf classification theorem”;[73]). Fix n ≥ 2. Let X be an n-dimensional CW
complex and Y an (n− 1)-connected space. Then [f ] 7→ [δ∗,f ] provides an isomorphism

[X,Y ]→ Hn(X;πn(Y )) .

Second, there is a relative version of obstruction theory. Let p : E → B be a fibration. Assume
that the base is path connected, and that the fiber (which is well-defined up to homotopy type) is
path connected and simple. The homotopy groups πn(p−1(−)) then form local coefficient systems
over B, and we will call the projection map simple if these conditions hold and this local system is
trivial.

Theorem 53.6 (e.g. [79, §VI.5]). Let p : E → B be a simple fibration. Suppose we are given a
relative CW complex (X,A) and a commutative diagram

A //

��

E

p

��
X // B

and assume given a map g : SknX → E making the diagram commute when X is replaced by Xn.
There is a cohomology class θg ∈ Hn+1(X,A;πn(F )) that vanishes if and only if g|Xn−1 extends to
a filler on Xn+1.

If the fiber is simple but the coefficient system is nontrivial, you still get a version of this using
cohomology with local coefficients.

Exercises

Exercise 53.7. Verify the existence of f ′′ asserted in the proof of Theorem 53.3.

Exercise 53.8. Let Y be a simple space and N an integer, and suppose that Nπ∗(Y ) = 0. Let
(X,A) be a relative CW complex and assume that H∗(X,A;Fp) = 0 whenever the prime p divides
N . Show that the restriction map [X,Y ]→ [A, Y ] is bijective.

Exercise 53.9. (a) A path connected space X is even if both π∗(X) and H∗(X) vanish in odd
dimensions. Show that an even space admits the structure of an H-space.
(b) Let n be a positive integer. Construct a (2n−1)-connected even space F (2n) with π2n(F (2n)) =
Z.

This is the beginning of an extensive theory of such spaces. CP∞, BU , and BSU are classical
examples.

Exercise 53.10. Prove Theorem 53.5.





Chapter 6

Vector bundles and principal bundles

54 Vector bundles

Each point in a smooth manifold M has a “tangent space.” This is a real vector space, whose
elements are equivalence classes of smooth paths σ : R → M such that σ(0) = x. The equivalence
relation retains only the velocity vector at t = 0. These vector spaces “vary smoothly” over the
manifold. The notion of a vector bundle is a topological extrapolation of this idea.

Let B be a topological space. To begin with, let’s define the “category of spaces over B,” Top/B.
An object is just a map E → B. To emphasize that this is single object, and that it is an object
“over B,” we may give it a symbol and display the arrow vertically: ξ : E ↓ B. A morphism from
p′ : E′ → B to p : E → B is a map E′ → E making

E′ //

p′   

E

p��
B

commute.
This category has products, given by the fiber product over B:

E′ ×B E = {(e′, e) : p′e′ = pe} ⊆ E′ × E .

Using it we can define an “abelian group over B”: an object E ↓ B together with a “zero section”
0 : B → E (that is, a map from the terminal object of Top/B) and an “addition” E ×B E → E (of
spaces over B) satisfying the usual properties.

As an example, any topological abelian group A determines an abelian group over B, namely
pr1 : B × A → B with its evident structure maps. If A is a ring, then pr1 : B × A → B is a “ring
over B.” For example, we have the “reals over B,” and hence can define a “vector space over B.”
Each fiber has the structure of a vector space, and this structure varies continuously as you move
around in the base.

Vector spaces over B form a category in which the morphisms are maps covering the identity
map of B that are linear on each fiber.

Example 54.1. Let S be the subspace of R2 consisting of the x and y axes, and consider pr1 :
S → R. Then pr−1

1 (0) = R and pr−1
1 (s) = 0 for s 6= 0. With the evident structure maps, this is

a perfectly good (“skyscraper”) vector space over R. This example is peculiar, however; it is not
locally constant. Our definition of vector bundles will exclude it and similar oddities. Sheaf theory
is the proper home for examples like this.

179
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But this example occurs naturally even if you restrict to trivial bundles and maps between them.
The trivial bundle pr1 : R× R→ R has as an endomorphism the map

(s, t) 7→ (s, st) .

This map is an isomorphism on almost all fibers, but is zero over s = 0. So if you want to form a
kernel or the cokernel, you will get the skyscraper vector space over R. The image will be a vector
space over X with a complementary peculiarity.

Definition 54.2. A vector bundle over B is a vector space E over B that is locally trivial – that is,
every point b ∈ B has a neighborhood over which E is isomorphic to a trivial bundle – and whose
fiber vector spaces are all of finite dimension.

Remark 54.3. As in our definition of fiber bundles, we will always assume that a vector bundle
admits a numerable trivializing cover. On the other hand, there is nothing to stop us from replacing
R with C or even with the quaternions H, and talking about complex or quaternionic vector bundles.

If ξ : E ↓ B is a vector bundle, then E is called the total space, the map p : E → B is called the
projection map, and B is called the base space. We may write E(ξ), B(ξ) for the total space and
base space, and ξb for the fiber of ξ over b ∈ B.

If all the fibers are of dimension n, we have an n-dimensional vector bundle or an “n-plane
bundle.”

Example 54.4. The “trivial” n-dimensional vector bundle over B is the projection pr1 : B×Rn →
B. We may write nε for it.

Example 54.5. At the other extreme, Grassmannians support highly nontrivial vector bundles.
We can form Grassmannians over any one of the three (skew)fields R,C,H. WriteK for one of them,
and consider the (left) K-vector space Kn. The Grassmannian (or Grassmann manifold) Grk(K

n)
is the space of k-dimensional K-subspaces of Kn. As we saw last term, this is a topologized as a
quotient space of a Stiefel variety Vk(Kn) of k-frames in Kn. To each point in Grk(K

n) is associated
a k-dimensional subspace of Kn. This provides us with a k-dimensional K-vector bundle ξn,k over
Grk(K

n), with total space

E(ξn,k) = {(V, x) ∈ Grk(K
n)×Kn : x ∈ V }

This is the canonical or tautologous vector bundle over Grk(K
n). It occurs as a subbundle of nε.

For instance, when k = 1, we have Gr1(Rn) = RPn−1. The tautologous bundle ξn,1 is 1-
dimensional; it is a line bundle, the canonical line bundle over RPn−1. We may write λ for this or
any line bundle.

Example 54.6. Let M be a smooth manifold. Define τM to be the tangent bundle TM ↓M over
M . For example, if M = Sn−1, then

TSn−1 = {(x, v) ∈ Sn−1 × Rn : v · x = 0}.

Constructions with vector bundles

Just about anything that can be done for vector spaces can also be done for vector bundles:
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1. The pullback of a vector bundle is again a vector bundle: If p : E → B is a vector bundle
then the map p′ in the pullback diagram below is also a vector bundle.

E′
f //

p′

��

E

p

��
B′

f
// B

The pullback of ξ : E ↓ B bundle may be denoted f∗ξ.

There’s a convenient way characterize a pullback: the top map f in the pullback diagram has
two key properties: It covers f , and it is a linear isomorphism on fibers. These conditions
suffice to present p′ as the pullback of p along f .

2. If p : E → B and p′ : E′ → B′, then the product map p × p′ : E × E′ → B × B′ is a vector
bundle whose fiber over (x, y) is the vector space p−1(x)× p′−1(y).

3. If B = B′, we can form the pullback:

E ⊕ E′ //

��

E × E′

��
B

∆ // B ×B

The bundle ξ⊕ξ′ : E⊕E′ ↓ B is called the Whitney sum of ξ : E ↓ B and ξ′ : E′ ↓ B. (Hassler
Whitney (1907–1989) working mainly at the Institute for Advanced Study in Princeton, is
responsible for many early ideas in geometric topology.) For instance,

nε = ε⊕ · · · ⊕ ε.

4. If ξ : E ↓ B and ξ′ : E′ ↓ B are two vector bundles over B, we can form another vector
bundle ξ ⊗ ξ′ over B by taking the fiberwise tensor product. Likewise, taking the fiberwise
Hom produces a vector bundle Hom(ξ, ξ′) over B.

Example 54.7. Recall from Example 54.5 the tautological bundle λ over RPn−1. The tangent
bundle τRPn−1 also lives over RPn−1. It is natural to wonder what is the relationship between these
two bundles. We claim that

τRPn−1 = Hom(λ, λ⊥)

where λ⊥ denotes the fiberwise orthogonal complement of λ in nε. To see this, make use of the
double cover Sn−1 ↓ RPn−1. The projection map is smooth, and covered by a fiberwise isomorphism
of tangent bundles. The fibers TxSn−1 and T−xSn−1 are both identified with the orthogonal com-
plement of Rx in Rn, and the differential of the antipodal map sends v to −v. So the tangent vector
to ±x ∈ RPn−1 represented by (x, v) is the same as the tangent vector represented by (−x,−v).
This tangent vector determines a homomorphism λx → λ⊥x sending tx to tv.

Metrics and splitting exact sequences

A map of vector bundles, ξ → η, over a fixed base can be identified with a section of Hom(ξ, η). We
have seen that the kernel and cokernel of a homomorphism will be vector bundles only if the rank
is locally constant.
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In particular, we can form kernels of surjections and cokernels of injections; and consider short
exact sequences of vector bundles. It is a characteristic of topology, as opposed to analytic or
algebraic geometry, that short exact sequences of vector bundles always split. To see this we use a
“metric.”

Definition 54.8. A metric on a vector bundle is a continuous choice of inner products on the fibers.

Lemma 54.9. Any (numerable) vector bundle ξ admits a metric.

Proof. This will use the fact that if g, g′ are both inner products on a vector space then tg+(1− t)g′
(for t between 0 and 1) is another. So the space of metrics on a vector bundle E ↓ B forms a convex
subset of the vector space of continuous functions E ×B E → R.

Pick a trivializing open cover U for ξ, and for each U ∈ U an isomorphism ξ|U ∼= U × VU . Pick
an inner product gU on each of the vector spaces VU . Pick a partition of unity subordinate to U ;
that is, functions φU : U → [0, 1] such that the preimage of (0, 1] is U and∑

x∈U
φU (x) = 1 .

Now the sum
g =

∑
U

φUgU

is a metric on ξ.

Corollary 54.10. Any exact sequence 0 → ξ′ → ξ → ξ′′ → 0 of vector bundles (over the same
base) splits.

Proof. Pick a metric for ξ. Using it, form the orthogonal complement ξ′⊥. The composite

ξ
′⊥ ↪→ ξ → ξ′′

is an isomorphism. This provides a splitting of the surjection ξ → ξ′′ and hence of the short exact
sequence.

Exercises

Exercise 54.11. Give an example of a trivial subbundle of a trivial vector bundle with nontrivial
quotient bundle.

Exercise 54.12. Prove that ξn,k, as defined above, is locally trivial, so is a vector bundle over
Grk(K

n).

Exercise 54.13. Prove that τGrk(Rn) = Hom(ξn,k, ξ
⊥
n,k).

Exercise 54.14. Let n > 0 and suppose you have a bilinear map · : Rn × Rn → Rn such that
x · y = 0 only if either x or y is zero. Use this product to construct a parallelization of RPn−1 –
a trivialization of its tangent bundle. (See Exercise 71.10 for some constraints on when this can
happen. The definitive result [1] is that n must be 1, 2, 4, or 8.)
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55 Principal bundles, associated bundles

I-invariance

We will denote by Vect(B) the set of isomorphism classes of vector bundles over B, and Vectn(B)
the set of n-plane bundles.

Vector bundles pull back, and isomorphic vector bundles pull back to isomorphic vector bundles.
This establishes Vect as a contravariant functor on Top:

Vect : Topop → Set .

How computable is this functor? As a first step in answering this, we note that it satisfies the
following characteristic property of bundle theories.

Theorem 55.1. The functor Vect is I-invariant (where I denotes the unit interval): that is, the
projection pr1 : X × I → X induces an isomorphism Vect(X)→ Vect(X × I).

An important corollary of this result is:

Corollary 55.2. Vect is a homotopy functor.

Proof. Let ξ : E ↓ B be a vector bundle and suppose H : B′ × I → B a homotopy between two
maps f0 and f1. We are claiming that f∗0 ξ∼= f∗1 ξ. This is far from obvious!

In the diagram
B′

in0

��

f0

""
B′ B′ × I

pr1oo h // B

B′

in1

OO

f1

<<

the map pr1 induces a surjection in Vect by Theorem 55.1. It follows that in∗0 = in∗1, so f∗0 =
in∗0 ◦ h∗ = in∗1 ◦ h∗ = f∗1 .

Principal bundles

Definition 55.3. Let G be a topological group. A principal G-bundle is a right action of G on a
space P such that the orbit projection p : P ↓ P/G = B is locally trivial, in the following sense.
There exists an open cover U of B equipped with a section sU : U → p−1U for each U ∈ U such
that the induced map U ×G→ p−1U sending (u, g) to s(u)g is a homeomorphism.

In particular, the projection map is a fiber bundle. As in the case of fiber bundles, we will
assume that this open cover is numerable (42.6) whenever needed.

There’s a famous video of Jean-Pierre Serre talking about writing mathematics. In it he says you
have to know the difference between “principle” and “principal”. He contemplated what a “principle
bundle” might be – principles varying over a moduli space of individuals, perhaps.

We will only care about Lie groups, among which are discrete groups. In that case we have
already seen this concept, in Lecture 31. That story motivates constructions in the more general
setting of principal G-bundles.
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Construction 55.4. Let P ↓ B be a principal G-bundle. If F is a left G-space, we can define a
new fiber bundle, “associated” to P ↓ B, exactly as before:

P ×G F
q

��
B .

Let’s check that the fibers are homeomorphic to F . Let x ∈ B, and pick y ∈ P over x. Map
F → q−1(x) by z 7→ [y, z]. We claim that this is a homeomorphism. The inverse q−1(x) → F is
given by

[y′, z′] = [y, gz′] 7→ gz′,

where y′ = yg for some g (which is necessarily unique since the G action is simply transitive on
fibers of P ). These two maps are inverse homeomorphisms.

If F is a finite dimensional vector space on which G acts linearly, then we get a vector bundle
from this construction.

Let ξ : E ↓ B be an n-plane bundle. Construct a principal GLn(R)-bundle P (ξ) by defining

P (ξ)b = {ordered bases for E(ξ)b = Iso(Rn, E(ξ)b)} .

To define the topology, think of P (ξ) as a quotient of the disjoint union of trivial bundles over the
open sets in a trivializing cover for ξ; while for trivial bundles

P (B × Rn) = B × Iso(Rn,Rn)

topologically, where Iso(Rn,Rn) = GLn(R) is given the usual topology as a subspace of Rn2 .
There is a right action of GLn(R) on P (ξ), given by precomposition. It is easy to see that this

action is free and simply transitive on fibers. One therefore has a principal action of GLn(R) on
P (ξ). The bundle P (ξ) is called the principalization of ξ.

Given the principalization P (ξ), we can recover the total space E(ξ), using the defining linear
action of GLn(R) on Rn:

E(ξ)∼=P (ξ)×GLn(R) Rn .

These two constructions are inverses: the theories of n-plane bundles and of principal GLn(R)-
bundles are equivalent.

Remark 55.5. Suppose that we have a metric on ξ. Instead of looking at all ordered bases, we
can use instead all ordered orthonormal bases in each fiber. This give the frame bundle

Fr(ξ)b = {ordered orthonormal bases of E(ξ)b} = {isometric isomorphisms Rn → E(ξ)b} .

The orthogonal group O(n) acts freely and fiberwise transitively on this space, endowing Fr(ξ) with
the structure of a principal O(n)-bundle.

Providing a vector bundle with a metric, when viewed in terms of the associated principal
bundles, is an example of “reduction of the structure group.” We are giving a principal O(n)
bundle P together with an isomorphism of principal GLn(R) bundles from P ×O(n) GLn(R) to the
principalization of ξ. Many other geometric structures can be described in this way. An orientation
of ξ, for example, consists of a principal SLn(R) bundle Q together with an isomorphism from
Q×SLn(R) GLn(R) to the principalization of ξ.
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Suppose we have two principal G-bundles over a space X, P ′ and P . A “morphism” between
them should obviously be a bundle map f : P ′ → P , but we should also require that it respects
the group action: it should be equivariant, f(eg) = f(e)g. But notice something now: Let A and
B be G-spaces and f : A → B an equivariant map. If the G-action on B is transitive, and A is
nonempty, then f is surjective. If the G-action on A is transitive and B is free, then f is injective.
So (modulo some point-set issues that do not cause problems) any map of principal G-bundles is
actually an isomorphism!

As a case of this observation, note that a section s of the principal G-bundle P ↓ X determines
a principal G-bundle isomorphism X ×G→ P by sending (x, g) to s(x)g:

Lemma 55.6. A section of a principal bundle determines a trivialization.

Write BunG(B) for the set of isomorphism classes of principal G-bundles over B. Again, this
leads to a contravariant functor BunG : Top→ Set. The above discussion gives a natural isomor-
phism of functors:

BunGLn(R)(B)∼= Vect(B).

The I-invariance of Vect is therefore a special case of:

Theorem 55.7. BunG is I-invariant, and hence is a homotopy functor.

One case is easy to prove: If X is contractible, then any principal G-bundle P ↓ X is trivial.
We just need a section. Since the identity map on X is homotopic to a constant map (with value
∗ ∈ X, say), the constant map c : X → Q for any p ∈ P over ∗ ∈ X satisfies pc ' 1 : X → X. But
since P ↓ X is a fibration, this implies that there is then an actual section (Corollary 47.3).

The other direction is harder and we will prove it in the next lecture under the hypothesis that
the base is a CW complex.

Exercises

Exercise 55.8. Justify the use of the word “set” in the definitions of Vectn(X) and BunG(X).

Exercise 55.9. Let p : P → B be a principal G-bundle.
(a) Construct a natural trivialization of the pull-back p∗P = P ×B P ↓ P .
(b) Let F be a left G-space. Let P denote the left G-space with underlying space P and G-action
given in terms of the right action on P by g · x = xg−1. Construct a natural function from the set
of continuous equivariant maps P → F to the set of continuous sections of P ×G F ↓ B. admits a
canonical section.) Then construct a natural map the other way. Show that these two functions are
inverses.

56 G-CW complexes and the I-invariance of BunG

Let G be a topological group. We want to show that the functor BunG : Topop → Set is I-invariant,
i.e., the projection pr1 : X× I → X induces an isomorphism BunG(X)→ BunG(X× I). Injectivity
is easy: inclusion i0 : X → X × I splits the projection, so the contravariant functor BunG sends pr1

to a split injection.
The rest of this lecture is devoted to proving surjectivity. There are various ways to do this. For

the general case see [27, §4.9]. Steve Mitchell has a nice treatment in [47]. We will prove this when
X is a CW complex, by adapting CW methods to the equivariant situation.
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To see the point of this approach, notice that the word “free” is used somewhat differently in the
context of group actions than elsewhere. The left adjoint of the forgetful functor from G-spaces to
spaces sends a space X to the G-space X ×G in which G acts, from the right, by (x, g)h = (x, gh).
If G and X are discrete, any free action of G on X has this form. But this is not true topologically:
just think of the antipodal action of C2 on the circle, for instance.

The condition that an action is principal is one way to demand that an action should be “locally”
free in the stronger sense. The theory of G-CW complexes affords a different way.

G-CW complexes

We would like to set up a theory of CW complexes with an action of the group G. The relevant
question is, “What is a G-cell?” There is a choice here. For us, and for the standard definition of a
G-CW complex, the right thing to say is that it is a G-space of the form

Dn ×H\G .

Here G acts trivially on the disk, H is a closed subgroup of G, and H\G is the orbit space of the
action of H on G by left translation, viewed as a right G-space. The “boundary” of the G-cell
Dn ×H\G is just ∂Dn ×H\G (with the usual convention that ∂D0 = ∅).

Definition 56.1. A relative G-CW complex is a (right) G-space X with a filtration

A = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X

by G-subspaces such that for all n ≥ 0 there exists a pushout square of G-spaces∐
∂Dn

i ×Hi\G //

��

∐
Dn
i ×Hi\G

��
Xn−1

// Xn ,

and X has the direct limit topology.

Remarks 56.2. A CW complex is just a G-CW complex for the trivial group G. If G is discrete,
the skeleton filtration provides X with the structure of a CW complex by neglect of the G-action.
The subspace Xn is called the “n-skeleton” of X, even though if G is itself of positive dimension Xn

may well have dimension larger than n.
If X is a G-CW complex, then X/G inherits a CW structure whose n-skeleton is given by

(X/G)n = Xn/G.
If P ↓ X is a principal G-bundle, a CW structure on X lifts to a G-CW structure on P .
The action of G on a G-CW complex is principal if and only if all the isotropy groups are trivial.
A good source for much of this is [32]; see for example Remark 2.8 there.

Theorem 56.3 (Illman [28], Verona). If G is a compact Lie group and M a smooth manifold on
which G acts by diffeomorphisms, then M admits a G-CW structure.

It’s quite challenging in general to write down a G-CW structure even in simple cases, such
as when the manifold is the unit sphere in an orthogonal representation of G. But sometimes it’s
easy. For example, the CW structure on Sn−1 described in Lecture 15, with SkkS

n−1 = Sk for
0 ≤ k ≤ n− 1, is clearly a C2-CW structure on the C2 space Sn−1 in which the nontrivial element
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of C2 acts by the antipodal map. The CW structure described in Exercise 15.8 is another example
of a free G-CW complex.

For another example, regard Sn−1 as the unit sphere in Rn and let C2 act by reversing the
sign of the last coordinate. A C2-CW structure on this C2-space may be given by picking any CW
structure on Sn−2 and attaching Dn−1 × C2.

Proof of I-invariance

Recall that our goal is to prove that every principal G-bundle p : P → X × I is pulled back from
some principal G-bundle over X, at least under the hypothesis that X is a CW complex. Actually
there’s no choice here; since pr1 ◦ in0 = 1, P must be pulled back from in∗0P , that is, from the
restriction of P to X × 0.

For notational convenience, let us write Y = X × I. Remember that we are assuming that X is
a CW complex. We will filter Y by subcomplexes, as follows. Let Y0 = X × 0; in general, we define

Yn = Xn × 0 ∪Xn−1 × I.

We may construct Yn from Yn−1 via a pushout:∐
(∂Dn−1 × I ∪Dn−1 × 0) //

��

∐
(Dn−1 × I)

��
Yn−1

// Yn .

The restriction of P to Yn is a principal bundle with total space

Pn = p−1(Yn) .

So P0 ↓ Y0 is just in∗0P ↓ X.
We will show that P and pr∗1in∗0P are isomorphic over Y . For this it will be enough to construct

an equivariant map P → in∗0P covering the projection map pr1 : Y → X. We’ll do this by inductively
constructing compatible equivariant maps Pn → P0 covering the composites Yn ↪→ Y → X, starting
with the identity map P0 → in∗0P covering the isomorphism Y0 → X.

We can build Pn from Pn−1 by lifting the pushout construction of Yn from Yn−1. Since Dn−1×I
is contractible, we can pick a section of the pullback of P to it. That gives us the vertical maps in
the pushout diagram∐

(∂Dn−1 × I ∪Dn−1 × 0)×G //

��

∐
(Dn−1 × I)×G

f

��

��
Pn−1

,,

// Pn

''
P0

So to extend Pn−1 → P0 to Pn → P0, we must construct an equivariant map f as shown.
Since the source of f is a disjoint union of G-spaces of the form (Dn−1 × I)×G, it’s enough to

define a lifting in
∂Dn−1 × I ∪Dn−1 × 0 //

��

P0

��
Dn−1 × I //

66

Y0
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and then extend by equivariance. But

(Dn−1 × I, ∂Dn−1 × I ∪Dn−1 × 0)∼=(Dn−1 × I,Dn−1 × 0)

so the dotted lifting exists, since P0 → Y0 is a fibration.

Exercises

Exercise 56.4 (The clutching construction). Take two copies of the unreduced cone CX = X ×
I/X × 0 and form the unreduced suspension SX of X by identifying the two copies of [x, t] for all
t > 1/2 and x ∈ X. Let f : X → GLn(R) be a continuous map. Use it to identify the restrictions
to t > 1/2 of the trivial n-plane bundles over the two cones, to produce a vector bundle over SX.
(a) Show that any vector bundle over SX is isomorphic to one produced by this “clutching con-
struction.”
(b) Describe the map Sn−1 → GLn(R) corresponding to the tangent bundle of Sn.
(c) Given a topological group G, a similar construction takes a map X → G and produces a
principal G-bundle over SX. Describe it.

Exercise 56.5. Let M be a compact smooth manifold (which perforce admits the structure of a
CW complex) of dimension at most 4. Show that

BunSU(2)(M)∼=H4(M ;Z) .

57 The classifying space of a group

Representability

Now that we know that BunG(−) is a homotopy functor, we may ask for even more.

Theorem 57.1 (Classifying spaces). Let G be a topological group and ξ : E ↓ B a principal G-
bundle such that E is weakly contractible (just as a space, forgetting the G-action). For any CW
complex X, the map

[X,B]→ BunG(X)

sending a map f : X → B to the isomorphism class of f∗ξ is bijective.

So BunG is representable, at least on the category of CW complexes! This theorem as two parts:
surjectivity and injectivity. Both are proved using the following proposition.

Proposition 57.2. Let E be a G-space that is weakly contractible as a space. Let (P,A) be a
free relative G-CW complex (that is, all the G-cells used to build P from A are free). Then any
equivariant map f : A→ E extends to an equivariant map P → E, and this extension is unique up
to an equivariant homotopy rel A.

Proof. Just do what comes naturally, after the experience of the proof of I-invariance!

Proof of Theorem 57.1. Surjectivity is immediate; take A = ∅.
To prove injectivity, let f0, f1 : P → E be two equivariant maps. We wish to show that they are

homotopic by an equivariant homotopy, which thus descends to a homotopy between the induced
maps on orbit spaces. Our data give an equivariant map A = P × ∂I → E, which we extend to an
equivariant map from P × I again using Proposition 57.2.
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A G-CW model for the weakly contractible principal G-space E, if it exists, will be unique up
to equivariant homotopy. The orbit space will then be a CW complex with a well-defined homotopy
type. Any choice of contractible free G-CW complex will be written EG, and its orbit space BG.
EG ↓ BG is the universal principal G-space, and BG classifies principal G-bundles. The space BG
is called the classifying space of the group G.

What remains is to construct a G-CW complex that is both free and contractible. There are
many ways to do this. One can use Brown Representability, for example [12]. We will describe two
other approaches: the “Grassmann model,” below, and Graeme Segal’s simplicial model, in Lecture
58, which is a refinement of the Milnor construction (e.g. [72, §14.4]).

When the group is discrete, say π, this amounts to finding a K(π, 1): the action of π on
the universal cover is “properly discontinuous,” which is to say principal. So we have a bunch of
examples! For instance, let π = π1(Σ) where Σ is any closed connected surface other than S2 and
RP 2. Then any principal π-bundle over any CW complex B is pulled back from the universal cover
of Σ under a unique homotopy class of maps B → Σ.

If G is a compact Lie group – for example a finite group – there is a very geometric way to go
about this, based on the following result.

Theorem 57.3 (Peter-Weyl, [31, Corollary IV.4.22]). Any compact Lie group admits a finite-
dimensional faithful unitary representation.

Clearly, if P is free as a G-space then it is also free as an H-space for any subgroup H of G. It’s
also the case that if P is a principal G-space for a compact Lie group G then it is also a principal
H space for any closed subgroup of G.

Combining these facts, we see that in order to construct a contractible space with a principal
G action, for any compact Lie group G, it suffices to construct such a thing for the particular Lie
groups U(n).

Gauss maps

Before we look for highly connected spaces on which U(n) acts, let’s look at the case in which the
base space is a compact Hausdorff space (for example a finite complex). In this case we can be more
geometrically explicit about the classifying map.

Lemma 57.4. Over a compact Hausdorff space, any vector bundle embeds in a trivial bundle.

Proof. Let U be a trivializing open cover of the base B; since B is compact, we may assume that
U is finite, with, say, k elements U1, . . . , Uk. We agreed that our vector bundles would always
be numerable, but we don’t even have to mention this here since compact Hausdorff spaces are
paracompact. So we can choose a partition of unity {φi} subordinate to U . By treating path
components separately if need be, we may assume that our vector bundle ξ : E ↓ B is an n-plane
bundle, with projection p. The trivializations are fiberwise isomorphisms gi : p−1(Ui) → Rn. We
can assemble these maps using the partition of unity, and define g : E → (Rn)k as the unique map
such that

prig(e) = φi(p(e))gi(e) .

This is a fiberwise linear embedding. The map e 7→ (p(e), g(e)) is an embedding into the trivial
bundle B × Rnk.

We can now use the standard inner product on Rnk (or any other metric on B × Rnk) to form
the complement of E:
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Corollary 57.5. Over a compact Hausdorff space, any vector bundle has a complement (i.e. a
vector bundle ξ⊥ such that ξ ⊕ ξ⊥ is trivial).

Suppose our vector bundle has fiber dimension n. The image of g(Ex) is an n-plane in Rnk; that
is, an element f(x) ∈ Grn(Rnk). We have produced a diagram

E
g //

ξ

��

E(ξnk,n)

��
B

f // Grn(Rnk)

that expresses ξ as the pullback of the tautologous bundle ξnk,n under a map f : B → Grn(Rnk).
This map f , covered by a bundle map, is a Gauss map for ξ.

The Grassmannian model

The frame bundle of the tautologous vector bundle over the Grassmannian Grn(Cn+k) is the complex
Stiefel manifold

Vn(Cn+k) = {isometric embeddings Cn ↪→ Cn+k} .

Ehresmann’s Theorem 42.5 (for example) tells us that the projection map

Vn(Cn+k) ↓ Grn(Cn+k)

sending an embedding to its image is a fiber bundle, so we have a principal U(n)-bundle.
How connected is this complex Stiefel variety? U(q) acts transitively on the unit sphere in Cq

and the isotropy group of the basis vector eq is U(q− 1) embedded in U(q) in the upper left corner.
So we get a tower of fiber bundles with the indicated fibers:

S2k+1 // U(n+ k)/U(k) = Vn(Cn+k)

��
S2k+3 // U(n+ k)/U(1 + k) = Vn−1(Cn+k)

��
...

��
S2(n+k)−1 = // U(n+ k)/U((n− 1) + k) = V1(Cn+k) .

The long exact homotopy sequence shows that Vn(Cn+k) is (2k)-connected. It’s a “twisted product”
of the the spheres S2k+1, S2k+3, · · · , S2(n+k)−1.

So forming the direct limit
Vn(C∞) = lim

k→∞
Vn(Cn+k)

gives us a contractible CW complex with a principal action of U(n). The quotient map

Vn(C∞) ↓ Vn(C∞)/U(n) = Grn(C∞)
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provides us with a universal principal U(n) bundle, and hence also a universal n-plane bundle ξn.
An element of E(ξn) is an n-dimensional subspace of the countably infinite dimensional vector space
C∞. This is the “infinite Grassmannian,” and it deserves the symbol BU(n).

Dividing by a closed subgroup G ⊆ U(n) provides us with a model for BG. To be completely
honest here, we should work to endow Grn(C∞) with a G-CW structure. We do not do that here,
but see [76]. We will see a more canonical construction in the next lecture. And of course sometimes
we have more direct constructions; for example the same observations show that BO(n) is the space
of n-planes in R∞. In particular, BC2 = BO(1) = RP∞ and BU(1) = BS1 = CP∞.

Exercises

Exercise 57.6. Verify Proposition 57.2.

Exercise 57.7. Let F (M, j) be the space of injections of {1, . . . , j} into a space M : the space of
ordered configurations in M of cardinality j. Show that F (R∞, j) is contractible. It admits a free
action of the symmetric group Σj , so the space of subsets of cardinality j in R∞ is a model for BΣj .

58 Simplicial sets and classifying spaces

We encountered simplicial sets at the very beginning of this course, as a step on the way to construct-
ing singular homology. We will take this story up again here, briefly, because simplicial methods
provide a way to organize the combinatorial data needed for the construction of classifying spaces
and maps.

Simplex category and nerve

Recall from Lecture 3 the simplex category ∆: It has as objects the finite totally ordered sets

[n] = {0, 1, . . . , n} , n ≥ 0 ,

and as morphisms the order preserving maps. In particular the “coface” map di : [n] → [n + 1] is
the injection omitting i and the “codegeneracy” map si : [n] → [n − 1] is the surjection repeating
i. Any order-preserving map can be written as the composite of these maps, and there are famous
relations (Exercise 1.8) that they satisfy. They generate the category ∆.

The standard (topological) simplex is the functor ∆ : ∆ → Top defined by sending [n] to the
“standard n-simplex” ∆n, the convex hull of the standard basis vectors e0, e1, . . . , en in Rn+1. Order-
preserving maps get sent to the affine extension of the map on basis vectors. So di includes the ith
codimension one face, and si collapses onto a codimension one face.

Definition 58.1. Let C be a category. Denote by sC the category of simplicial objects in C, i.e.,
the category Fun(∆op, C). We write Xn = X([n]) for the “object of n-simplices.”

A simplicial object can be defined by giving an object Xn ∈ C for every n ≥ 0 along with maps
di : Xn+1 → Xn and si : Xn−1 → Xn satisfying certain quadratic identities.

Our first example of a simplicial object is the singular simplicial set Sin(X) of a space X:

Sin(X)n = Sinn(X) = Top(∆n, X) .

There is a categorical analogue of ∆ : ∆→ Top. After all, the ordered set [n] is a particularly
simple small category: ∆ is a full subcategory of the category of small categories. So a small
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category C determines a simplicial set NC, the nerve of C, with

(NC)n = NnC = Fun([n], C) .

Thus N0C is the set of objects of C; N1C is the set of morphisms; d0 : N1C → N0C sends a
morphism to its target, and d1 : N1C → N0C sends a morphism to its source; s0 : N0C → N1C
sends an object to its identity morphism. In general NnC is the set of n-chains in C: composable
sequences of n morphisms. For 0 < i < n, the face map di : NnC → Nn−1C forms the composite of
two adjacent morphisms, while d0 omits the initial morphism and dn omits the terminal morphism.
Degeneracies interpose identity maps.

For example, a group G can be regarded as a small category, one with just one object. We
denote it again by G. Then NnG = Gn, and for 0 < i < n

di(g1, . . . , gn) = (g1, . . . , gi−1, gigi+1, gi+2, . . . , gn) .

while
d0(g1, . . . , gn) = (g2, . . . , gn) , dn(g1, . . . , gn) = (g1, . . . , gn−1) .

In general, the nerve construction allows us to regard small categories as a special class of sim-
plicial sets. This attitude is the starting point for the theory of “quasi-categories” or “∞-categories,”
which constitute a somewhat more general class of simplicial sets.

Realization

The functor Sin transported us from spaces to simplicial sets. Milnor [41] described how to go the
other way.

Let K be a simplicial set. The geometric realization |K| of K is

|K| =
(∐
n≥0

∆n ×Kn

)
/ ∼

where ∼ is the equivalence relation defined by:

∆m ×Km 3 (v, φ∗x) ∼ (φ∗v, x) ∈ ∆n ×Kn

for all maps φ : [m]→ [n].
The equivalence relation is telling us to glue together simplices as dictated by the simplicial

structure on K. To see this in action, let us look at φ∗ = di : Kn+1 → Kn and φ∗ = di : ∆n →
∆n+1. In this case, the equivalence relation then says that (v, dix) ∈ ∆n × Kn is equivalent to
(div, x) ∈ ∆n+1×Kn+1. In other words: the ith face of the (n+1) simplex labeled by x is identified
with the n-simplex labeled by dix.

There’s a similar picture for the degeneracies si, where the equivalence relation dictates that
every element of the form (v, six) is already represented by a simplex of lower dimension. A simplex
in a simplicial set is “nondegenerate” if it is not in the image of a degeneracy map. Neglecting the
topology, |X| is the disjoint union of (topological) simplex interiors labeled by the nondegenerate
simplices of K.

Example 58.2. Let n ≥ 0, and consider the simplicial set ∆(−, [n]). This is called the “simplicial
n-simplex”, for good reason: Its geometric realization is canonically homeomorphic to the geometric
n-simplex ∆n.
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The realization |K| of a simplicial set has a naturally defined CW structure with

skn|K| =
( ∐
k≤n

∆k ×Kk

)
/ ∼ .

The face maps give the attaching maps; for more details, see [23, Proposition I.2.3]. This is a
very combinatorial way to produce CW complexes. There is one n-simplex for each nondegenerate
n-simplex in K; that is, for each element of Kn that is not in image of any degeneracy map.

The geometric realization functor and the singular simplicial set functor form one of the most
important and characteristic examples of an adjoint pair:

| − | : sSet� Top : Sin

The adjunction morphisms are easy to describe. For K ∈ sSet, the unit for the adjunction K →
Sin|K| sends x ∈ Kn to the map ∆n → |K| defined by v 7→ [(v, x)].

To describe the counit, let X be a space. There is a continuous map ∆n × Sinn(X)→ X given
by (v, σ) 7→ σ(v). The equivalence relation defining |Sin(X)| says precisely that the map factors
through the realization:

|Sin(X)| // X

∐
∆n × Sinn(X)

88
OOOO

A theorem of Milnor [41] asserts that the map |Sin(X)| → X is a weak equivalence. This
provides a functorial (and therefore spectacularly inefficient) CW approximation for any space.

This adjoint pair enjoys properties permitting the wholesale comparison of the homotopy theory
of spaces with a combinatorially defined homotopy theory of simplicial sets [54]. For more details,
see [23].

Classifying spaces

Combining the two constructions we have just discussed, we can assign to any small category C a
space

BC = |NC| ,

known as its classifying space. For example, B[n] = ∆n.
When C is a group, G, this space does in fact support a principal G-bundle. Before we explain

that, let’s look at the example of the group C2 of order 2. Write t for the non-identity element of
C2. There is just one non-degenerate n simplex in NC2 for any n ≥ 0, namely (t, t, . . . , t). So the
realization BC2 has a single n-cell for every n. Not bad, since it’s supposed to be a CW structure
on RP∞! Think about what the low skelata are. There’s just one object, so (BC2)0 = ∗. There is
just one nondegenerate 1-simplex, (t) ∈ C1

2 , so (BC2)1 is a circle. There’s just one nondegenerate
2-simplex, (t, t) ∈ C2

2 . Its faces are

d0(t, t) = t , d1(t, t) = t2 = 1 , d2(t, t) = t .

The middle face has been identified with * since it’s degenerate, and we see a standard representation
of RP 2 as a “lune” with its two edges identified. A similar analysis shows that (BC2)n = RPn for
any n.

The projection maps C ×D → C and C ×D → D together induce a natural map

B(C ×D)→ BC ×BD .
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The following is a nice surprise, and requires the use of the compactly generated topology on the
product.

Theorem 58.3. The natural map B(C ×D)→ BC ×BD is a homeomorphism.

Sketch of proof. This is nontrivial – not “categorical” – because it asserts that certain limits commute
with certain colimits. The underlying fact is the Eilenberg-Zilber theorem, which gives a simplicial
decomposition of ∆m × ∆n and verifies the result when C = [m] and D = [n]. The general
result follows since every simplicial set is a colimit of its “diagram of simplicies,” and B respects
colimits.

Lemma 58.4. The classifying space construction sends natural transformations to homotopies.

Proof. A natural transformation of functors C → D is the same thing as a functor C × [1] → D.
Since B[1] = ∆1, we can form the homotopy

BC ×∆1 = BC ×B[1]
∼=←− B(C × [1])→ BD

Corollary 58.5. An adjoint pair induces a homotopy equivalence on classifying spaces.

Corollary 58.6. If C contains an initial object or a terminal object then BC is contractible.

Proof. Saying that o ∈ C is initial is saying that the inclusion o : [0]→ C is a left adjoint.

The translation groupoid

An action of G on a set X determines a category, a groupoid in fact, the “translation groupoid,”
which I will denote by GX. Its object set is X, and

GX(x, y) = {g ∈ G : gx = y} .

Composition comes from the group multiplication. This is a special case of the “Grothendieck
construction.” (Alexander Grothendieck (1928–2014) worked mainly at the Institut des hautes
études scientific outside of Paris. He was the founder of the framework for algebraic geometry as
practiced today.)

When X = ∗ we recover the category G. Another case of interest is when X = G with G acting
from the left by translation. The category GG is “unicursal”: there is exactly one morphism between
any two objects; every object is both initial and terminal. This implies that B(GG) is contractible.

The association
X 7→ GX 7→ N(GX) 7→ |N(GX)| = B(GX)

is functorial. In particular, right multiplication by g ∈ G on the set G is equivariant with respect
to the left action of G on it. Therefore G acts from the right on GG and hence on B(GG). This is
a “free” action: no g ∈ G except the identity element fixes any simplex. This implies that B(GG)
admits the structure of a free G-CW complex. It’s not hard to verify that B(GG)/G = BG, so we
have succeeded in constructing a functorial classifying space for any discrete group.
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Exercises

Exercise 58.7. Use Lemma 58.5 to prove that ifG is any group and g ∈ G, then the map BG→ BG
induced by the homomorphism cg : G → G given by conjugation, x 7→ gxg−1, is homotopic to the
identity map. Of course the map cg : BG→ BG is not homotopic to the identity through basepoint
preserving homotopies! On π1(BG) = π0(G) it induces conjugation by [g] ∈ π0(G).

Exercise 58.8. (a) The classifying space of a group G comes equipped with a basepoint. Let
X be a pointed connected CW complex. Construct a bijection from the set of pointed homotopy
classes of pointed maps [X,BG]∗ to BunG(X)∗, the set of isomorphism classes of pairs (P, e) where
p : P → X is a principal G-bundle and e ∈ p−1∗; that is, e is a trivialization of the fiber of P over
the basepoint.

(b) Now let G be discrete. Construct a bijection Hom(π1(X, ∗), G)→ BunG(X)∗.

(c) So as a functor from the homotopy category of pointed connected CW complexes to the category
of groups, π1 is a left adjoint. Why doesn’t this prove the Van Kampen theorem?

59 The Čech category and classifying maps

In this lecture I’ll sketch a program due to Graeme Segal [58] for classifying principal G-bundles
using the simplicial description of the classifying space proposed in the last lecture. That machinery
admits an extension to general topological groups.

Top-enrichment

The Grassmannian model provides a classifying space for any compact Lie group. This includes finite
discrete groups, which are also covered by the construction we just did. But we’d like to provide
a construction with the naturality of the simplicial construction that also applies to topological
groups, and that works for a general topological groups.

Definition 59.1. A category enriched in Top is a category C together with topologies on all the
morphism sets, with the property that the composition maps are continuous.

The fact that Top is Cartesian closed provides us with an enrichment in Top of the category Top
itself. A simpler (and smaller) example is given by any topological group (or monoid), regarded as
a category with one object. Then a continuous action of G on a space X is just a functor G→ Top
that is continuous on hom spaces: a “topological functor.”

The “nerve” construction now produces a simplicial space,

NG ∈ sTop

associated to any topological group G. The formula for geometric realization still makes perfectly
good sense for a simplicial space. (It won’t generally be a CW complex anymore, but it does have
a useful “skeleton” filtration given by assembling only simplices of dimension up to n.) Combining
the two constructions, we may form the “classifying space”

BG = |NG| .

This provides a functorially defined classifying space for topological groups.
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Internal categories

To justify this language, we should produce a principal G-bundle over this space with contractible
total space. This construction requires one further invasion of topology into category theory (or
vice versa), namely, an “internal category” in Top.

Definition 59.2. Top-category is a pair of spaces C0 and C1 (to be thought of as the space of
objects and the space of morphisms), together with continuous structure maps

source, target : C1 ⇒ C0 , identity : C0 → C1

composition : C1 ×C0 C1 → C1

satisfying the axioms of a category.

If the object space is discrete, this is just an enrichment in Top. But there are other important
examples. The simplest one is entirely determined by a space X: write cX for it. Just take it
(cX)0 = (cX)1 = X with the “identity” map (cX)0 → (cX)1 given by the identity map.

The nerve and classifying space constructions carry over without change to this new setting.
(NC)0 will no longer be discrete. The classifying space of cX is justX, for example. The observation
that an adjoint pair yields a homotopy equivalence still holds.

Now suppose that G acts on a space X. The construction of GX carried out in the previous
lecture provides us with a Top-category. Its classifying space maps to that of G, since X maps to
a point.

Proposition 59.3. If G is a Lie group (and much more generally as well) the map B(GG)→ BG
is a principal G-bundle, and B(GG) is contractible.

So this gives the classifying space of G, functorially in G. It’s not hard to see that in fact

B(GX) = B(GG)×G X .

This degree of generality provides an inductive way to construct Eilenberg Mac Lane spaces
explicitly. Begin with any discrete abelian group π. Apply the classifying space construction we’ve
just described, to obtain a K(π, 1). Now being abelian is equivalent to the multiplication map
π × π → π being a homomorphism. So we may leverage the functoriality of B, and the fact that it
commutes with products, and form

Bπ ×Bπ∼=B(π × π)→ Bπ .

This provides on Bπ the structure of a topological abelian group. So we can apply B again:
BBπ = K(π, 2). And so on:

Bnπ = K(π, n) .

Descent

Let π : Y → X be a map of spaces. We can use it to define a Top-category, the “descent category”
or “Čech category” Č(π), as follows. The space of objects is X, and the space of morphisms is
Y ×X Y . The structure maps are given by

id = ∆ : Y → Y ×X Y , y 7→ (y, y)

source = pr1 : Y ×X Y → Y , (y1, y2)→ y1

target = pr2 : Y ×X Y → Y , (y1, y2)→ y2

composition : (Y ×X Y )×Y (Y ×X Y )→ Y ×X Y , ((y1, y2), (y2, y3)) 7→ (y1, y3) .
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There is a continuous functor
π̌ : Č(π)→ cX

determined by mapping the object space by the identity.
This construction is best understood from its motivating case. Suppose that U is a cover of X

and let
Y =

∐
U∈U

U ,

mapping to X by sending x ∈ U to x ∈ X. Then

Y ×X Y =
∐

(U,V )∈U×U

U ∩ V ,

the disjoint union of intersections of ordered pairs of elements of U . Source and target just embed
U ∩ V into U and V .

In this case let’s write Č(U) for the Čech category. In good cases we can recover X from Č(U):

Proposition 59.4. If the open cover U of X admits a subordinate partition of unity, then Bπ̌ :
BČ(U)→ X is a homotopy equivalence.

Proof. A sequence U0, U1, . . . Un of elements of U together with a point x in their intersection
determines a chain (x ∈ U0) → (x ∈ U1) → · · · → (x ∈ Un) in the category Č(U). The counit of
the realization-singular adjunction then gives a map

ε : ∆n × (U0 ∩ U1 ∩ · · · ∩ Un)→ BČ(U) .

Now let {φU : U ∈ U} be a partition of unity subordinate to U , so that, for every x ∈ X, φU (x) = 0
for all but finitely many U ∈ U , and

∑
U φU = 1. Pick a partial order on the set U that is total on

any subset with nonempty intersection. For any x let U0(x), . . . , Un(x)(x) be the ordered sequence
of elements of U that contain x. Then define

X → BČ(U)

by sending
x 7→ ε((φU0(x)(x), . . . , φUn(x)(x)(x)), x) .

It’s not hard to check that this gives a well-defined map that is homotopy inverse to Bπ̌.

Remark 59.5. A final comment: In [58] Segal explains how to use these methods to construct
a spectral sequence from this approach, one that includes the Serre spectral sequence and more
generally the topological version of the Leray spectral sequence. We won’t pursue that avenue in
these lectures, though, but instead will describe two other approaches.

Transition functions, cocycles, and classifying maps

Now suppose that ξ : P
p−→ B is a principal G-bundle. We will explain how to construct an

explicit map B → BG classifying ξ. Pick a trivializing open cover U , along with trivializations
ϕU : p−1U → U ×G for U ∈ U . These data determine a continuous functor

Č(U)→ G
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as follows. There’s no choice about behavior on objects. On morphisms, we use the “transition
functions” associated with the given trivializations. So for U, V ∈ U , the intersection U ∩ V is a
subspace of the space of morphisms in Č(U). We map it to G by

x 7→ ϕV (x)ϕU (x)−1 ∈ G .

The “cocycle condition” on these transition functions is the statement that together these maps
constitute a functor.

Therefore we get a diagram
BČ(U) //

'
��

BG

X

JJ

and one can check that the bundle EG ↓ BG pulls back to P ↓ X under the composite X → BG.

Exercises

Exercise 59.6. Suppose that U = {U, V } is an open cover of X. Show that Č(U) is the double
mapping cylinder U ∪ (U ∩ V )× I ∪ V . You can deduce the Mayer-Vietoris sequence from this.



Chapter 7

Spectral sequences and Serre classes

60 Why spectral sequences?

When we’re solving a complicated problem, it’s smart to break the problem into smaller pieces, solve
them, and then put the pieces back together. Spectral sequences provide a powerful and flexible
tool for bridging the “local to global” divide. They contain a lot of information, and can be queried
in a variety of ways, so we will spend quite a bit of time getting to know them.

Homology is relatively computable precisely because you can break a space into smaller parts
and then use Mayer-Vietoris to put the pieces back together. The long exact homology sequence
(along with excision) is doing the same thing. We have seen how useful this is, in our identification
of singular homology with the cellular homology of a CW complex. This puts a filtration on a
space X, the skeleton filtration, and then makes use of the long exact sequences of the various pairs
(Xn, Xn−1). Things are particularly simple here, since Hq(Xn, Xn−1) is nonzero for only one value
of q.

There are interesting filtrations that do not have that property. For example, suppose that
p : E → B is a fibration. A CW structure on B determines a filtration of E in which

FsE = p−1(SksB) .

Now the situation is more complicated: For each s we get a long exact sequence involvingH∗(Fs−1E),
H∗(FsE), andH∗(FsE,Fs−1E). The structure that emerges from this tangle of long exact sequences
is a “spectral sequence.” It will describe the exact relationship between the homologies of the fiber,
the base, and the total space.

We can get a somewhat better idea of how this might look by thinking of the case of a product
projection, pr1 : B × F → B. Then the Künneth theorem is available. Let’s assume that we are in
the lucky situation in which there is a Künneth isomorphism, so that

H∗(B)⊗H∗(F )
∼=−→ H∗(E) .

You should visualize this tensor product of graded modules by putting the the summand Hs(B)⊗
Ht(F ) in degree n = s+ t of the graded tensor product in position (s, t) in the first quadrant of the
plane. Then the graded tensor product in degree n sums along each “total degree” n = s+ t. Along
the x-axis we see Hs(B)⊗H0(F ); if F is path connected this is just the homology of the base space.
Along the y-axis we see H0(B)⊗Ht(F ) = Ht(F ); if B is path-connected this is just the homology
of the fiber. Cross-products of classes of these two types fill out the first quadrant.

The Künneth theorem can’t generalize directly to nontrivial fibrations, though, because of ex-
amples like the Hopf fibration S3 → S2 with fiber S1. The tensor product picture looks like this:

199
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0

1

2

0 1 2 3

Z

Z

Z

Z

– and definitely gives the wrong answer!

What’s going on here? We can represent a generating cycle for H2(S2) using a relative homeo-
morphism σ : (∆2, ∂∆2)→ (S2, o). If co represents the constant 2-simplex at the basepoint o ∈ S2,
σ − co is a cycle representing a generator of H2(S2). We can lift each of these simplices to sim-
plices in S3. But a lift of σ sends ∂∆2 to one of the fiber circles, and the lift of σ − co is no
longer a cycle. Rather, its boundary is a cycle in the fiber over o, and it represents a generator for
H1(p−1(o))∼=H1(S1).

This can be represented by adding an arrow to our picture.

0

1

2

0 1 2 3

Z

Z

Z

Z

This diagram now reflects several facts: H1(S1) maps to zero inH1(S3) (because the representing
cycle of a generator becomes a boundary!); the image of H2(S3) → H2(S2) is trivial (because no
nonzero multiple of a generator of H2(S2) lifts to a cycle in S3); and the homology of S3 is left with
just two generators, in dimensions 0 and 3.

In terms of the filtration on the total space S3, the lifted chain lay in filtration 2 (saying nothing,
since F2S

3 = S3) but not in filtration 1. Its boundary lies two filtration degrees lower, in filtration
0. That is reflected in the differential moving two columns to the left.

The Hopf fibration S7 ↓ S4 (which you will study in homework) shows a similar effect. The
boundary of the 4-dimensional chain lifting a generating cycle lies again in filtration 0, i.e. on
the fiber. This represents a drop of filtration by 4, and is represented by a differential of bidegree
(−4, 3).
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0

1

2

3

4

0 1 2 3 4 5

Z

Z

Z

Z

In every case, the total degree of the differential is of course −1.
The Künneth theorem provides a “first approximation” to the homology of the total space. It’s

generally too big, but never too small. Cancellation can occur: lifted cycles can have nontrivial
boundaries, and cycles that were not boundaries in the fiber can become boundaries in the total
space. More complicated cancellation can occur as well, involving the product classes.

Some history

Now I’ve told you almost the whole story of the Serre spectral sequence. A structure equivalent to
a spectral sequence was devised by Jean Leray while he was in a prisoner of war camp during World
War II. He discovered an elaborate structure determined in cohomology by a map of spaces. This
was much more that just the functorial effect of the map. He was worked with cohomology, and in
fact invented a new cohomology theory for the purpose. He restricted himself to locally compact
spaces, but on the other hand he allowed any continuous map – no restriction to fibrations. This
is the “Leray spectral sequence.” It’s typically developed today in the context of sheaf theory –
another local-to-global tool invented by Leray at about the same time.

Leray called his structure an “anneau spectral”: he was specifically interested in its multiplicative
structure, and he saw an analogy between his analysis of the cohomology of the source of his map
and the spectral decomposition of an operator. Before the war he had worked in analysis, especially
the Navier-Stokes equation, and said that he found in algebraic topology a study that the Nazis
would not be able to use in their war effort, in contrast to his expertise as a “mechanic.”

It’s fair to say that nobody other than Leray understood spectral sequences till well after the war
was over. Henri Cartan (1904–2008) was a leading figure in post-war mathematical reconstruction.
He befriended Leray and helped him explain himself better. He set his students to thinking about
Leray’s ideas. One was named Jean-Louis Koszul (1921–2018), and it was Koszul who formulated
the algebraic object we now call a spectral sequence. Another was Jean-Pierre Serre. Serre wanted
to use this method to compute things in homotopy theory proper – homotopy groups, and the
cohomology of Eilenberg Mac Lane spaces. He had to recast the theory to work with singular
cohomology, on much more general spaces, but in return he considered only what we now call
Serre fibrations. This restriction allowed a homotopy-invariant description of the spectral sequence.
Leray had used “anneau spectral”; Cartan used “suite de Leray-Koszul”; and now Serre, in his thesis,
brought the two parties together and coined the term “suite spectral”. For more history see [37].

La science ne s’apprend pas: elle se comprend. Elle n’est pas lettre morte et les livres
n’assurent pas sa pérennité: elle est une pensée vivante. Pour s’intéresser à elle, puis la
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maîtriser, notre eprit doit, habilement guidé, la redécouvrir, de même que notre corps a
dû revivre, dans le sien maternel, l’évolution qui créa notre espèce; non point tout ses
détails, mais son schéma. Aussi n’y a-t-il qu’une façon efficace de faire acquérir par nos
enfants les principes scientifiques qui sont stable, et les procédés techniques qui évoluent
rapidement: c’est donner à nos enfants l’esprit de recherche. – Jean Leray [57]

61 Spectral sequence of a filtered complex

We are trying find ways to use a filtration of a space to compute the homology of that space. A
simple example is given by the skeleton filtration of a CW complex. Let’s recall how that goes. The
singular chain complex receives a filtration by sub chain complexes by setting

FsS∗(X) = S∗(SksX) .

We then pass to the quotient chain complexes

S∗(SksX,Sks−1X) = FsS∗(X)/Fs−1S∗(X) .

The homology of the sth chain complex in this list vanishes except in dimension s, and the group
of cellular s-chains is defined by

Cs(X) = Hs(SksX,Sks−1X) .

In turn, these groups together form a chain complex with differential

d : Cs(X) = Hs(SksX,Sks−1X)
∂−→ Hs−1(Sks−1X)→ Hs−1(Sks−1X,Sks−2X) = Cs−1(X) .

Then d2 = 0 since it factors through two consecutive maps in the long exact sequence of the pair
(Sks−1X,Sks−2X).

We want to think about filtrations

· · · ⊆ Fs−1X ⊆ FsX ⊆ Fs+1X ⊆ · · ·X

of a space X that don’t behave so simply. But the starting point is the same: filter the singular
complex accordingly:

FsS∗(X) = S∗(FsX) ⊆ S∗(X)

This is a filtered (chain) complex. To abstract a bit, suppose we are given a chain complex C∗ whose
homology we wish to compute by means of a filtration

· · ·Fs−1C∗ ⊆ FsC∗ ⊆ Fs+1C∗ ⊆ · · ·

by sub chain complexes. Note that at this point we are allowing the filtration to extend in both
directions. And we need not suppose that the intersection is zero, nor that the union is all of C∗.
(And C∗ might be nonzero in negative degrees, as well.)

The first step is to form the quotient chain complexes,

grsC∗ = FsC∗/Fs−1C∗ .

This is a sequence of chain complexes, a graded object in the category of chain complexes, and is
termed the “associated graded” complex.
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What is the relationship between the homologies of these quotient chain complexes and the
homology of C∗ itself?

We’ll set up grading conventions following the example of the filtration by preimages of a skeleton
filtration under a fibration, as described in the previous lecture: name the coordinates in the plane
(s, t), with the s-axis horizontal and the t-axis vertical. So s will be the filtration degree, and s+ t
will be the total topological dimension. t is the “complementary degree.” This suggests that we
should put grsCs+t in bidegree (s, t). Here then is a standard notation:

E0
s,t = grsCs+t = FsCs+t/Fs−1Cs+t .

The differential then has bidegree (0,−1). In parallel with the superscript in “E0,” this differential
is written d0.

Next we pass to homology. Let’s use the notation

E1
s,t = Hs,t(E

0
∗,∗, d

0)

for the homology of E0. This in turn supports a differential. In the case of the skeleton filtration,
this is the differential in the cellular chain complex. The definition in general is identical:

d1 : E1
s,t = Hs+t(Fs/Fs−1)

∂−→ Hs+t−1(Fs−1)→ Hs+t−1(Fs−1/Fs−2) = E1
s−1,t .

Thus d1 has bidegree (−1, 0). Of course we will write

E2
s,t = Hs,t(E

1
∗,∗, d

1) .

In the case of the skeleton filtration, E1
s,t = 0 unless t = 0, and the fact that cellular homology

equals singular homology is the assertion that

E2
s,0 = Hs(X) .

In general the situation is more complicated because E1 may be nonzero off the s-axis. So now the
magic begins. The claim is that the bigraded group E2

∗,∗ in turn supports a natural differential,
written, of course, d2, this time of bidegree (−2, 1); that this pattern continues ad infinitum; and
that in the end you get (essentially) H∗(C∗). In fact the proof we gave last term that cellular
homology agrees with singular homology is no more than a degenerate case of this fact.

Here’s the general picture.

Theorem 61.1. A filtered complex F∗C∗ determines a natural spectral sequence, consisting of

• bigraded abelian groups Ers,t for r ≥ 0 ,

• differentials dr : Ers,t → Ers−r,t+r−1 for r ≥ 0 , and

• isomorphisms Er+1
s,t
∼=Hs,t(E

r
∗,∗, d

r) for r ≥ 0 ,

such that for r = 0, 1, 2, (Er∗,∗, d
r) is as described above, and that under further hypotheses “con-

verges” to H∗(C∗).

Here are further conditions that will suffice to guarantee that the spectral sequence is actually
computing H∗(C∗).

Definition 61.2. The filtered complex F∗C∗ is first quadrant if
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• F−1C∗ = 0 ,

• Hn(grsC∗) = 0 for n < s , and

• C∗ =
⋃
FsC∗ .

Under these conditions, E1 is zero outside of the first quadrant, and so all the higher “pages”
Er have the same property. It’s called a “first quadrant spectral sequence.”

The differentials all have total degree −1, but their slopes vary. The longest possibly nonero
differential emanating from (s, t) is

ds : Ess,t → Es0,t+s−1 ,

and the longest differential attacking (s, t) is

dt+1 : Et+1
s+t+1,0 → Et+1

s,t .

What this says is that for any value of (s, t), the groups Ers,t stabilize for large r. That stable value
is written

E∞s,t .

Here’s the rest of Theorem 61.1. It uses the natural filtration on H∗(C∗) given by

FsHn(C∗) = im(Hn(FsC∗)→ Hn(C∗)) .

Theorem 61.3. The spectral sequence of a first quadrant filtered complex converges to H∗(C∗), in
the sense that

F−1H∗(C∗) = 0 ,
⋃
s

FsH∗(C∗) = H∗(C∗) ,

and for each s, t there is a natural isomorphism

E∞s,t
∼= grsHs+t(C∗) .

In symbols, we may write (for any r ≥ 0)

Er∗,∗ =⇒ H∗(C∗) ,

or, if you want to be explicit about the degrees and which degree is the filtration degree,

Ers,t =⇒
s
Hs+t(C∗) .

Notice right off that this contains the fact that cellular homology computes singular homology:
In the spectral sequence associated to the skeleton filtration,

E0
s,t =Ss+t(SksX,Sks−1X)

E1
s,t =Hs+t(SksX,Sks−1X) =

{
Cs(X) if t = 0

0 otherwise

E2
s,t =

{
Hcell
s (X) if t = 0

0 otherwise
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In a given total degree n there is only one nonzero group left by E2, namely E2
n,0 = Hcell

n (X). Thus
no further differentials are possible:

E2
∗,∗ = E∞∗,∗ .

The convergence theorem then implies that

grsHn(X) =

{
E∞n,0 = Hcell

n (X) if s = n

0 otherwise

So the filtration of Hn(X) changes only once:

0 = · · · = Fn−1Hn(X) ⊆ FnHn(X) = · · · = Hn(X) ,

and
FnHn(X)/Fn−1Hn(X) = E∞n,0 = Hcell

n (X) .

So
Hn(X) = Hcell

n (X) .

Before we explain how to construct the spectral sequence, let me point out one corollary at the
present level of generality.

Corollary 61.4. Let f : C → D be a map of first quadrant filtered chain complexes. If Er∗,∗(f) is
an isomorphism for some r, then f∗ : H∗(C)→ H∗(D) is an isomorphism.

Proof. The map Er(f) is an isomorphism which is also also a chain map, i.e., it is compatible with
the differential dr. It follows that Er+1(f) is an isomorphism. By induction, we conclude that
E∞s,t(f) is an isomorphism for all s, t. By Theorem 61.3, the map grs(f∗) : grsH∗(C)→ grsH(D) is
an isomorphism. Now the conditions in Definition 61.2) let us use induction and the five lemma to
conclude the proof.

Direct construction

In a later lecture I will describe a structure known as an “exact couple” that provides a construc-
tion of a spectral sequence that is both clean and flexible. But the direct construction from a
filtered complex has its virtues as well. Here it is. The detailed computations are annoying but
straightforward.

Define the following subspaces of E0
s,t = FsCs+t/Fs−1Cs+t, for r ≥ 1.

Zrs,t ={c : ∃x ∈ c such that dx ∈ Fs−rCs+t−1} ,
Br
s,t ={c : ∃ y ∈ Fs+r−1Cs+t+1 such that dy ∈ c} .

So an “r-cycle” is a class that admits a representative whose boundary is r filtrations smaller; the
larger r is the closer the class is to containing an actual cycle. An “r-boundary” is a class admitting
a representative that is a boundary of an element allowed to lie in filtration degree r − 1 stages
larger. When r = 1, these are exactly the cycles and boundaries with respect to the differential d0

on E0
∗,∗.

We have inclusions
B1
∗,∗ ⊆ B2

∗,∗ ⊆ · · · ⊆ Z2
∗.∗ ⊆ Z1

∗,∗

and define
Ers,t = Zrs,t/B

r
s,t .
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These pages are successively smaller groups of cycles modulo successively larger subgroups of bound-
aries. The differential dr is of course induced from the differential d in C∗, and Hs,t(E

r
∗,∗, d

r)∼=Er+1
s,t .

In the first quadrant situation, the r-boundaries and the r-cycles stabilize to

Z∞s,t ={c : ∃x ∈ c such that dx = 0} ,
B∞s,t ={c : ∃ y ∈ Cs+t+1 such that dy ∈ c} .

The quotient, E∞s,t , is exactly FsHs+t(C∗,∗)/Fs−1Hs+t(C∗,∗) .

Exercises

Exercise 61.5. (a) Suppose F∗C∗ is a first-quadrant filtered complex such that E1
∗,∗ = 0. Show

that H∗(C∗) = 0 in the following way. Let c ∈ Hn(C∗). Show that it is represented by a cycle
z ∈ FsCn for some s. Then make an appropriate sequence of choices to come up with a class
y ∈ Cn+1 with dy = z.
(b) Show by example that if we omit the either the first or the third condition in the definition of
“first quadrant” (Definition 61.2) then the conclusion of (a) may fail.
(c) Give a counterexample to Corollary 61.4 if you keep the second and third conditions of Definition
61.2 but omit the first one.

Exercise 61.6. In Lecture 58 we studied a simplicial construction of the classifying space of topo-
logical group G. It comes equipped with a natural “skeleton” filtration, in which

FsBG = im

∐
q≤s

∆q ×Gq → BG

 .

Identify FsBG/Fs−1BG. Assume that the topology of G is nice enough to give an isomorphism
H∗(FsBG,Fs−1BG) → H∗(FsBG/Fs−1BG), and work with coefficients in a field k. Identify the
E1 term of the spectral sequence associated with this filtration with the “bar construction” of the
k-algebra H∗(G). (See e.g. [33] or [77] for the bar construction.) Consequently we obtain a spectral
sequence of the form

E2
s,t = Tor

H∗(G)
s,t (k, k) =⇒

s
Hs+t(BG)

(where s is the homological dimension and t is an internal dimension). Various cases of this spectral
sequence are worth exploring! It’s called variously the bar construction, Rothenberg-Steenrod [56], or
Eilenberg-Moore spectral sequence (though be warned there is different spectral sequence [19] that
is more commonly associated with Eilenberg and Moore).

62 Serre spectral sequence

Fix a fibration p : E → B, with B a CW complex. We obtain a filtration on E by taking the
preimage of the s-skeleton of B: Es = p−1SksB. This induces a filtration on S∗(E) given by

FsS∗(E) = S∗(p
−1Sks(B)) ⊆ S∗(E) .

The spectral sequence resulting from Theorem 61.1 is the Serre spectral sequence.
This was not Serre’s construction [60], by the way; he did not employ a CW structure at all,

but rather worked directly with a singular theory – but rather than simplices, he used cubes, which
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are well adapted to the study of bundles since a product of cubes is again a cube. We will describe
a variant of Serre’s construction in Lecture 66, one that is technically easier to work with and that
makes manifest important multiplicative features of the spectral sequence. We will not try to dot
all the i’s in the construction we describe in this lecture.

In this spectral sequence,
E1
s,t = Hs+t(FsE,Fs−1E) .

Pick a cell structure ∐
i∈Is S

s−1
i

//

��

∐
i∈Is D

s
i

��
Bs−1

// Bs .

Let α : Ds
i → Bs be one of the characteristic maps, and let Fi be the fiber over the center of

the corresponding cell esi in B. The pullback of E ↓ B under α is a trivial fibration since Ds
i is

contractible. Now ∐
i∈Is

(Ds
i , S

s−1
i )× Fi → (FsE,Fs−1E)

is a relative homeomorphism, so by excision

E1
s,t = Hs+t(FsE,Fs−1E) =

⊕
i∈Is

Hs+t((D
s
i , S

s−1
i )× Fi) =

⊕
i∈Is

Ht(Fi) .

In particular, this filtration satisfies the requirements of Definition 61.2, since Ht(Fi) = 0 for
t < 0. We have a convergent spectral sequence. It remains to work out what d1 is. I won’t do this
in detail but I’ll tell you how it turns out.

It’s important to appreciate that the fibers Fi vary from one cell to the next. If B is not path-
connected, these fibers don’t even have to be of the same homotopy type. If B is path connected,
then they do, but the homotopy equivalence is determined by a homotopy class of paths from one
center to the other and so is not canonical. If B is not simply connected, the functor

p−1(−) : Π1(B)→ Ho(Top)

may not be constant. But at least we see that the fibration defines functors

Ht(p
−1(−)) : Π1(B)→ Ab with b 7→ Ht(p

−1(b)) .

This is, or determines, a local coefficient system. We encountered these before, in our exploration
of orientability. There a “local coefficient system” was a covering space with continuously varying
abelian group structures on the fibers. If the space is path connected and semi-locally simply
connected, there is a universal cover, and giving a covering space is equivalent to giving an action
of the fundamental group on a set. CW complexes are locally contractible [24, e.g. Appendix on
CW complexes, Proposition 4] and so this equivalence applies in our case.

If this local system is in fact constant (for example if B is simply connected) the differential in
E1 is none other than the cellular differential in

C∗(B;Ht(F ))

(where we write F for any fiber), and so

E2
s,t = Hs(B;Ht(F )) .
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This is the case we will mostly be concerned with. But the general case is the same, with the
understanding that we mean homology of B with coefficients in the local system Ht(p

−1(−)).
Here’s a base-point dependent way of thinking of how to compute homology or cohomology of a

space with coefficients in a local system. We assume that our space X is path-connected and nice
enough to admit a universal cover X̃. Pick a basepoint ∗. Giving a local coefficient systemM is the
same as giving a Z[π1(X, ∗)]-module M . The fundamental group acts from the right on X̃ and so
on its singular chain complex. In Lecture 20 we developed the tensor product over a commutative
ring. The same story produces N ⊗RM for a right R-module N and a left R-module N . You only
get an abelian group (or a k-module if R is a k-algebra). Now we can say that

H∗(X;M) = H∗(S∗(X̃)⊗Z[π1(X,∗)] M) , H∗(X;M) = H∗(HomZ[π1(X,∗)](S∗(X̃),M) .

Here’s the general result.

Theorem 62.1. Let p : E → B be a Serre fibration, R a commutative ring, and M an R-module.
There is a first quadrant spectral sequence of R-modules with

E2
s,t = Hs(B;Ht(p

−1(−);M))

that converges to H∗(E;M). It is natural from E2 on for maps of fibrations.

This theorem expresses one important perspective on spectral sequences: They can serve to
implement a “local-to-global” strategy. A fiber bundle is locally a product. The spectral sequence
explains how the “local” (in the base) homology of E gets integrated to produce the “global” homol-
ogy of E itself.

Loops on spheres

Here’s a first application of the Serre spectral sequence: a computation of the homology of the space
of pointed loops on a sphere, ΩSn. It is the fiber of the fibration PSn → Sn, where PSn is the
space of pointed maps (Sn)I∗. The space PSn is contractible, by the spaghetti move.

It is often said that the Serre spectral sequence is designed to compute the homology of the
total space starting with the homologies of the fiber and of the base. This is not true! Rather, it
establishes a relationship between these three homologies, one that can be used in many different
ways. Here we know the homology of the total space (since PSn is contractible) and of the base,
and we want to know the homology of the fiber.

The case n = 1 is special: S1 is a Eilenberg Mac Lane space K(Z, 1), so ΩS1 is weakly equivalent
to the discrete space Z.

So suppose n ≥ 2. Then the base is simply connected and torsion-free, so in the Serre spectral
sequence

E2
s,t = Hs(S

n;Ht(ΩS
n)) = Hs(S

n)⊗Ht(ΩS
n) .

Here’s a picture, for n = 4.
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H2(ΩS4)

H3(ΩS4)

H4(ΩS4)

H5(ΩS4)

As you can see, the only possible nonzero differentials are of the form

dn : Enn,t → En0,t+n−1 .

So E2
∗,∗ = En−1

∗,∗ and En+1
∗,∗ = E∞∗,∗.

The spectral sequence converges to H∗(PSn), which is Z in dimension 0 and 0 elsewhere. This
immediately implies that

Ht(ΩS
n) = 0 for 0 < t < n− 1

since nothing could kill these groups on the fiber.
The fiber is path connected, H0(ΩSn) = Z, so we know the bottom row in E2. E2

n,0 must die.
It can’t be killed by being hit by a differential, since everything below the s-axis is trivial (and also
because everything to its right is trivial). So it must die by virtue of dn being injective on it. In
fact that differential must be an isomorphism, since if it fails to surject onto En0,n−1 there would be
something left in En+1

0,n−1 = E∞0,n−1, and it would contribute nontrivially to Hn−1(PSn) = 0.
This language of mortal combat gives extra meaning to the “spectral” in “spectral sequence.”
So Hn−1(ΩSn) = Z. This feeds back into the spectral sequence: E2

n,n−1 = Z. Now that class has
to kill or be killed. It can’t be killed because everything to its right is zero, so dn must be injective
on it. And it must surject onto En0,2(n−1), for the same reason as before.

This establishes the inductive step. We have shown that all the dn’s are isomorphisms (except
the ones involving En0,0), and established:

Proposition 62.2. Let n ≥ 2. Then

Ht(ΩS
n) =

{
Z if (n− 1)|t ≥ 0

0 otherwise .

Evenness

If Er = Er+1 = . . . in a spectral sequence, we say that it collapses at Er.
Sometimes it’s easy to see that a spectral sequence collapses. For example, suppose that

Ers,t = 0 unless both s and t are even .
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Then all differentials in Er and beyond must vanish, because they all have total degree −1. Actually
all that is needed for this argument is that Ers,t = 0 unless s+ t is even. There may still be extension
problems, though.

Exercises

Exercise 62.3. Let’s get familiar with homology and cohomology with local coefficients.

(a) Let n ≥ 2 and write C2 for π1(RPn). Compute H∗(RPn;Z[C2]). This is the E2
∗,0 term in the

Serre spectral sequence associated to the fibration Sn ↓ RPn. Is everything OK?

(b) Write Z(−1) for the Z[C2]-module on which the generator acts by −1. Compute the graded
groups H∗(RPn;Z(−1)) and H∗(Rn;Z(−1)).

Remark 62.4. RPn is a closed manifold. When n is odd, it is orientable and Poincaré duality
relates H∗(RPn;Z) and H∗(RPn;Z). But when n is even, it’s not; the orientation local system
is given by the nontrivial Z[C2]-module Z(−1). Your solution to (b) may suggest a variant of
Poincaré duality that is valid in the non-orientable case. In fact for any closed n-manifold M ,
there is a canonical isomorphism Hn(M ; oM ) → H0(M) and so a canonical “twisted fundamental
class” [M ] ∈ Hn(M ; oM ) mapping to 1 ∈ H0(M). An orientation of M identifies Hn(M ; oM ) with
Hn(M), and we obtain the fundamental class we worked with before. But now we can form a
twisted cap product with this twisted fundamental class and obtain, for any local coefficient system
L, an isomorphism

Hp(M ;L)→ Hq(M ; oM ⊗ L) , p+ q = n .

If L corresponds to a Z[π1(M)]-module L, this tensor product local coefficient system corresponds
to the Z[π1(M)] module in which σ ∈ π1(M) acts by w1(σ)σ, where w1 : π1(M)→ {±1} gives the
action corresponding to oM . Interesting cases result from taking L to be trivial, and to be equal to
oM . (Note that oM ⊗ oM is trivial.)

Exercise 62.5. Suppose that p : E ↓ Sn is a fibration over the n-sphere, with fiber F . There is a
natural long exact sequence involving H∗(E) and H∗(F ), analogous to the Gysin sequence. Derive
it carefully from the Serre spectral sequence. (The case n = 1 requires special attention.) This is
the “Wang sequence.”

Exercise 62.6. Let f : S2 → S2 be a map of degree 2. Compute the homology of its homotopy
fiber.

Exercise 62.7. Let f : CP∞ → CP∞ be a map inducing multiplication by 2 in H2, and let
CP∞ '−→ E

p−→ CP∞ be a factorization of f into a homotopy equivalence followed by a fibration.
Determine the behavior of the homology Serre spectral sequence for p.

63 Exact couples

Today I would like to show you a very simple piece of linear algebra called an exact couple. A
filtered complex gives rise to an exact couple, and an exact couple gives rise to a spectral sequence.
Exact couples were discovered by Bill Massey (1920–2017, Professor at Yale) independently of the
French development of spectral sequences.
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Definition 63.1. An exact couple is a diagram of abelian groups

A
i // A

j

��
E

k

__

that is exact at each node.

As (jk)(jk) = j(kj)k = 0, the map jk : E → E is a differential, denoted d.
An exact couple determines a “derived couple”

A′
i′ // A′

j′

~~
E′

k′
``

where
A′ = im(i) and E′ = H(E, d) .

Iterating this procedure, we get a sequence of exact couples

A(r) i(r) // A(r)

j(r)

||
E(r)

k(r)

bb

If we impose appropriate gradings, the “E” terms will form a spectral sequence.
We have to explain the maps in the derived couple.

i′: this is just i restricted to A′ = im(i). Obviously i carries im(i) into im(i).
j′: Note that ja is a cycle in E: dja = jkja = 0. Define

j′(ia) = [ja] .

To see that this is well defined, we need to see that if ia = 0 then ja is a boundary. By exactness
there is an element e ∈ E such that ke = a. Then de = jke = ja.
k′: Let e ∈ E be a cycle. Since 0 = de = jke, ke ∈ im(i) = A′ by exactness. Define

k′([e]) = ke .

To see that this is well defined, suppose that e = de′. Then ke = kde′ = kjke′ = 0.
We leave to you the exercise of checking that these maps indeed yield an exact couple.

Gradings

Now suppose we are given a filtered complex. It will define an exact couple in which A is given
by the homology groups of the filtration degrees and E is given by the homology groups of the
associated quotient chain complexes.

In order to accommodate this example we need to add gradings – in fact, bigradings. Here’s the
relevant definition.
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Definition 63.2. An exact couple of bigraded abelian groups is of type r if the structure maps have
the following bidegrees.

||i|| =(1,−1)

||j|| =(0, 0)

||k|| =(−r, r − 1)

It’s clear from this that ||d|| = ||jk|| = (−r, r − 1), the bidegree appropriate for the rth stage
of a spectral sequence. We should specify the gradings on the abelian groups in the derived couple.
Define A′s,t to sit in the factorization

As,t
i //

!! !!

As+1,t−1

A′s,t

::

::

and E′s,t = Hs,t(E∗,∗). Then if e ∈ Es,t, ke ∈ As−r,t+r−1, but if e is a cycle then ke lies in the
subgroup A′s−r−1,t−r, so ||k′|| = (r + 1,−r): the derived couple is of type (r + 1).

Given a filtered complex

· · · ⊆ Fs−1C∗ ⊆ FsC∗ ⊆ Fs+1C∗ ⊆ · · · ,

define
A1
s,t = Hs+t(FsC∗) , E1

s,t = Hs+t(grsC∗) .

This agrees with our earlier use of the notation E1
s,t. The structure maps are given in the obvious

way: i1 is induced by the inclusion of one filtration degree into the next (and has bidegree (1,−1)); j1

is induced from the quotient map (and has bidegree (0, 0)); and k1 is the boundary homomorphism
in the homology long exact sequence (and has bidegree (−1, 0)).

Given any exact couple of type 1, (A1, E1), we’ll write

Ar = (A1)(r−1) , Er = (E1)(r−1)

for the (r − 1) times derived exact couple, which is of type r.

Differentials

An exact couple can be unfolded in a series of linked exact triangles, like this (taking r = 1 for
concreteness, and omitting the second index):

· · · i // A1
s−3

i //

j

||

A1
s−2

i //

j

||

A1
s−1

i //

j

||

A1
s

j

��

i // · · ·

· · · E1
s−3

k

aa
◦

E1
s−2

k
bb

d1
oo

◦

E1
s−1

k
bb

d1
oo

◦

E1
s

k
aa

d1
oo

◦

· · ·

The triangles marked with ◦ are exact; the lower ones commute, and define d1.
This image is useful in understanding the differentials in the associated spectral sequence. Start

with an element x ∈ E1
s . Suppose it’s a cycle. Then its image kx ∈ A1

s−1 is killed by j and hence
pulls back under i, to, say, x1 ∈ A1

s−2. The image in E1
s−2 of x1 under j is a representative for d2[x].
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Suppose that d2[x] = 0. Then we can improve the lift x1 to one that pulls back one step further, to,
say, x2 ∈ A1

s−3; and d3[x] = [jx2]. This pattern continues. The further you can pull kx back, the
longer x survives in the spectral sequence. If it pulls back forever, then you appeal to a convergence
condition to conclude that kx = 0, and x therefore lifts under j to an element x in A1

s. The direct
limit

L = lim
→

(· · · → A1
s → A1

s+1 → A1
s+2 → · · · )

is generally what one is interested in (it’s H∗(C∗) in the first quadrant filtered complex situation,
for example) and one may say that “x survives to” the image of x in L.

Other examples

Topology is inhabited by many spectral sequences that do not arise from a filtered complex. For
example, if you have a tower of fibrations, you get an exact couple by linking together the homotopy
long exact sequences of the individual fibrations. Well, almost. The problem is what happens at
the bottom: groups may not be abelian, or even groups; and even if they are, you may not be able
to guarantee exactness at π0. Anyway, here’s an example. Form the Whitehead tower of a space Y
and map some well-pointed space X into it. We get a new tower of fibrations

...

��
(τ≥2Y )X∗

��

// K(π2(Y ), 2)X∗

(τ≥1Y )X∗

��

// K(π1(Y ), 1)X∗

Y X
∗ = (τ≥0Y )X∗ // K(π0(Y ), 0)X∗ .

The homotopy groups of the spaces on the right form the E1-term, and are easy to compute:

πn(K(πp(Y ), p)X∗ ) = [Sn ∧X,K(πp(Y ), p)]∗ = [X,K(πp(Y ), p− n)]∗ = H
p−n

(X;πp(Y )) .

Insofar as this is a spectral sequence at all, the E1 term is given by

E1
s,t = H

−2s−t
(X;π−s(Y, ∗)) .

It’s concentrated between the lines t = −s and t = −2s, in the second quadrant of the plane. An
element of πn(Y X

∗ ) = [ΣnX,Y ]∗ is in filtration s ≤ 0 if and only if it factors through τ≥−sY → Y .
This picture is very closely related to obstruction theory, and indeed obstruction theory can be

set up using it. Its failings as a spectral sequence can be repaired in various ways I won’t discuss.
If it can be repaired, the spectral sequence converges to π∗(Y X

∗ ), or wants to.
For another example, there are many “generalized homology theories” – sequences of functors

satisfying the Eilenberg-Steenrod axioms other than the dimension axiom – K-theory, bordism
theories, and many others. Write R∗(−) for any such theory. The skeleton filtration construction
of the Serre spectral sequence can be applied to compute the R-homology of the total space of a
fibration p : E → B: To construct the exact couple, all you need is the long exact sequence of a
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pair, which is available in R-homology. You find for each t a local coefficient system Rt(p
−1(−)),

and you get a spectral sequence

E2
s,t = Hs(B;Rt(p

−1(−))) =⇒
s
Rs+t(E) .

Even the case p : E
=−→ B is interesting: then the local coefficient system is guaranteed to be trivial,

and we get
E2
s,t = Hs(E;Rt(∗)) =⇒

s
Rs+t(E) .

This is the “Atiyah-Hirzebruch spectral sequence,” and it provides a powerful tool for computing
these generalized homology theories. (Sir Michael Atiyah (1929–2019) was a prodigiously broad
and creative mathematician, working at the Institute for Advanced Study, Cambridge University,
and the University of Edinburgh. Fritz Hirzebruch (1927–2012) was a dominant figure in post-war
German mathematics, working mainly in Bonn.)

Both of these spectral sequences require us to move out of the first quadrant setting. The
Atiyah-Hirzebruch-Serre spectral sequence can fill up the right half-plane. See Lecture (70) for
another example.

Exercises

Exercise 63.3. Check that the maps in the definition of the derived exact couple do indeed yield
an exact couple.

Exercise 63.4. Verify that if you have a filtered complex, the the groups Ers,t produced as above
coincide with those described in the earlier discussion in Lecture 61.

Exercise 63.5. Let (A1, E1) be a bigraded exact couple, and let (A
1
, E

1
) be the “truncation” at

s = n: the exact couple mapping to (A1, E1) in which the maps A1
s → A1

s+1 for s ≥ n are replaced
by isomorphisms, so that E1

s = 0 for s > n and E1
s → E1

s is an isomorphism for s ≤ n. Show that
for all r ≥ 1, Ers = 0 for s > n, and that Ers → Ers is surjective for s ≤ n and an isomorphism
for s ≤ n − r + 1. All the possibly nonzero differentials in the truncated spectral sequence thus
land in the region that maps isomorphically to the original spectral sequence. The original one thus
completely determines the truncated spectral sequence.

For example, this is the relationship between the Serre spectral sequence for a fibration over a
CW complex and that of the restriction of the fibration to a skeleton.

Exercise 63.6. Let C be a chain complex such that Cn is free for each n (for example, the singular
chains on a space or the cellular chains on a CW complex). Let p be a prime number. The Prüfer
group is

Zp∞ =
⋃

Z/psZ = Z[1/p]/Z

It’s filtered by
FsZp∞ = ker(ps+1|Zp∞) = Z/ps+1Z .

Filter C ⊗ Zp∞ accordingly.
(a) Show that in the resulting spectral sequence

E1
s,t =

{
Hs+t(C ⊗ Fp) if s ≥ 0

0 otherwise

Also describe the corresponding exact couple.
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(b) This is not a first quadrant spectral sequence; which part of the (s, t)-plane does it live in?
What if Cn = 0 for n < 0? Show that nevertheless it converges,

Ers,t =⇒
s
Hs+t(C ⊗ Zp∞) .

in the sense that one can define E∞s,t and these groups form the associated graded groups of a
filtration on Hs+t(C ⊗ Zp∞) that is “exhaustive”:

F−1 = 0 and lim
s→∞

FsH∗(C ⊗ Zp∞) = H∗(C ⊗ Zp∞) .

The “abutment” of this spectral sequence – the group it is trying to converge to – is of interest
because it determines the p-torsion in H∗(C) by means of the long exact coefficient sequence

· · · → Hn+1(C ⊗ Zp∞)→ Hn(C)→ Hn(C)[1/p]→ Hn(C ⊗ Zp∞)→ · · · .

(c) If Hn(C) is finitely generated, show that the structure of the p-torsion in it is completely
described by the spectral sequence.
(d) Show that the data contained in this spectral sequence can be captured by a simpler “singly
graded spectral sequence,” with

E1
n = Hn(C ⊗ Z/pZ) , Er+1

n = Hn(Er∗ , β
r) , βr : Ern → Ern−1 .

This is the “Bockstein spectral sequence.” What is β1 : Hn(C ⊗ Z/pZ)→ Hn−1(C ⊗ Z/pZ)?

64 Gysin sequence, edge homomorphisms, and transgression

Now we’ll discuss a general situation, a common one, that displays many of the ways in which the
Serre spectral sequence relates the homology groups of fiber, total space, and base.

Suppose p : E → B is a fibration; assume the base is path-connected, and that the fiber has
homology (with coefficients in a fixed PID R) isomorphic to that of Sn−1 with n > 1. Let’s use
the Serre spectral sequence to determine how the homologies of E and of B are related. We will
assume that this “spherical fibration” is orientable, and choose an orientation. This means that
the local coefficient system Hn−1(p−1(−)) is trivial, and provided with a trivialization: a preferred
generator of Hn−1(p−1(b)) that varies continuously with b ∈ B. For example, we might be looking
at S2k−1 ↓ CP k−1 or S4k−1 ↓ HP k−1, or the complement of the zero-section in the tangent bundle
of an R-oriented n-manifold.

There are just two nonzero rows in this spectral sequence. This means that there’s just one
possibly nonzero differential:

E2
∗,∗ = E3

∗,∗ = · · · = En∗,∗ ;

then a differential
dn : Ens,0 → Ens−n,n−1

occurs; and then
En+1
∗,∗ = · · · = E∞∗,∗ .

Taking homology with respect to dn gives the top row of

0 // E∞s,0
//

##

Ens,0

=

��

dn // Ens−n,n−1

∼=
��

// E∞s−n,n−1
// 0

Hs(B) // Hs−n(B)

88
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To explain the rest of this diagram, path connectedness of Sn−1 gives the isomorphism

Ens,0 = E2
s,0 = Hs(B) ,

and the oriention determines

Ens−n,n−1 = E2
s−n,n−1 = Hs−n(B;Hn−1(Sn−1)) = Hs−n(B) .

Now look at total degree n. The filtration of Hn(E) changes at most twice, with associated
quotients given by the E∞ term: so there is a short exact sequence

0→ E∞s−n+1,n−1 → Hs(E)→ E∞s,0 → 0 .

These two families of exact sequences splice together to give a long exact sequence:

· · ·

##

0

��
0 // E∞s+1,0

// Hs+1(B)
dn// Hs−n+1(B) //

&&

E∞s−n+1,n−1
//

��

0

Hs(E)

�� $$
0 // E∞s,0

��

// Hs(B)
dn// Hs−n(B) //

$$

E∞s−n,n−1
// 0

0 · · ·

Proposition 64.1. Let p : E → B be a Serre fibration whose fiber is an R-homology (n−1)-sphere,
and assume it is R-oriented. There is a naturally associated long exact sequence, the Gysin sequence

· · · → Hs+1(B)→ Hs−n+1(B)→ Hs(E)
p∗−→ Hs(B)→ Hs−n(B)→ · · · .

(Werner Gysin (1915-1998) described this in his thesis at ETH under Heinz Hopf.) The only
part of this that we have not proven is that the middle map here is in fact the map induced by the
projection p. That’s the story of “edge homomorphisms,” which we take up next.
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First, though, an example. The Gysin sequence of the S1-bundle S∞ ↓ CP∞ looks like this:

· · ·

ss0 // H4(CP∞) // H2(CP∞)

ss0 // H3(CP∞) // H1(CP∞)

ss0 // H2(CP∞) // H0(CP∞)

ss0 // H1(CP∞) // 0

ss
H0(S∞) // H0(CP∞) // 0 .

This gives us another computation of H∗(CP∞): Working inductively up the tower, you compute

Hn(CP∞;R) =

{
R if 2|n ≥ 0

0 otherwise .

Edge homomorphisms

In the Serre spectral sequence for the fibration p : E → B, what can we say about the evolution of
the bottom edge, or of the left edge? Let’s assume that the fiber is path connected and that the
local coefficient system is trivial, so in

E2
s,t = Hs(B;Ht(F )) =⇒

s
Hs+t(E)

the bottom edge is canonically isomorphic to H∗(B).
Being at the bottom, no nontrivial differentials can ever hit it. So the successive process of

taking homology will be a succession of taking kernels:

Er+1
n,0 = ker(dr : Ern,0 → Ern−r,r−1) .

Of course when r > n things quiet down. So

E2
n,0 ⊇ E3

n,0 ⊇ · · · ⊇ En+1
n,0 = E∞n,0 .

Now Hn(E) enters the picture, along with its filtration. The whole of Hn(E) is already hit
by Hn(p−1SknB). This is confirmed by the fact that the associated graded grsHn(E) = E∞s,n−s
vanishes for s > n. So FnHn(E) = Hn(E).

Putting all this together, we get a map

Hn(E) = FnHn(E)� grnHn(E) = E∞n,0 = En+1
n,0 ↪→ Enn,0 ↪→ · · · ↪→ E2

n,0 = Hn(B) .

This composite is an edge homomorphism for the spectral sequence. It’s something you can define for
any first quadrant filtered complex. In the Serre spectral sequence case, it has a direct interpretation:
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Proposition 64.2. This edge homomorphism coincides with the map p∗ : Hn(E)→ Hn(B).

This explains the role of the differentials off the bottom row of the spectral sequence. They are
obstructions to classes lifting to the homology of the total space. This reflects the intuition we tried
to develop several lectures ago. The image of p∗ : Hn(E)→ Hn(B) is precisely the intersection (so
to speak) of the kernels of the differentials coming off of E2

n,0.
Before we prove this, let’s notice that there is a dual picture for the vertical axis. Now all

differentials leaving Er0,n are trivial, so we get surjections

E2
0,n � E3

0,n � · · ·� En+2
0,n = E∞0,n .

On the other hand, the smallest nonzero filtration degree of Hn(E) is F0Hn(E). Thus we have
another “edge homomorphism,”

Hn(F ) = E2
0,n � E3

0,n � · · ·� En+2
0,n = E∞0,n = F0Hn(E) ↪→ Hn(E) .

Proposition 64.3. This edge homomorphism coincides with the map i∗ : Hn(F )→ Hn(E) induced
by the inclusion of the fiber.

So the kernel of i∗ is union of the images (so to speak) of the differentials coming into E2
0,n. The

sources of these differentials represent chains in E which serve as null-homologies of cycles in F .

Proof of Propositions 64.2 and 64.3. The map of fibrations

F //

��

∗

��
E //

��

B

��
B // B

induces a commutative diagram in which the top and bottom arrows are edge homomorphisms:

Hn(E) //

p∗
��

Hn(B)

(1B)∗
��

Hn(B) // Hn(B) .

So we just need to check that the bottom edge homomorphism associated to the identity fibration
1B : B → B is the identity map Hn(B)→ Hn(B). This I leave to you.

The proof of Proposition 64.3 is similar.

Very often you begin with some homomorphism, and you are interested in whether it is an
isomorphism, or how it can be repaired to become an isomorphism. If you can write it as an edge
homomorphism in a spectral sequence, then you can regard the spectral sequence as measuring how
far from being an isomorphism your map is; it provides the reasons why the map fails to be either
injective or surjective.
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Transgression

There is a third aspect of the Serre spectral sequence that deserves attention, namely, the differential
going clear across the spectral sequence, all the way from base to fiber. We’ll study it in case the
fiber and the base are both path connected and the local coefficient systems Ht(p

−1(−)) are trivial.
Write F for the fiber.

The differentials
dn : Enn,0 → En0,n−1

are known as transgressions, and an element of E2
n,0 = Hn(B) that survives to Enn,0 is said to be

transgressive. The first one is a homomorphism

d2 : H2(B)→ H1(F ) ,

but after that dn is merely an additive relation between Hn(B) and Hn−1(F ): It has a domain of
definition

Esn,0 ⊆ E2
n,0 = Hn(B)

and indeterminacy
ker(Hn−1(F ) = E2

0,n−1 � En0,n−1) .

Let me expand on what I mean by an additive relation. A good reference is [33, II §6].

Definition 64.4. An additive relation R : A ⇀ B is a subgroup R of A×B.

For example the graph of a homomorphism A → B is an additive relation. Additive relations
compose in the evident way: the composite of R : A ⇀ B with S : B ⇀ C is

{(a, c) : ∃ b ∈ B such that (a, b) ∈ R and (b, c) ∈ S} ⊆ A× C .

Every additive relation has a “converse,”

R−1 = {(b, a) : (a, b) ∈ R} : B ⇀ A .

An additive relation has a domain

D = {a ∈ A : ∃ b ∈ B such that (a, b) ∈ R} ⊆ A

and an indeterminancy
I = {b ∈ B : (0, b) ∈ R} ,

and determines a homomorphism
f : D → B/I

by
f(a) = b+ I for b ∈ B such that (a, b) ∈ R .

Conversely, such a triple (D, I, f) determines an additive relation,

R = {(a, b) : a ∈ D and b ∈ f(a)} .

An additive relation is defined as a subspace of A×B, but any “span”

C

��   
A B
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determines one by taking the image of the resulting map C → A×B.
End of digression. We have the transgression dn : Hn(B) ⇀ Hn−1(F ). Another such additive

relation is determined by the span

Hn(E,F )
p∗

vv

∂

&&
Hn(B) = Hn(B, ∗) Hn−1(F ) .

Proposition 64.5. These two linear relations coincide.

Proof sketch. This phenomenon is actually how we began our discussion of spectral sequences. Let
x ∈ Hn(B). Since n > 0 we can just as well regard it as a class in Hn(B, ∗). Represent it by a cycle
c ∈ Zn(B, ∗). (In the Hopf fibration case this simplifies the representative by making the constant
cycle optional.) Lift it to a chain in the total space E. In general, this chain will not be a cycle (as
was the case in the Hopf fibration). The differentials record this boundary; let us recall the explicit
construction of the differential at the end of Lecture 61. Saying that the class x survives to En is
the same as saying that we can find a lift to a chain c in E, with dc ∈ Sn−1(F ), that is, to a relative
cycle in Sn−1(E,F ). Then dn(x) is represented by the class [dc] ∈ Hn−1(F ). This is precisely the
transgression.

Exercise 64.6. (a) Show that if p : E → B is a fibration and each fiber has the homology of a
point then p induces an isomorphism in homology.

(b) Show that any weak equivalence f : X → Y induces a homology isomorphism. Hint: Consider
the homotopy fiber at a point in Y , and use (a).

65 The Serre exact sequence and the Hurewicz theorem

Serre exact sequence

Suppose π : E → B is a fibration over a path-connected base. Pick a point ∗ ∈ E, use its image
∗ ∈ B as a basepoint in B, write F = π−1(∗) ⊆ E for the fiber over ∗, and equip it with the point
∗ ∈ E as a basepoint. Suppose also that F is path connected.

Pick a coefficient ring R. Everything we’ve done works perfectly with coefficients in R – all
abelian groups in sight come equipped with R-module structures. Let’s continue to suppress the
coefficient ring from the notation. Suppose that the low-dimensional homology of both fiber and
base vanishes:

Hs(B) = 0 for 0 < s < p

Ht(F ) = 0 for 0 < t < q .

Assume that π1(B, ∗) act trivially onH∗(F ), so the Serre spectral sequence (now with coefficients
in R!) takes the form

E2
s,t = Hs(B;Ht(F )) =⇒

s
Hs+t(E) .

Our assumptions imply that E2
0,0 = R is all alone; otherwise everything with s < p vanishes and

everything with t < q vanishes.
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q

0

0
p

For a while, the only possibly nonzero differentials are the transgressions

ds : Ess,0 → Es0,s−1 .

The result, in this range, is an exact sequence

0→ E∞s,0 → Hs(B)
ds−→ Hs−1(F )→ E∞0,s−1 → 0 .

Again, in this range, these end terms are the only two possibly nonzero associated quotients in
Hn(E) – there is a short exact sequence

0→ E∞0,n → Hn(E)→ E∞n,0 → 0 .

– and splicing things together we arrive again at a long exact sequence

Hp+q−1(F )
i∗ // Hp+q−1(E)

p∗ // Hp+q−1(B)

ss
Hp+q−2(F )

i∗ // Hp+q−2(E)
p∗ // Hp+q−2(B)

ss
Hp+q−3(F )

i∗ // · · · .

This is the Serre exact sequence: in this range of dimensions homology and homotopy behave
the same! We can’t extend it further to the left because the kernel of the edge homomorphism
Hp+q−1(F ) → Hp+q−1(E) has two sources: the image of dp : Epp,q → Ep0,p+q−1, and the image of
dp+q : Ep+qp+q,0 → Ep+q0,p+q−1.

Comparison with homotopy

The Serre exact sequence mimics the homotopy long exact sequence of the fibration.

Proposition 65.1. The Hurewicz map participates in a commutative ladder

· · · // πp+q−1(F )
i∗ //

h
��

πp+q−1(E)

h
��

π∗ // πp+q−1(B) //

h
��

πp+q−2(F ) //

h
��

· · ·

Hp+q−1(F )
i∗ // Hp+q−1(E)

π∗ // Hp+q−1(B) // Hp+q−2(F ) // · · ·
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Proof. The left two squares commutes by naturality of the Hurewicz map. The right square com-
mutes because, according to our geometric interpretation of the transgression, both boundary maps
arise in the same way:

πn(B)

h
��

πn(E,F )
∼=oo

h
��

∂ // πn−1(F )

h
��

Hn(B) Hn(E,F )
∼=oo ∂ // Hn−1(F ) .

The isomorphism πn(E,F )→ πn(B) is Lemma 47.7.

Let us now specialize to the case of the path-loop fibration

ΩX → PX → X

where X is a simply-connected pointed space. The coefficient system is trivial. Suppose that in fact
H i(X) = 0 for i < n. Since the spectral sequence converges to the homology of a point, we find
that H i(ΩX) = 0 for i < n− 1. The Serre exact sequence, or direct use of the spectral sequence as
in the computation of H∗(ΩSn), shows this:

Lemma 65.2. Let X be an (n− 1)-connected pointed space. The transgression relation provides an
isomorphism

H i(X)→ H i−1(ΩX)

for i ≤ 2n− 2.

For example, if X is simply connected, we get a commutative diagram

π2(X)
∼= //

��

π1(ΩX)

��
H2(X)

∼= // H1(ΩX) .

Since ΩX is an H-space its fundamental group is abelian, so Poincaré’s theorem 31.6 shows that
the Hurewicz homomorphism on the right is an isomorphism. Therefore the map on the left is. This
is a case of the Hurewicz theorem! In fact, continuing by induction we discover a proof – Serre’s
proof – of the general case of the Hurewicz theorem.

Theorem 65.3 (Hurewicz). Let n ≥ 1. Suppose X is a pointed space that is (n − 1)-connected:
πi(X) = 0 for i < n. Then H i(X) = 0 for i < n and the Hurewicz map πn(X)ab → Hn(X) is an
isomorphism.

Going relative

Any topological concept seems to get more useful if you can extend it to a relative form. So let
(B,A) be a pair of spaces. To make the construction for the Serre spectral sequence that we
proposed earlier work, we should assume that this is a relative CW complex. Suppose that E ↓ B
is a fibration. The pullback or restriction

EA //

��

E

��
A // B
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provides us with a “fibration pair” (E,EA). Suppose that B is path-connected and A nonempty,
pick a basepoint ∗ ∈ A, write F for the fiber of E ↓ B over ∗ (which is of course also the fiber
of E|A ↓ A over ∗), and suppose that π1(B, ∗) acts trivially on H∗(F ). With these assumptions,
pulling back skelata of B rel A yields the relative Serre spectral sequence

E2
s,t = Hs(B,A;Ht(F )) =⇒

s
Hs+t(E,EA) .

Let’s apply this right away to prove a relative version of the Hurewicz theorem. We will develop
conditions under which

h : πi(X,A)→ Hi(X,A)

is an isomorphism for all i ≤ n. We will of course assume that X is path connected and that A is
nonempty, which together imply that H0(X,A) = 0. Since π1(X,A) is in general only a pointed
set let’s begin by assuming that it vanishes. This implies that A is also path connected and that
π1(A) → π1(X) is surjective. The induced map on abelianizations is then also surjective, so by
Poincaré’s theorem H1(A)→ H1(X) is surjective and so H1(X,A) = 0.

Moving up to the next dimension, we may hope that h : π2(X,A) → H2(X,A) is then an
isomorphism, but π2(X,A) is not necessarily abelian so this can’t be right in general. This can
be fixed – in fact if we kill the action of π1(A) on π2(X,A) it becomes abelian and the resulting
homomorphism to H2(X,A) is an isomorphism (see [63, Ch. 5, Sec. 7]). But we’ll be assuming that
π1(X) = 0 in a minute anyway, so let’s just go ahead now and assume that π1(A) = 0. The long
exact homotopy sequence then shows that π2(X,A) is a quotient of π2(X) and so is abelian. We’ll
show that h : π2(X,A)→ H2(X,A) is then an isomorphism.

We will use the fact (from Exercise 47.9) that the projection map induces a isomorphism

πn(E,EA)
∼=−→ πn(B,A)

for any n ≥ 1. In particular, let F be the homotopy fiber of the inclusion map A ↪→ X: that is, the
pullback in

F //

��

PX

��
A // X .

The path space PX is contractible, so from the long exact homotopy sequence for the pair (PX,F )
we find that the maps on the top row of the following commutative diagram are isomorphisms.

πn−1(F )

h
��

πn(PX,F )
∼=oo

h
��

∼= // πn(X,A)

h
��

Hn−1(F ) Hn(PX,F )
∼=oo p∗ // Hn(X,A) .

Returning to our n = 2 case, the left arrow is an isomorphism by Poincaré’s theorem, since F is
path connected and by our assumptions its fundamental group is abelian. What remains in this case
then is to show that homology behaves like homotopy, in the sense that H2(PX,F )→ H2(X,A) is
an isomorphism.

In general, if we assume that, for some n ≥ 3, πi(X,A) = 0 for i < n, then the absolute case
of the Hurewicz theorem implies that the left Hurewicz homomorphism is an isomorphism, and we
are left wanting to show that p∗ : Hn(PX,F )→ Hn(X,A) is an isomorphism.
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For this we can appeal to the relative Serre spectral sequence for the fibration pair (PX,F ) ↓
(X,A). It takes the form

E2
s,t = Hs(X,A;Ht(ΩX)) =⇒

s
Hs+t(PX,F ) = Hs+t−1(F ) .

provided the coefficient system is trivial. Since H0(ΩX) = Z[π1(X)], we are pretty much forced to
assume that X is simply connected if we want simple coefficients.

The universal coefficient theorem gives us a handle on the E2 term:

0→ Hs(X,A)⊗Ht(ΩX)→ Hs(X,A;Ht(ΩX))→ Tor(Hs−1(X,A), Ht(ΩX))→ 0 .

Now is the time to think about using induction on n: This will allow us to use the assumption
that πi(X,A) = 0 for i < n−1 to conclude that Hi(X,A) = 0 for i < n−1 and that πn−1(X,A)

∼=−→
Hn−1(X,A); but we have the additional assumption that πn−1(X,A) = 0 as well, soHn−1(X,A) = 0
too. The induction begins with the case n = 2.

So when s < n both end terms vanish, and the entire spectral sequence is concentrated along
and to the right of s = n.

We glean two facts from this vanishing result: First, Hi(PX,F ) = 0 for i < n, so H i(F ) = 0
for i < n− 1. We knew this already from the absolute Hurewicz theorem.

The second fact is that E2
n,0 survives intact to E∞n,0: Nothing can hit it, and it can hit nothing.

This is also the only nonzero group along the total degree line n, so (using what we know about the
bottom edge homomorphism) the projection map induces an isomorphism Hn(PX,F )→ Hn(X,A).
This is a spectral sequence “corner argument.”

Putting this together:

Theorem 65.4 (Relative Hurewicz theorem). Let X be a space and A a subspace. Assume both
of them are simply connected, and let n ≥ 2. Assume that πi(X,A) = 0 for 2 ≤ i < n. Then
Hi(X,A) = 0 for i < n, and the relative Hurewicz map

πn(X,A)→ Hn(X,A)

is an isomorphism.

With more care (see [63, Ch. 5, Sec. 7]) you can avoid the simple connectivity assumption.
However, with it in place, you get a converse statement: Suppose that both X and A are simply
connected, let n ≥ 2, and assume that Hq(X,A) = 0 for q < n. Simple connectivity of X implies
that π1(X,A) is trivial, so we have the hypotheses of the relative Hurewicz theorem with n = 2,
and conclude from H2(X,A) = 0 that π2(X,A) = 0. Continuing in this manner, we have the

Corollary 65.5. Let X be a space and A a subspace. Assume both of them are simply connected,
and let n ≥ 2. Assume that Hi(X,A) = 0 for 2 ≤ i < n. Then πi(X,A) = 0 for i < n, and the
relative Hurewicz map

πn(X,A)→ Hn(X,A)

is an isomorphism.

By replacing a general map by a relative CW complex, up to weak homotopy, we find the
following important corollary (which we state without the simple connectivity assumptions needed
to apply our work so far).
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Corollary 65.6 (Whitehead theorem). Let f : X → Y be a map of path connected spaces and let
n ≥ 1. If f∗ : πq(X) → πq(Y ) is an isomorphism for q < n and an epimorphism for q = n then
f∗ : Hq(X) → Hq(Y ) is an isomorphism for q < n and an epimorphism for q = n. The converse
holds if both X and Y are simply connected.

Taking n =∞ gives the further corollary:

Corollary 65.7. Any weak equivalence induces an isomorphism in homology. Conversely, if X and
Y are simply connected then any homology isomorphism f : X → Y is a weak equivalence.

Combining this with “Whitehead’s little theorem,” we conclude that if a map between simply
connected CW complexes induces an isomorphism in homology then it is a homotopy equivalence.

Exercises

Exercise 65.8. (a) Show that Hn+1(K(A,n);Z) = 0 for any abelian group and any n ≥ 2. Give
a counter-example for n = 1.
(b) Conclude that if X is (n − 1) connected, with n ≥ 2, then the Hurewicz map πn+1(X) →
Hn+1(X) is surjective. Give a counter-example for n = 1.

66 Double complexes and the Dress spectral sequence

A certain very rigid way of constructing a filtered complex occurs quite frequently – and, indeed,
the Serre or even the Leray spectral sequence can be constructed in this way. It leads to an easy
treatment of the multiplicative properties of the Serre spectral sequence (as well as, in due course,
an account of the behavior of Steenrod operations in it).

Double complexes

A double complex is a bigraded abelian group A = A∗,∗ together with differentials dh : As,t → As−1,t

and dv : As,t → As,t−1 that commute:
dvdh = dhdv .

For the moment we might as well assume that As,t is “first quadrant”:

As,t = 0 unless s ≥ 0 and t ≥ 0 .

An example is provided by the tensor product of two chain complexes C∗ and D∗: define

As,t = Cs ⊗Dt , dh(a⊗ b) = da⊗ b , dv(a⊗ b) = a⊗ db .

The graded tensor product is then the “total complex,” which in general is the chain complex
tA given by

(tA)n =
⊕
s+t=n

As,t

with differential determined by sending a ∈ As,t to

da = dha+ (−1)sdva .

Then

d2a = d(dha+ (−1)sdva) = (d2
ha+ (−1)sdhdva) + (−1)s−1(dvdha+ (−1)sd2

va) = 0 .
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Define a filtration on the chain complex tA as follows:

Fp(tA)n =
⊕

s+t=n, s≤p
As,t ⊆ (tA)n .

Let’s compute the low pages of the resulting spectral sequence. For a start,

E0
s,t = grs(tA)s+t = (Fs/Fs−1)s+t = As,t .

The differential in this associated graded object is determined by the vertical differential in A:

d0a = ±dva .

Then
E1
s,t = Hs,t(E

0, d0) = Hs,t(A; dv) ,

which we might write as Hv
s,t(A).

Now d1 is the part of the differential d that decreases s by 1: for a dv cycle in As,t,

d1[a] = [dha] .

So
E2
s,t = Hh

s,t(H
v(A)) =⇒

s
Hs+t(tA) .

But we can do something else as well. A double complex A can be “transposed” to produce a
new double complex AT with

AT
t,s = As,t

and for a ∈ AT
t,s

dTh (a) = (−1)sdva , dTv (a) = (−1)tdha .

When we set the signs up like that,
tAT∼= tA

as complexes. The double complex AT has its own filtration and its own spectral sequence,

TE2
t,s = Hv

t,s(H
h(A)) =⇒

t
Hs+t(tA) ,

converging to the same thing.
If A∗,∗ has a compatible multiplication – and we’ll let you decide what that means – then the

associated spectral sequences are multiplicative, as can easily be seen from the direct construction
given in §61.

Dress spectral sequence

Andreas Dress ([16]; see also [53]) developed the following variation of the approach to the Serre
spectral sequence originally employed by Serre himself. He proposed to model a general fibration –
indeed, a general map – by the product projections

pr1 : ∆s ×∆t → ∆s .
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He used these models to form a “singular” construction associated to any map π : E → B.

Sins,t(π) =

(f, σ) :

∆s ×∆t f //

pr1

��

E

π
��

∆s σ // B

commutes

 .

Since ∆s × ∆t ↓ ∆s is surjective, σ is determined by f . Commutativity says that the map σ is
“fiberwise.”

This construction sends any map π : E → B to a functor

Sin∗,∗(π) : ∆op ×∆op → Set ,

a “bisimplicial set.”
Continuing to imitate the construction of singular homology, we will next apply the free R-

module functor to this, to get a bisimplicial R-module RSin∗,∗(π). The final step is to define
boundary maps by taking alternating sums of the face maps. This provides us with a double
complex, that I will write S∗,∗(π).

There are two associated spectral sequences. One of them is a singular homology version of the
Leray spectral sequence, and specializes to the Serre spectral sequence in case π is a fibration. The
other serves to identify what the first one converges to. I will sketch the arguments.

Let’s compute the spectral sequence attached to the transposed double complex first. For this,
observe that an element of Sins,t(π) may be regarded as a pair of dotted arrows in the commutative
diagram

∆s f̂ //

σ

��

E∆t

π
��

B
c // B∆t

where c denotes the inclusion of the constant maps. If we form the pullback E′t in

E′t //

��

E∆t

π
��

B
c // B∆t

this is saying that Sins,t(π) = Sins(E
′
t), so

Ss,t(π) = Ss(E
′
t) .

But the map E′t → E∆t is a weak equivalence (because c : B → B∆t is), so

S∗(E
′
t)→ S∗(E)

is a quasi-isomorphism. This shows that

TE1
s,t = Hs(E)

for every t ≥ 0.
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Now we should think about what the differential in the t direction does. Each face map will
induce the identity, so the alternating sums will induce alternately 0 and the identity. The result is
that

TE2
s,t =

{
Hs(E) if t = 0

0 otherwise .

The spectral sequence collapses at this point, and we learn that there is a canonical isomorphism

H∗(tS∗,∗(π)) = H∗(E) .

This is then what the un-transposed spectral sequence will converge to. So how does it begin?
Fix a singular simplex σ : ∆s → B, and pull E ↓ B back along it. Any f : ∆s × ∆t → E

compatible with σ then factors uniquely as

∆s ×∆t

f

))//

pr1

%%

σ−1E

πσ
��

// E

π
��

∆s σ // B

Adjointing this, we find that the set of such f ’s forms the set of singular t-simplices in a space of
sections:

SintΓ(∆s, σ−1E) .

Forming the free R-module and then taking the corresponding chain complex gives a chain complex
for each σ ∈ Sins(B), namely

S∗(Γ(∆s, σ−1E)) .

So
E1
s,t =

⊕
σ:∆s→B

Ht(Γ(∆s, σ−1E)) .

A map φ : [s′]→ [s] in the simplex category determines a map

φ∗ : Γ(∆s, σ−1E)→ Γ(∆s′ , (σ ◦ φ)−1E)

and thereby a map φ∗ : E1
s,t → E1

s′,t: we have a simplicial R-module. The differential d1 is
the alternating sum of the face maps in this simplicial structure, and E2 is the homology of the
resulting chain complex. This much you can say for a general map π; this is a singular homology
form of the Leray spectral sequence.

If π is a fibration, the map σ−1E ↓ ∆s is a fibration, and hence trivial because ∆s is contractible.
So the space of sections is then just the space of maps from the base to the fiber. Write Fσ for the
fiber over the barycenter of ∆s, so that

Γ(∆s, σ−1E) ' F∆s

σ ' Fσ .

and
E1
s,t '

⊕
σ∈Sins(B)

Ht(Fσ) .

The resulting E2-term is the homology of B with coefficients in a corresponding local coefficient
system:

E2
s,t = Hs(B;Ht(p

−1(−)) .
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There are many advantages to this construction. It is transparently natural in the fibration and
it exists for any map. It presents the spectral sequence as one associated to a double complex,
and when we turn to cohomology, in the next lecture, the multiplicative structure of the associated
spectral sequence will be easy to establish.

Exercises

Exercise 66.1. Let R be any ring and C∗ a chain complex of projective (or even just flat) R-
modules, and let M be an R-module. Construct a “universal coefficient spectral sequence”

E2
s,t = TorRs (Ht(C∗),M) =⇒ Hs+t(C∗ ⊗RM)

in the following manner. Let M ← P∗ be a projective resolution of M as an R-module. Form the
double complex C∗ ⊗R P∗, and study the associated pair of spectral sequences.

Observe that this returns a short exact sequence as in Theorem 24.1 if R is a PID.

67 Cohomological spectral sequences

Upper indexing

We have set everything up for homology, but of course there are cohomology versions of everything
as well. Given a filtered space

· · · ⊆ F−1X ⊆ F0X ⊆ F1X ⊆ · · ·

we filtered the singular chains S∗(X) by

FsS∗(X) = S∗(FsX) .

Now we will filter the cochains with values in M by

F−sS
∗(X;M) = ker(S∗(X;M)→ S∗(Fs−1X;M)) .

Note the −s; this is necessary to produce an increasing filtration of S∗(X;M). Note also the s− 1.
This will make the indexing of the multiplicative structure better. For example, most of our filtered
spaces will have F−1 = ∅, in which case F0S

∗(X;M) = S∗(X;M) and all the other filtration degrees
are subcomplexes of this. Because we all have a bias towards positive numbers, it’s standard and
convenient to change notation to “upper indexing” as follows:

F s = F−s .

Then F ∗ is a decreasing filtration: F s ⊇ F s+1. If F−1X = ∅, then F 0S∗(X;M) = S∗(X;M) and
F sS∗(X;M) consists of the cochains that vanish on Fs−1X.

The singular cochain complex as normally written is the outcome of a similar sign reversal; so
the differential is of degree +1. The combination of these two reversals produces a spectral sequence
with the following “cohomological” indexing:

dr : Es,tr → Es+r,t−r+1
r .

To set this up slightly more generally, suppose that C∗ is a cochain complex equipped with a
decreasing filtration F ∗C∗. Write

grsCn = F sCn/F s+1Cn .

Call it first quadrant if
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• F 0C∗ = C∗,

• Hn(grsC∗) = 0 for n < s,

•
⋂
F sC∗ = 0.

Filter the cohomology of C∗ by

F sHn(C∗) = ker(Hn(C∗)→ Hn(F s−1C∗)) .

Theorem 67.1. Let C∗ be a cochain complex with a first quadrant decreasing filtration. There is a
naturally associated convergent cohomological spectral sequence

Es,tr =⇒
s
Hs+t(C)

with
Es,t1 = Hs+t(grsC∗)

and
Es,t∞ = grsHs+t(C∗) .

In particular we have the cohomology Serre spectral sequence of a fibration p : E → B:

Es,t2 = Hs(B;Ht(p−1(−)) =⇒
s
Hs+t(E) .

Product structure

One of the reasons for passing to cohomology is to take advantage of the cup-product. It turns
out that the cup product behaves itself in the cohomology Serre spectral sequence of a fibration p :
E → B. With a commutative coefficient ring R understood, the local coefficient system H∗(p−1(−))
is now a contravariant functor from Π1(B) to graded commutative R-algebras. Such coefficients
produce bigraded R-algebra

Es,t2 = Hs(B;Ht(p−1(−)))

that is graded commutative in the sense that

yx = (−1)|x||y|xy

where |x| and |y| denote total degrees of elements. The entire spectral sequence is then “multiplica-
tive” in the following sense.

• Each E∗,∗r is a commutative bigraded R-algebra.

• dr is a derivation: dr(xy) = (drx)y + (−1)|x|x(dry).

• The isomorphism E∗,∗r+1
∼=H∗,∗(E∗,∗r ) is one of bigraded algebras.

• E∗,∗2 = H∗(B;H∗(p−1(−))) as bigraded R-algebras.

• The filtration on H∗(E) satisfies

F sHn(E) · F s′Hn′(E) ⊆ F s+s′Hn+n′(E) .
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• The isomorphisms
Es,t∞
∼= grsHs+t(E)

together form an isomorphism of bigraded R-algebras.

Theorem 67.2. Let p : E → B be a Serre fibration, and assume given a commutative coefficient
ring R. There is a naturally associated multiplicative cohomological first quadrant spectral sequence
of R-modules

Es,t2 = Hs(B;Ht(p−1(−)) =⇒
s
Hs+t(E) .

One of the virtues of the construction of the Serre (or more generally Leray) spectral sequence
by the method described in Lecture 66 is that the multiplicative structure arises in a natural and
explicit way. The bisimplicial set S∗,∗(π) gives rise to a bicosimplicial R-algebra Map(S∗,∗(π), R),
where the R-algebra structure is obtained by simply multiplying in R. Then applying the Alexander-
Whitney map in both directions produces a (non-commutative but associative) algebra structure
on a double complex, and the resulting filtered complex has the structure of a filtered differential
graded algebra. The multiplicative structure of the spectral sequence is then easy to produce, and
extends to a description of the effect of Steenrod operations in it as well [62]. The construction from
a CW filtration of the base requires us to choose a skeletal approximation of the diagonal. Anyway, I
will not make a further attempt to justify the multiplicative behavior of the Serre spectral sequence.

Instead, let’s look at an example: The cohomology Gysin sequence for a fibration p : E → B
whose fibers are R-homology (n− 1)-spheres with compatible R-orientations takes the form

· · · → Hs−n(B)
±e(ξ)·−−−−→ Hs(B)

p∗−→ Hs(E)
p∗−→ Hs−n+1(B)→ · · · .

The identity of the middle map with p∗ follows from the edge-homomorphism arguments of Lecture
64 but reformulated in cohomology. How about the other two maps?

Euler class

To understand them let’s look at the cohomological Serre spectral sequence giving rise to the Gysin
exact sequence. It has two nonzero rows, E∗,0r and E∗,n−1

r . The multiplicative structure provides
E∗,n−1
r with the structure of a module over E∗,0r . The assumed orientation of the spherical fibration

determines a distinguished class σ in the R-module E0,n−1
2 = H0(B;Hn−1(F )) (one that evaluates

to 1 on each orientation class – remember, the base may not be connected!), and E∗,n−1
2 is free as

E∗,02 = H∗(B)-module on this generator.
The transgression of this element,

e = dnσ ∈ En,0n = Hn(B) ,

is a canonically defined class, called the Euler class of the R-oriented spherical fibration.
This class determines the entire transgression H∗(B)→ H∗(B) in the Gysin sequence:

x 7→ dn(x · σ) = (−1)|x|xe = ±ex

by the Leibnitz formula, since dnx = 0.
The Euler class is a “characteristic class,” in the sense that if we use f : B′ → B to pull the

spherical fibration ξ : E ↓ B back to f∗ξ : E′ ↓ B′ (along with the chosen orientation), then

f∗(e(ξ)) = e(f∗ξ) .
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In particular E might be the complement of the zero section of an R-oriented real n-plane
bundle. The universal case is then ξn : ESO(n) ↓ BSO(n), and we receive a canonical cohomology
class

en = e(ξn) ∈ Hn(BSO(n);R) .

If we use coefficients in F2, every n-plane bundle is canonically oriented and we receive a class
en ∈ Hn(BO(n);F2).

In a sense the Euler class is the fundamental characteristic class: it rules all others. To illustrate
its importance, notice that if the spherical fibration p : E → B has a section s : B → E then the
map p∗ : H∗(B)→ H∗(E) is a split injection. The Gysin sequence becomes a short exact sequence;
p∗ = 0. Said differently, the edge homomorphism story shows that in that case all differentials
hitting the base are trivial; in particular e(ξ) = 0. So if e(ξ) 6= 0 then the bundle doesn’t admit a
section. If the bundle was the complement of the zero section in an R-oriented vector bundle, e(ξ)
is an obstruction to the existence of a nowhere zero section.

The Euler class gets its name from the following theorem.

Theorem 67.3 (e.g. [46, Corollary 11.12]). Let M be an R-oriented closed manifold. Then evalu-
ating the Euler class of the tangent bundle τ on the fundamental class of M produces the image in
R of the Euler characteristic of M :

< e(τ), [M ] >= χ(M) ∈ R .

Remark 67.4. If ξ is an oriented n-plane bundle over a finite CW complex B of dimension at
most n, then it turns out that the Euler class is the only obstruction to compressing a classifying
map B → BSO(n) through a map to BSO(n− 1): it is a complete obstruction to a section. Thus
for example the Euler characteristic closed oriented n-manifold vanishes if and only if the manifold
admits a nowhere vanishing vector field. Since 2e(ξ) = 0 if n is odd, it follows that any oriented
odd dimensional manifold has vanishing Euler characteristic (as follows also from Poincaré duality),
and so admits a nowhere vanishing vector field.

Integration along the fiber

How about the last map, Hs(E) → Hs−n+1(B)? This is a “wrong-way” or “umkher” map – it
moves in the opposite direction from p∗ : Hs(B) → Hs(E) – and also decreases dimension by the
dimension of the fiber. In fact let p : E → B be any fibration such that Ht(p−1(−)) = 0 for all
t ≥ n, and suppose we are given a map of local systems

Hn(p−1(−))→ R

to the trivial local system of R-modules. For example the fibers might be closed (n− 1)-manifolds,
equipped with compatible R-orientations.

Now we have a new edge, an upper edge, and our map is given by a new edge homomorphism:

p∗ : Hs(E) = F 0Hs(E) = F s−n+1Hs(E)� Es−n+1,n−1
∞ ↪→ Es−n+1,n−1

2 → Hs−n+1(B) .

This edge homomorphism can sometimes be given geometric meaning as well. With real coefficients,
for example, we can use deRham cohomology, and regard the map p∗ as “integration along the fiber.”
We’ll see another interpretation of the umkher map in terms of the Pontryagin-Thom construction
in Lecture 76.
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The multiplicative structure of the spectral sequence implies that the umkher map p∗ is a module
homomorphism for the graded algebra H∗(B):

p∗((p
∗x) · y) = x · p∗y .

This important formula has various names: “Frobenius reciprocity,” or the “projection formula.”

Loop space of Sn again

Let’s try to compute the cup product structure in the cohomology of ΩSn, again using the Serre
spectral sequence for PSn ↓ Sn. One way to analyze this would be to set up the cohomology version
of the Wang sequence, subject of a homework problem. But let’s just use the spectral sequence
directly. Take n > 1.

To begin,
Es,t2 = Hs(Sn;Ht(ΩSn)) = Hs(Sn)⊗Ht(ΩSn) .

There are two nonzero columns. Write ιn ∈ Hn(Sn) for the dual of the orientation class. The
cohomology transgression dn : E0,n−1

2 → En,02 must be an isomorphism. Write x ∈ Hn−1(ΩSn) for
the unique class mapping to ιn.

As in the homology calculation (or because of it) we know that Hk(n−1)(ΩSn) is an infinite
cyclic group. A first question then is: Is the the cup k-th power xk a generator?

First assume that n is odd, so that |x| = n− 1 is even. Then by the Leibniz rule

dnx
2 = 2(dnx)x = 2ιnx .

This is twice the generator of En,n−1
2 . In order to kill the generator itself, we must be able to divide

x2 by 2 in H2(n−1)(ΩSn). So there is a unique element, call it γ2, such that 2γ2 = x2, and it serves
as a generator for the infinite cyclic group H2(n−1)(ΩSn).

With this in the bag, let’s observe that the transgression of xk is

dnx
k = k(dnx)xk−1 = kιnx

k−1 .

For example
dnx

3 = 3ιnx
2 = 3 · 2ιnγ2 .

Since ιnγ2 is a generator of En,2(n−1)
2 , the element x3 must be divisible by 3 · 2 = 3!: there is a

unique element of H3(n−1)(ΩSn), call it γ3, such that x3 = 3!γ3.
This evidently continues: Hk(n−1)(ΩSn) is generated by a class γk such that xk = k!γk. This

implies that these generators satisfy the product formula

γjγk = (j, k)γj+k , (j, k) =
(j + k)!

j!k!
.

This is a divided power algebra, denoted by Γ[x]:

H∗(ΩSn) = Γ[x] for n odd , |x| = n− 1 .

The answer is the same for any coefficients. With rational coefficient, these divided classes are
already present, so

H∗(ΩSn;Q) = Q[x] .

Then H∗(ΩSn;Z), being torsion-free, sits inside this as the sub-algebra generated additively by the
classes xk/k!.
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Now let’s turn to the case in which n is even. Then |x| is odd, so by commutativity 2x2 = 0.
But H2(n−1)(ΩSn) is torsion-free, so x2 = 0.

So we need a new indecomposable element in H2(n−1)(ΩSn): Call it y. Choose the sign so that

dny = ιnx ∈ En,n−1
n .

Now |y| = 2(n− 1) is even, so
dny

k = kιny
k−1x

and
dn(xyk) = ιny

k − x · kyk−1ιnx = ιny
k

(since x2 = 0). Reasoning as before, we find that

H∗(ΩSn) = E[x]⊗ Γ[y] for n even , |x| = n− 1 , |y| = 2(n− 1) .

Exercises

Exercise 67.5. Compute the homology of the unit sphere bundle of a closed oriented surface.

Exercise 67.6. Analyze the cohomology Serre spectral sequence for the same fibration that you
studied in Exercise 62.7: Differentials? Extensions?

Exercise 67.7. Let f : S2 → S2 be a map of degree 2, as in Exercise 62.6, and let F be its
homotopy fiber. Compute the homology and cohomology of F , with coefficients in Z and in F2.
What is the ring structure in cohomology? The action map ΩS2 × F → F makes H∗(F ) into a
module for the algebra H∗(ΩS2). What is this module structure?

68 Serre classes

Let X be a simply connected space. Suppose that Hq(X) is a torsion group for all q: every element
x ∈ Hq(X) is killed by some positive integer. This is the same as saying thatX has the same rational
homology as a point. Is every homotopy group then also a torsion group, or can rational homotopy
make an appearance? What if the reduced homology was all p-torsion (i.e. every element is killed
by some power of p) – must π∗(X) also be entirely p-torsion? What if the homology is assumed
to be of finite type (finitely generated in every dimension) – must the same be true of homotopy?
Serre explained how things like this can be checked, without explicit computation (which is often
not an option!) by describing what is required of a class C of abelian groups that allow it to be
considered “negligible.”

Definition 68.1. A class C of abelian groups is a Serre class if 0 ∈ C, and, for any short exact
sequence 0→ A→ B → C → 0, A and C lie in C if and only if B does.

Here are some immediate consequences of this definition.

• A Serre class is closed under isomorphisms.

• A Serre class is closed under formation of subgroups and quotient groups.
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• Let A i−→ B
p−→ C be exact at B. If A,C ∈ C, then B ∈ C: In

A
i

!!����
0 // ker p // B //

p

##

coker i //
��

��

0

C

the row is exact and the indicated factorizations exist since pi = 0; the surjectivity and
injectivity express exactness.

Here are the main examples.

Example 68.2. The class of trivial abelian groups; the class Cfin of all finite abelian groups; the
class Cfg of all finitely generated abelian groups; the class of all abelian groups.

Example 68.3. Ctors, the class of all torsion abelian groups. To see that this is a Serre class, start
with a short exact sequence

0→ A
i−→ B

p−→ C → 0 .

It’s clear that if B is torsion then so are A and C. Conversely, suppose that A and C are torsion
groups. Let b ∈ B. Then p(nb) = np(b) = 0 for some n > 0, since C is torsion; so there is a ∈ A
such that i(a) = nb. But A is torsion too, so ma = 0 for some m > 0, and hence mnb = 0.

Example 68.4. Fix a prime p. The class of p-torsion groups forms a Serre class. More generally,
let P be a set of primes. Define CP to be the class of torsion abelian groups A such that if p divides
the order of a ∈ A for some p ∈ P then a = 0. If P = ∅ this is just Ctors. Write Cp for C{p}.
This is the class of torsion abelian groups without p-torsion. Since Z(p) is a direct limit of copies
of Z with bonding maps running through the natural numbers prime to p, A ∈ Cp if and only if
A ⊗ Z(p) = 0. These are the kinds of groups you’re willing to ignore if you are only interested in
“p-primary” information.

Example 68.5. The intersection of a collection of Serre classes is again a Serre class. For example,
Cfin ∩ Cp is the class of finite abelian groups of order prime to p.

The definition of a Serre class is set up so that it makes sense to work “modulo C.” So we’ll
say that A is “zero mod C” if A ∈ C. A homomorphism is a “mod C monomorphism” if its kernel
lies in C; a “mod C epimorphism” if its cokernel lies in C; and a “mod C isomorphism” if both
kernel and cokernel lie in C. So for example f : A → B is a mod Ctors isomorphism exactly when
f ⊗ 1 : A⊗Q→ B ⊗Q is an isomorphism of rational vector spaces.

Lemma 68.6. Let C be a Serre class. The classes of mod C monomorphisms, epimorphisms, and
isomorphisms contain all isomorphisms and are closed under composition. The class of mod C
isomorphisms satisfies 2-out-of-3.
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Proof. Form

0

��

0

kerβ //

��

cokerα

��

??

B

??

β

��
0 // kerβα

??

// A

α
??

βα // C //

��

cokerβα

��

// 0

kerα

??__

cokerβ

�� ��
0

??

0

__

0 0

and check that the outside path is exact.

Here are some straightforward consequences of the definition. Let C be a Serre class.

• Let C∗ be a chain complex. If Cn ∈ C then Hn(C∗) ∈ C.

• Suppose F∗A is a filtration on an abelian group. If A ∈ C, then grsA ∈ C for all s. If the
filtration is finite (i.e. Fm = 0 and Fn = A for some m,n) and grsA ∈ C for all s, then A ∈ C.

• Suppose we have a spectral sequence {Ers,t}. If E2
s,t ∈ C, then Ers,t ∈ C for r ≥ 2. If {Er}

is a first quadrant spectral sequence (so that E∞s,t is defined and achieved at a finite stage)
it follows that E∞s,t ∈ C. Thus if the spectral sequence comes from a first quadrant filtered
complex C and E2

s,t ∈ C for all s+ t = n, then Hn(C) ∈ C.

The first implication in homology is this: Suppose that A ⊆ X is a pair of path-connected
spaces. If two of Hn(A), Hn(X), Hn(X,A) are zero mod C for all n, then so is the third. More
generally, if you have a ladder of abelian groups (a map of long exact sequences) and two out of
every three consecutive rungs are mod C isomorphisms then so is the third: a mod C five-lemma.

Serre rings and Serre ideals

To apply this theory to the Serre spectral sequence we need to know that our class is compatible
with tensor product. Let’s say that a Serre class C is a Serre ring if whenever both A and B are in
C, A⊗ B and Tor(A,B) are too. It’s a Serre ideal if we only require one of A and B to lie in C to
have this conclusion.

All of the examples given above are Serre rings. The ones without finiteness assumptions are
Serre ideals.

Here’s another closure property we might investigate, and will need. Suppose that C is a Serre
ring and A ∈ C. Form the classifying space or Eilenberg Mac Lane space BA = K(A, 1). We know
that H1(K(A, 1)) = A (for example by Poincaré’s theorem) so it lies in C. How about the higher
homology groups? If they are again in C, the Serre ring is acyclic.

Acyclicity is a computational issue. Suppose C = Cfin for example. By the Künneth theorem
(and the fact that Cfin is a Serre ring), it’s enough to consider finite cyclic groups. What is H∗(BCn),
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where Cn is a cyclic group of order n? To answer this we can embed Cn into the circle group S1 as
nth roots of unity. The group of complex numbers of norm 1 acts principally on the unit vectors in
C∞, and that space, S∞, is contractible. So CP∞ = BS1. The subgroup Cn ⊂ S1 acts principally
on this contractible space as well, so

BCn = Cn\S∞ = (Cn\S1)×S1 S∞

fibers over CP∞ with fiber Cn\S1∼=S1. Let’s study the resulting Serre spectral sequence, first in
homology.

In it, E2
s,t = Hs(CP∞) ⊗Ht(S

1). The only possible differential is d2. The one thing we know
about K(Cn, 1) is that is fundamental group is Cn – abelian, so H1(K(Cn, 1)) = Cn. The only
way to accomplish this in the spectral sequence is by d2a = nσ, where σ ∈ H1(S1) is one of the
generators.

This implies that in the cohomology spectral sequence d2e = nx, where e generates H1(S1) and
x generates H2(CP∞). Then the multiplicative structure takes over: d2(xie) = nxi+1.

The effect is that Es,t3 = 0 for t > 0. The edge homomorphism H∗(CP∞) → H∗(BCn) is thus
surjective, and we find

H∗(BCn) = Z[x]/(nx) , |x| = 2 .

Passing back to homology, we find that H i(BCn) is cyclic of order n if i is a positive odd integer
and zero otherwise. In particular, it is finite, so Cfin is acyclic.

Since any torsion abelian group A is the direct limit of the directed system of its finite subgroups,
we find that Hq(K(A, 1)) is then torsion as well: so Ctors is also acyclic.

The calculation also shows that the class of finite p-groups and the class Cp are acyclic.
To deal with Cfg, we just have to add the infinite cyclic group, whose homology is certainly

finitely generated in each degree. So all our examples of Serre rings are in fact acyclic.

Serre classes in the Serre spectral sequence

Let C be a Serre ideal. If Hn(X) and Hn−1(X) are zero mod C then Hn(X;M) is zero mod C for
any abelian group M , by the universal coefficient theorem. If C is only a Serre ring, we still reach
this conclusion provided M ∈ C.

The convergence theorem for the Serre spectral sequence shows this:

Proposition 68.7 (Mod C Vietoris-Begle Theorem). Let π : E → B be a fibration such that B and
the fiber F are path connected, and suppose π1(B) acts trivially on H∗(F ). Let C be a Serre ideal
and suppose that Ht(F ) ∈ C for all t > 0. Then π∗ : Hn(E)→ Hn(B) is a mod C isomorphism for
all n.

Proof. The universal coefficient theorem guarantees that E2
s,t = Hs(B;Ht(F )) ∈ C as long as t > 0.

The same is thus true of Ers,t and hence of E∞s,t, so the edge homomorphism π∗ : Hn(E) → Hn(B)
is a mod C isomorphism.

This theorem admits a refinement that will be useful in proving the mod C Hurewicz theorem.
For one thing, we would like a result that works for a Serre ring, not merely an Serre ideal, in order
to cover cases like Cfg

Proposition 68.8. Let π : E → B be a fibration such that B is simply connected and the fiber F
is path connected. Let C be a Serre ring and suppose that

• Hs(B) ∈ C for all s with 0 < s < n, and
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• Ht(F ) ∈ C for all 0 < t < n− 1.

Then π∗ : Hi(E,F )→ Hi(B, ∗) is an isomorphism mod C for all i ≤ n.

Proof. We appeal to the relative Serre spectral sequence

E2
s,t = Hs(B;Ht(F )) =⇒

s
Hs+t(E,F ) .

At E2
s,t, both the s = 0 column and the s = 1 column vanish. Also, E2

s,t ∈ C for (s, t) in the
rectangle

2 ≤ s ≤ n− 1 , 1 ≤ t ≤ n− 2 .

In total degree i, i ≤ n, the only group not vanishing mod C is E2
i,0. So the edge homomorphism

π∗ : Hi(E,F )→ H i(B) is a mod C isomorphism.

Theorem 68.9 (Mod C Hurewicz theorem). Assume that C is an acyclic Serre ring. Let X be a
simply connected space and let n ≥ 2. Then πq(X) ∈ C for all q < n if and only if Hq(X) ∈ C for
all q < n, and in that case the Hurewicz map πn(X)→ Hn(X) is a mod C isomorphism.

We’ll present the proof in the next lecture. For now, a small selection of corollaries:

Corollary 68.10. Let X be a simply connected space and n ≥ 2 or n =∞.
(1) Hq(X) is finitely generated for all q < n if and only if πq(X) is finitely generated for all q < n.
(2) Let p be a prime number. Hq(X) is p-torsion for all q < n if and only if πq(X) is p-torsion for
all q < n.
(3) If Hq(X;Q) = 0 for q < n, then πq(X)⊗Q = 0 for q < n, and h : πn(X)⊗Q→ Hn(X;Q) is
an isomorphism.

Exercise

Exercise 68.11. Suppose that X is simply connected space. Show that H∗(X) is of finite type
(finitely generated as abelian group in each dimension) if and only if H∗(ΩX) is. Similarly, show
that H∗(X) is entirely p-torsion if and only if H∗(ΩX) is entirely p-torsion.

Exercise 68.12. Show that if A is a finitely generated abelian group then H∗(K(A,n)) is of finite
type for any n > 1. (We did the case n = 1 in class.) Show that if A is p-torsion then the same is
true for H i(K(A,n)) for any n and i.

69 Mod C Hurewicz and Whitehead theorems

Proof of Theorem 68.9. This follows the proof of the Hurewicz theorem, but some extra care is
needed. Again we use induction and the path-loop fibration. Again, it will suffice to show that if
πq(X) ∈ C for q < n then πn(X)→ Hn(X) is an isomorphism – now mod C. To start the induction,
with n = 2, we can appeal to the Hurewicz isomorphism: the map π2(X) → H2(X) is an actual
isomorphism.

The inductive step uses the commutative diagram

πq(X)

h
��

πq(PX,ΩX)

h
��

∼=oo
∼= // πq−1(ΩX)

h
��

Hq(X) Hq(PX,ΩX)oo
∼= // Hq−1(ΩX) .
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Two thing need checking: (1) the map Hn(PX,ΩX) → Hn(X) is an isomorphism mod C, and (2)
the map h : πn−1(ΩX)→ Hn−1(ΩX) is an isomorphism mod C.

Neither of these facts follow from an inductive hypothesis if π2(X) 6= 0 (unless C is the trivial
class), but we begin by showing that they do follow from the inductive hypothesis if π2(X) = 0.

Suppose π2(X) = 0, so that ΩX is simply connected. Since πi(ΩX) = πi+1(X) we know it
lies in C for i < n − 1. The inductive hypothesis applies to ΩX and shows that H i(ΩX) ∈ C for
i < n− 1 and that h : πn−1(ΩX)→ Hn−1(ΩX) is a mod C isomorphism. The inductive hypothesis
also applies to X of course, and shows that H i(X) ∈ C for i < n. So we are in position to apply
Proposition 68.8 from last lecture to see fact (1).

But if π2(X) 6= 0, ΩX is not simply connected. To deal with that, let’s take the 2-connected
cover in the Whitehead tower: This is a fibration Y ↓ X with fiber K = K(π2(X), 1). This is where
the acyclic condition comes in: since π2(X) ∈ C, Hi(K) ∈ C for i > 0. The long exact sequence for
the pair (Y,K) shows that

H i(Y )→ Hi(Y,K)

is a mod C isomorphism. We will apply Proposition 68.8 to (Y,K) ↓ (X, ∗), using the fact that X
is simply connected and Hi(X) ∈ C for 0 < i < n. We find that

Hi(Y,K)→ Hi(X, ∗)

is a mod C isomorphism for i ≤ n. Therefore the projection map H i(Y ) → H i(X) is a mod C
isomorphism for i ≤ n.

The map πi(Y ) → πi(X) is an isomorphism for i ≥ 2, so our hypothesis applies to Y , and we
can perform the inductive step on it instead of on X.

Corollary 69.1. Let X be a simply connected space, p a prime, and n ≥ 2. Then πi(X)⊗Z(p) = 0

for all i < n if and only if H i(X;Z(p)) = 0 for all i < n, and in that case

h : πn(X)⊗ Z(p) → Hn(X;Z(p))

is an isomorphism.

Proof. The acyclic Serre ring Cp consists of abelian groups such that A⊗ Z(p) = 0.

Now for the relative version!

Theorem 69.2 (Relative mod C Hurewicz theorem). Let C be an acyclic Serre ideal, and (X,A) a
pair of spaces, both simply connected. Fix n ≥ 1. Then πi(X,A) ∈ C for all i with 2 ≤ i < n if and
only if Hi(X,A) ∈ C for all i with 2 ≤ i < n, and in that case h : πn(X,A) → Hn(X,A) is a mod
C isomorphism.

The proof follows the same line as in the absolute case. But note the requirement here, in the
relative case, that C is a Serre ideal. Let me just point out where that assumption is required. We
use the same diagram, in which F is the homotopy fiber of the inclusion A ↪→ X:

πn−1(F )

h
��

πn(PX,F )
∼=oo

h
��

∼= // πn(X,A)

h
��

Hn−1(F ) Hn(PX,F )
∼=oo p∗ // Hn(X,A) .

In the proof that p∗ is an isomorphism, we’ll again use the relative Serre spectral sequence, but now
the E2 term is E2

s,t = Hs(X,A;Ht(X)), and we have no control over Ht(X): all our assumptions
related to the relative homology.

And this leads on to a mod C Whitehead theorem:
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Theorem 69.3 (Mod C Whitehead theorem). Let C be an acyclic Serre ideal, and f : X → Y a
map of simply connected spaces. Fix n ≥ 2. The following are equivalent.
(1) f∗ : πi(X)→ πi(Y ) is a mod C isomorphism for i ≤ n− 1 and a mod C epimorphism for i = n,
and
(2) f∗ : Hi(X)→ Hi(Y ) is a mod C isomorphism for i ≤ n−1 and a mod C epimorphism for i = n.

The theory of Serre classes is quite beautiful, but it does not relate easily to the standard way
of working with homology with coefficients. The following lemma forms the link between mod p
homology and the mod Cp Whitehead theorem.

Lemma 69.4. Let X and Y be spaces whose p-local homology is of finite type, and suppose f : X →
Y induces an isomorphism in mod p homology. Then it induces a mod Cp isomorphism in integral
homology.

Proof. Since Z(p) is flat, a homomorphism f : A → B is a mod C isomorphism if and only if
f ⊗ 1 : A⊗ Z(p) → B ⊗ Z(p) is an isomorphism.

A finitely generated module over Z(p) is trivial if it’s trivial mod p. So we want to show that
the kernel and cokernel of f∗ : H∗(X)→ H∗(Y ) are trivial after tensoring with Fp.

Form the mapping cone Z of the map f . By assumption it has trivial mod p reduced homology.
Since Z(p) is Noetherian, H∗(Z;Z(p)) is of finite type. The universal coefficient theorem shows
that H∗(Z;Z(p)) ⊗ Fp embeds in H∗(Z;Fp), which is trivial, so we conclude that H∗(Z) ⊗ Z(p) =

H∗(Z;Z(p)) = 0, and hence that f∗ ⊗ 1 : H∗(X)⊗ Z(p) → H∗(Y )⊗ Z(p) is an isomorphism.

Corollary 69.5. Let X and Y be simply connected spaces whose p-local homology is of finite type,
and suppose f : X → Y induces an isomorphism in mod p homology. Then f∗ : π∗(X) ⊗ Z(p) →
π∗(Y )⊗ Z(p) is an isomorphism.

This is every topologist’s favorite theorem! Absent the fundamental group, you can treat primes
one by one.

Some calculations

Let’s first compute the homology – well, at least the rational homology – of the Eilenberg Mac Lane
space K(A,n), for A finitely generated. By the Künneth isomorphism it suffices to do this for A
cyclic. When A is any torsion group, the mod Ctors Hurewicz theorem shows that H∗(K(A,n);Q) =
0. So we will focus on K(Z, n).

The case n = 1 is the circle, whose cohomology is an exterior algebra on one generator of
dimension 1: H∗(K(Z, 1);Q) = E[ι1], |ι1| = 1.

We know what H∗(K(Z, 2);Q) is, too, but let’s compute it in a way that starts an induction. It
also follows the path laid down by Serre in his computation of the mod 2 cohomology of K(A,n),
using the fiber sequence

K(A,n− 1)→ PK(A,n)→ K(A,n) .

When n = 2 there are only two rows – this is a spherical fibration. The class ι1 must transgress to a
generator, call it ι2 ∈ H2(K(Z, 2);Q). Proceeding inductively, using d2(ιk2ι1) = ιk+1

2 , you find that

H∗(K(Z, 2);Q) = Q[ι2] .

When n = 3, there is a polynomial algebra in the fiber. Again the fundamental class must
transgress to a generator, ι3 = d3ι2 ∈ H3(K(Z, 3);Q). The Leibniz formula gives d3(ιk2) = kι3ι

k−1
2 .
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This differential is an isomorphism: this is where working over Q separates from working anywhere
else. So we discover that

H∗(K(Z, 3);Q) = E[ι3] .

This starts the induction, and leads to

H∗(K(Z, n);Q) =

{
E[ιn] if n is odd
Q[ιn] if n is even .

In both cases, the cohomology is free as a graded commutative algebra.

Proposition 69.6. The homotopy group πi(Sn) is finite for all i except for i = n and if n is even
for i = 2n− 1, when it is finitely generated of rank 1.

Proof. The case n = 1 is special and simple, so suppose n ≥ 2. Let

Sn → K(Z, n)

represent a generator of Hn(Sn). It induces an isomorphism in πn and in Hn.
When n is odd, it induces an isomorphism in rational homology, and therefore in rational

homotopy.
When n is even, we should compute the cohomology of the fiber F . The class ιn on the base

survives to a generator of Hn(Sn;Q), but ι2n must die. The only way to kill it is by a transgression
from a class ι2n−1 ∈ H2n−1(F ): d2nι2n−1 = ι2n. Then the Leibniz formula gives d2n(ιknι2n−1) =
kιk−1
n , leaving precisely the cohomology of Sn. So the fiber has the same rational cohomology as

K(Z, 2n− 1). The generator ι2n−1 gives a map F → K(Z, 2n− 1) that induces an isomorphism in
rational homology, and hence in rational homotopy.

You might ask: Why couldn’t this cancellation happen some other way? You can complete this
argument, but perhaps you’ll prefer a different approach. Loop the Barratt-Puppe sequence back
one notch, to a fiber sequence K(Z, n− 1)→ F → Sn, and work directly in homology. Now (n− 1)
is odd, so the entire E2 term has just four generators. The generator x ∈ Hn(Sn) must transgress
to the fiber (else F would have the wrong homology in dimension n − 1, or using the relationship
between the transgression and the boundary map in homotopy), and what’s left at En+1 is just a
Q for E2

0,0 and a Q for E2
n,n−1.

We can identify an element of infinite order in π4k−1(S2k) in several ways. Here’s one. The
space Sm×Sn admits a CW structure with (m+n−1)-skeleton given by the wedge Sm∨Sn. There
is thus a map

ω : Sm+n−1 → Sm ∨ Sn

that serves as the attaching map for the top cell. Given homotopy classes α ∈ πm(X) and β ∈ πn(X),
we an form the composite

Sm+n−1 ω−→ Sm ∨ Sn α∨β−−→ X ∨X ∇−→ X

This defines the Whitehead product

[−,−] : πm(X)× πn(X)→ πm+n−1(X).

When m = 1, this is determined by the action of π1(X) on πn(X):

[α, β] = α · β − β
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(where |α| = 1, and if |β| = 1 this is to be interpreted as αβα−1β−1). In general, it provides
homotopy groups with the structure of a graded Lie algebra: for α, β, γ ∈ π∗(X) of degrees p, q, r >
1, then [80, §X.7]

[α, β] = (−1)pq[β, α]

and
(−1)rp[[α, β], γ] + (−1)pq[[β, γ], α] + (−1)qr[[γ, α], β] = 0 .

Now we can define the Whitehead square

wn = [ιn, ιn] ∈ π2n−1(Sn) .

When n = 2k, it generates an infinite cyclic subgroup.
The same calculation works for a while locally at a prime. Let’s look at S3 for definiteness.

Follow the Barratt-Puppe sequence back one stage, to get a fibration sequence

K(Z, 2)→ τ≥4S
3 → S3

In the spectral sequence, with integral coefficients,

E∗,∗2 = E[σ]⊗ Z[ι2] .

The class ι2 must transgress to σ (at least up to sign), and then

d2(ιk2) = kσιk−1
2 .

This map is always injective, leaving
E3,2k−2

3 = Z/kZ

and nothing else except for E0,0
3 = Z. The result is that

H2k(τ≥4S
3) = Z/kZ , k ≥ 1 .

The first time p-torsion appears is in dimension 2p: H2p(τ≥4S
3) = Z/pZ. This is the mod Cp

Hurewicz dimension, so πi(S3) has no p-torsion in dimension less than 2p, and

π2p(S
3)⊗ Z(p) = Z/pZ .

When p = 2, this group is generated by the suspension of the Hopf map.

70 Freudenthal, James, and Bousfield

Suspension

The transgression takes on a particularly simple form if the total space is contractible.
Remember the adjoint pair

Σ : Top∗ � Top∗ : Ω .

The adjunction morphisms
σ : X → ΩΣX , ev : ΣΩX → X

are given by
σ(x)(t) = [x, t] , ev(ω, t) = ω(t) .
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Proposition 70.1. Let X be a path connected space. The transgression relation

Hn(X) ⇀ Hn−1(ΩX)

associated to the path loop fibration p : PX → X is the converse of the relation defined by the map

Hn−1(ΩX) = Hn(ΣΩX)
ev∗−−→ Hn(X) .

Proof. Recall that the transgression relation is given (in this case) by the span

Hn(PX,ΩX)
p∗

vv

∂

((
Hn(X) Hn−1(ΩX) .

It consists of the subgroup

{(x, y) ∈ Hn(X)×Hn−1(ΩX) : ∃ z ∈ Hn(PX,ΩX) such that p∗z = x and ∂z = y} .

We are claiming that this is the same as the subgroup

{(x, y) ∈ Hn(X)×Hn−1(ΩX) : ∃ w ∈ Hn(ΣΩX) such that ev∗w = x and iw = y}

determined by the span

Hn(ΣΩX)

ev∗

ww

i

''
Hn(X) Hn−1(ΩX)

where i : Hn−1(ΩX)
∼=−→ Hn(ΣΩX) is the canonical isomorphism.

To see this, we just have to remember how the boundary map and the isomorphism i are related.
This is a general point. So suppose we have a space X and a subspace A, so we are interested in
i : Hn(ΣX)→ Hn−1(X) and the the boundary map ∂ : Hn(X,A)→ Hn−1(A). The latter may be
described geometrically in the following way. Form the mapping cylinder M of the inclusion map
A→ X. Then A ↪→M is a cofibration with cofiber ΣA, and we have the span

(M,A)

zz %%
(X,A) (ΣA, ∗)

in which the left arrow is a homology isomorphism. The boundary map is induced by this span,
together with the isomorphism i.

Specializing to the pair (PX,ΩX) gives commutativity of part of the diagram

Hn(M,ΩX)
∼=

xx

∼=

&&
Hn(PX,ΩX)

p∗

yy
∂

,,

Hn(ΣΩX, ∗)

ev∗

rr

i

%%
Hn(X) Hn−1(ΩX) .
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The other part follows from homotopy commutativity of

(M,ΩX) //

��

(ΣΩX, ∗)

ev

��

σ; (ω, t) � //
_

��

∗; [ω, t]
_

��
(PX,ΩX)

p // (X, ∗) σ(0);ω � // σ(0); ∗ ∗;ω(t) .

Notation: the first entry is the map on PX = {σ : I → X such that σ(0) = ∗}; the second entry is
the map on ΩX × I. A homotopy between the two branches is given at time s by

σ;ω 7→ σ(s); (t 7→ ω(st)) .

This diagram shows that the two relations are identical.

The evaluation map ΣΩX → X also admits an interesting interpretation in cohomology, with
coefficients in an abelian group π:

H
n
(X;π) //

∼=

��

H
n−1

(ΩX;π)

∼=
��

[ΩX,K(π, n− 1)]∗

∼=
��

[X,K(π, n)]∗
Ω // [ΩX,ΩK(π, n)]∗

commutes.
Our identification of the evaluation map as the converse of a transgression allows us to invoke

the Serre exact sequence. After all, if the total space is contractible, every third term in the Serre
exact sequence vanishes, and the remaining map, the transgression, is an isomorphism. In fact, in
that case we get just a little extra, the last clause in the following proposition, which we state in
the generality of working modulo a Serre ring.

Proposition 70.2. Let C be a Serre ring. Let n ≥ 1 and suppose X is simply connected and that
H i(X) ∈ C for all i < n. Then the evaluation map ev∗ : H i−1(ΩX) → H i(X) is an isomorphism
mod C for i < 2n− 1 and an epimorphism mod C for i = 2n− 1.

This result leads the way to the “suspension theorem” of Hans Freudenthal (1905–1990; German,
working in Amsterdam, escaped from a labor camp during World War II). The relevant adjunction
morphism is now the “suspension”

σX : X → ΩΣX .

The formalism of adjunction guarantees commutativity of

ΣX
ΣσX //

1

$$

ΣΩΣX

evΣX

��
ΣX ,
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which shows for a start that σX induces a split monomorphism in reduced homology. But we also
know from 70.2 that if X is (n− 1) connected, the evaluation map in

H i(X)
(σX)∗//

=

%%

H i(ΩΣX)

(evΣX)∗
��

H i+1(ΣX)

is an isomorphism mod C for i < 2n: so the same is true for (σX)∗. Now we can apply the mod C
Whitehead theorem to conclude:

Theorem 70.3 (Mod C Freudenthal suspension theorem). Let C be an acyclic Serre ideal and n ≥ 1.
Let X be a simply connected space such that H i(X) is zero mod C for i < n. Then the suspension
map

πi(X)→ πi(ΩΣX) = πi+1(ΣX)

is a mod C isomorphism for i < 2n− 1 and a mod C epimorphism for i = 2n− 1.

Corollary 70.4. Let n ≥ 2. The suspension map

πi(S
n)→ πi+1(Sn+1)

is an isomorphism for i < 2n− 1 and an epimorphism for i = 2n− 1.

For example, π2(S2) → π3(S3) is an isomorphism (the degree is a stable invariant), while
π3(S2) → π4(S3) is only an epimorphism: the Hopf map S3 → S2 suspends to a generator of
π4(S3), which as we saw has order 2.

In any case, the Freudenthal suspension theorem show that the sequence

πk(X)→ · · · → πn+k(Σ
nX)→ πn+1+k(Σ

n+1X)→ · · ·

stabilizes. The direct limit is the reduced kth stable homotopy group of the pointed space X, πsk(X).
These functors turn out to form a generalized homology theory. The coefficients form a graded
commutative ring, the stable homotopy ring

πs∗ = πs∗(S
0) = lim

n→∞
π∗+n(Sn) .

The group πk+n(Sn) contributes to πsk, and the index k is often referred to as the “stem” or “stem
degree.”

EHP sequence

The homotopy groups of spheres are related to each other via the suspension maps, but it turns out
that there is more, based on the following consequence of a splitting theorem due to Ioan James.

Proposition 70.5 (e.g. [59, §7.9]). Let n ≥ 2. There is a map h : ΩSn → ΩS2n−1 that induces an
isomorphism in H2n−2(−).

Granting this, we can compute the entire effect in cohomology. When n is even, say n = 2k, the
generator y ∈ H4k−2(ΩS4k−1) hits the divided power generator in H4k−2(ΩS2k), and hence embeds
H∗(ΩS4k−1) into H∗(ΩS2k) isomorphically in dimensions divisible by (4k−2). The induced map in
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homology thus has the same behavior. It follows from the spectral sequence that the homotopy fiber
has the homology of S2k−1. But the suspension map S2k−1 → ΩS2k certainly composes into ΩS4k−1

to a null map, and hence lifts to a map to the homotopy fiber inducing a homology isomorphism.
By Whitehead’s theorem, it is a weak equivalence.

The Whitehead square w2k = [ι2k, ι2k] : S4k−1 → S2k has the property that the composite

ΩS4k−1 Ωw2k−−−→ ΩS2k h−→ ΩS4k−1

is an isomorphism in homology away from 2. So, using the multiplication in ΩS2k, there is a map,

S2k−1 × ΩS4k−1 → ΩS2k

that induces an isomorphism in homology away from 2, and hence by the mod C Whitehead the-
orem in homotopy away from 2. For this reason, even spheres are not very interesting homotopy
theoretically away from 2.

When n is odd, y ∈ H2n−2(ΩS2n−1) maps to the divided square of x ∈ Hn−1(ΩSn). This implies
that

γk(y) =
yk

k!
7→ (x/2)k

k!
=

(2k)!

2kk!
γ2k(x) .

A little thought shows that the numerator and denominator here contain the same power of 2, so
the map is still an isomorphism in Z(2) homology in dimensions divisible by 2n− 2, and hence the
fiber has the 2-local homology of Sn−1. The mod C2 Whitehead theorem shows that it also has the
2-local homotopy of Sn−1. We conclude:

Theorem 70.6. For any positive even integer n there is a fiber sequence

Sn−1 e−→ ΩSn
h−→ ΩS2n−1 .

Localized at 2, this sequence exists for n odd as well.

The map e is suspension (“Einhangung” in German) and h is the James-Hopf map. Moving one
step back in the Barratt-Puppe sequence, we have a map p : Ω2S2n−1 → Sn−1. It’s denoted by
p since it is related to the Whitehead product; for example, composed with the double suspension
map e2 : S2n−3 → Ω2S2n−1 gives us the Whitehead square wn−1 ∈ π2n−3(Sn−1). The long exact
homotopy sequence gives us the EHP sequence

· · ·
P

ss
πk(S

n−1)
E // πk+1(Sn)

H // πk+1(S2n−1)

P

ss
πk−1(Sn−1)

E // πk(S
n)

H // πk(S
2n−1)

P

ss· · ·

of homotopy groups (localized at 2 if n is odd).
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These sequences link together to form an exact couple! You can see this clearly from the diagram
of fiber sequences obtained by looping down the sequences of Theorem 70.6. Locally at 2, we have
a diagram in which each L is a fiber sequence.

· · · // Ωs−1Ss−1 //

��

ΩsSs

��

// Ωs+1Ss+1 //

��

· · · // Ω∞S∞

Ωs−1S2s−3 ΩsS2s−1 Ωs+1S2s+1

The limiting space Ω∞S∞ has homotopy equal to πs∗.
The resulting spectral sequence, the EHP spectral sequence, has the form

E1
s,t = π2s+1+t(S

2s+1) =⇒
s
πss+t .

Here’s a picture, taken from [39]. In it, 23 represents the elementary abelian group of order 8 and
“∞” means an infinite cyclic group. A superscript 2 means the index of the image is 2. Differentials
entering or exiting this range are not shown.

Sphere of Origin:
Input Sphere:

Stem of
Input 0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11

S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S3 S5 S7 S9 S11 S13 S15 S17 S19 S21 S23

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

4 8 8 8 8 8 8 8 8 8 8

2 2

2 2

2 2 2 2 2 2 2 2 2 2

2 8 16 16 16 16 16 16 16 16

2 2 23 23 22 22 22 22 22 22 22

22 23 24 24 23 23 23 23 23 23 23

2 2 2 2 2

2 2 2 2

2 2 2

This spectral sequence contains an immense amount of data. For example, the differential
d1 : E1

2,0 → E1
1,0 tells us that a class (called η2) is born in the 1-stem on S2 with Hopf invariant 1 in

π3(S3) = Z, and that it suspends to a class [called η3] in π4(S3) whose order is 2 because P (ι5) = 2η2

and EP = 0. The class η3 persist to a class η ∈ πs1. Similarly, the differential d2 : E2
5,0 → E2

3,1 tells
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us that a class x4 is born in π8(S4) with Hopf invariant η7 ∈ π8(S7); it suspends nontrivially to a
class x5 ∈ π9(S5), but to 0 in π10(S6) because P (ι11) = x5.

According to Exercise 63.5, the EHP spectral sequence may be truncated to obtain a spectral
sequence converging to π∗(Sn) rather than πs∗.

Bousfield localization

I can’t leave the subject of Serre classes without mentioning a more recent and more geometric
approach to localization in algebraic topology, due to Bousfield, following diverse early ideas of
Dennis Sullivan, Mike Artin and Barry Mazur, and Frank Adams. (A. K. (“Pete”) Bousfield (1941–
2020), a student of Dan Kan’s at MIT, worked at UIC.)

Theorem 70.7 (Bousfield, [9]). Let E∗ be any generalized homology theory and X any CW complex.
There is a space LEX and a map X → LEX that is terminal in the homotopy category among E∗-
equivalences from X.

So LEX is as far away (to the right) from X as possible while still receiving an E∗-equivalence
from it. The localization strips away all features not detected by E-homology.

The class of maps given by E∗-equivalences determines a class of objects: A space W is E∗-local
if for every E∗-equivalence X → Y between CW complexes the induced map [X,W ] ← [Y,W ] is
bijective. You can’t tell two E∗-equivalent spaces apart by mapping them into an E∗-local space.

Theorem 70.8 (Addendum to Theorem 70.7). For any CW complex X, LEX is E∗-local, and the
localization map X → LEX is initial among maps to E∗-local spaces.

The functor LE is “Bousfield localization” at the homology theory E∗. The subcategory of
E∗-local spaces affords the ultimate extension of the Whitehead theorem:

Lemma 70.9. Any E∗-equivalence f : X → Y between E∗-local CW complexes is a homotopy
equivalence.

Proof. Take W = X in the definition of “E∗-local”: then the identity map X → X lifts in the
homotopy category uniquely through a map g : Y → X. By construction gf = 1X . But then both
fg and 1Y lift f : X → Y across f , and hence must be equal by uniqueness.

So the Whitehead theorem can be phrased as saying that any simply connected CW complex is
HZ∗-local.

Another example is given by rational homology HQ∗.

Proposition 70.10. A simply connected CW complex is HQ∗-local if and only if its homology in
each positive dimension is a rational vector space.

In this case we can also compute the homotopy: For a simply connected CW complex X,
π∗(X) → π∗(LHQX) simply tensors the homotopy with Q. This is the beginning of an extensive
development of “rational homotopy theory,” pioneered independently by Daniel Quillen and Dennis
Sullivan. The entire homotopy theory of simply connected rational spaces of finite type over Q is
equivalent to the opposite of the homotopy theory of commutative differential gradedQ-algebras that
are simply connected and of finite type. The quest for analogous completely algebraic descriptions
of other sectors of homotopy theory has been a major research objective over the past half century.

Bousfield localization at HFp is trickier, because the map from Sn to the Moore space M with
homology given by the p-adic integers Zp in dimension n is an isomorphism in mod p homology. In
fact LHFpS

n = M : so in this case Bousfield localization behaves like a completion.
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When the fundamental group is nontrivial, even localization at HZ can lead to unexpected
results. For example, let Σ∞ be the group of permutations of a countably infinite set that move
only finitely many elements. Then

LHZBΣ∞ ' Ω∞0 S
∞ .

a single component of the union of ΩsSs’s. This is the “Barratt-Priddy-Quillen theorem.”
For another example, let R be a ring and GL∞(R) the increasing union of the groups GLn(R).

The homotopy groups of the space LHZBGL∞(R) formed Quillen’s first definition of the higher
algebraic K-theory of R.

Exercises

Exercise 70.11. We found that π4(S3) = Z/2Z. Explain why this shows that π4(S2) = Z/2Z as
well, and describe a non-null map S4 → S2.





Chapter 8

Characteristic classes, Steenrod
operations, and cobordism

71 Chern classes, Stiefel-Whitney classes, and the Leray-Hirsch
theorem

A good supply of interesting geometric objects is provided by the theory of principal G-bundles, for
a topological group G. For example giving a principal GLn(C)-bundle over X is the same thing as
giving a complex n-plane bundle over X.

Principle bundles reflect a great deal of geometric information in their topology. This is a
great asset, but it can make them correspondingly hard to visualize. It’s reasonable to hope to
construct invariants of principal G-bundles of some more understandable sort. A good candidate is
a cohomology class.

So let’s fix an integer n and an abelian group A, and try to associate, in some way, a class
c(ξ) ∈ Hn(Y ;A) to any principal G-bundle ξ over Y . To make this useful, this association should
be natural: given f : X → Y and a principal G-bundle ξ over Y , we can pull ξ back under f
to a principal G-bundle f∗ξ over X, and find ourselves with two classes in Hn(X;A): f∗c(ξ) and
c(f∗(ξ)). Naturality insists that these two classes coincide. This means, incidentally, that c(ξ)
depends only on the isomorphism class of ξ. Let BunG(X) denote the set of isomorphism classes of
principal G-bundles over X; it is a contravariant functor of X. We have come to a definition:

Definition 71.1. Let G be a topological group, A an abelian group, and n ≥ 0. A characteristic
class for principal G-bundles with values in Hn(−;A) is a natural transformation of functors Top→
Set:

c : BunG(−)→ Hn(−;A) .

Cohomology classes are more formal or algebraic, and are correspondingly relatively easy to work
with. BunG(X) is often hard (or impossible) to compute, partly because it has no algebraic structure
and partly exactly because its elements are interesting geometrically, while Hn(X;A) is relatively
easy to compute but its elements are not very geometric. A characteristic class provides a bridge
between these two, and information flows across this bridge in both directions. It gives computable
information about certain interesting geometric objects, and provides a geometric interpretation of
certain formal or algebraic things.

Example 71.2. The Euler class is the first and most fundamental characteristic class. Let R be
a commutative ring. The Euler class takes an R-oriented real n-plane bundle ξ and produces an

251
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n-dimensional cohomology class e(ξ), given by the transgression of the class in H0(B;Hn−1(S(ξ)))
that evaluates to 1 on every orientation class. Naturality of the Gysin sequence shows that this
assignment is natural. There are really only two cases: R = Z and R = F2. A Z-orientation of a
vector bundle is the same thing as an orientation in the usual sense, and the Euler class is a natural
transformation

e : Vectorn (X) = BunSO(n)(X)→ Hn(X;Z) .

Any vector bundle is canonically F2-oriented, so the mod 2 Euler class is a natural transformation

e : Vectn(X) = BunO(n)(X)→ Hn(X;F2) .

On CW complexes, BunG(−) is representable: there is a “universal” principal G-bundle ξG :
EG ↓ BG such that

[X,BG]→ BunG(X) , f 7→ f∗ξG

is a bijection. A characteristic class BunG(−) → Hn(−;A) is the same thing as a class in
Hn(BG;A), or, since cohomology is also representable, as a homotopy class of maps BG→ K(A,n).

Thus for example set of all integral characteristic classes of complex line bundles is given by
H∗(BU(1)) = Z[e]. Is there an analogous classification of characteristic classes for higher dimen-
sional complex bundles? How about real bundles?

Chern classes

We’ll begin with complex vector bundles. Any complex vector bundle (numerable of course) admits
a Hermitian metric, well defined up to homotopy. This implies that BunU(n)(X)→ BunGLn(C)(X)
is bijective; BU(n)→ BGLn(C) is a homotopy equivalence. I will tend to favor U(n) and BU(n).

A finite dimensional complex vector space V determines an orientation of the underlying real
vector space: Pick an ordered basis (e1, . . . , en) for V over C, and provide V with the ordered basis
over R given by (e1, ie1, . . . , en, ien). The group AutC(V ) acts transitively on the space of complex
bases. But choosing a basis for V identifies Aut(V ) with GLn(C), which is path connected. So the
set of ordered real bases obtained in this way are all in the same path component of the set of all
oriented real bases, and hence defines an orientation of V .

This construction yields a natural transformation VectC(−)→ VectorR (−). In particular, the real
2-plane bundle underlying a complex line bundle has a preferred orientation – the one determined
in each fiber ξx by the ordered basis (v, iv) where v 6= 0 in ξx. A complex line bundle ξ over B thus
has a well-defined Euler class e(ξ) ∈ H2(B; Z).

Theorem 71.3 (Chern classes). There is a unique family of characteristic classes for complex vector
bundles that assigns to a complex n-plane bundle ξ over X its kth Chern class c(n)

k (ξ) ∈ H2k(X; Z),
k ∈ N, such that:

• c(n)
0 (ξ) = 1.

• c(1)
1 (ξ) = −e(ξ).

• The Whitney sum formula holds: if ξ is a p-plane bundle and η is a q-plane bundle, then

c
(p+q)
k (ξ ⊕ η) =

∑
i+j=k

c
(p)
i (ξ) ∪ c(q)

j (η) ∈ H2k(X; Z).
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Moreover, if ξn is the universal n-plane bundle, then

H∗(BU(n); Z)∼= Z[c
(n)
1 , . . . , c(n)

n ]

where c(n)
k = c

(n)
k (ξn).

This result says that all characteristic classes for complex vector bundles are given by polynomials
in the Chern classes, and that there are no universal algebraic relations among the Chern classes.
(Shiing-Shen Chern (1911–2004) was a father of twentieth century differential geometry, and a huge
force in the development of mathematics in China.) )

Remark 71.4. Since BU(n) supports the universal n-plane bundle ξn, the Chern classes c(n)
k =

c
(n)
k (ξn) are themselves universal, pulling back to the Chern classes of any other n-plane bundle.

The (p + q)-plane bundle ξp × ξq = pr∗1ξp ⊕ pr∗2ξq over BU(p) × BU(q) is classified by a map
µ : BU(p)×BU(q)→ BU(p+q). The Whitney sum formula computes the effect of µ on cohomology:

µ∗(c
(n)
k ) =

∑
i+j=k

c
(p)
i × c

(q)
j ∈ H

2k(BU(p)×BU(q)) ,

where, you’ll recall, x× y = pr∗1x ∪ pr∗2y.

The Chern classes are “stable” in the following sense. Let ε be the trivial one-dimensional complex
vector bundle over X and let ξ be an n-dimensional vector bundle over X. What is c(n+q)

k (ξ ⊕ qε)?
The trivial bundle is obtained by pulling back under X → ∗:

X × Cq = E(qε) //

��

Cq

��
X // ∗

By naturality, we find that c(n)
j (nε) = 0 for j > 0. The Whitney sum formula therefore implies that

c
(n+q)
k (ξ ⊕ qε) = c

(n)
k (ξ).

Thus the Chern class only depends on the “stable equivalence class” of the vector bundle. Also, the
map BU(n− 1)→ BU(n) classifying ξn−1 ⊕ ε sends c(n)

k to c(n−1)
k for k < n and c(n)

n to 0.
For this reason, we will drop the superscript on c(n)

k (ξ), and simply write ck(ξ).

Grothendieck’s construction

Let ξ : E
p−→ X be a complex n-plane bundle. Associated to it is a fiber bundle whose fiber over

x ∈ X is P(p−1(x)), the projective space of the vector space given by the fiber of ξ over x. This
“projectivization” can also be described using the GLn(C) action on CPn−1 = P(Cn) induced from
its action on Cn, and forming the balanced product

P(ξ) = P ×GLn(C) CPn−1

where P ↓ X is the principalization of ξ.
Let us attempt to compute the cohomology of P(ξ) using the Serre spectral sequence:

Es,t2 = Hs(X;Ht(CPn−1))⇒ Hs+t(P(ξ)).

We claim that this spectral sequence almost completely determines the cohomology of P(ξ) as
a ring. Here is a general theorem that tells us what to look for, and what we get.
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Theorem 71.5 (Leray-Hirsch). Let π : E → B be a fibration and R a commutative ring. Assume
that B is path connected, so that the fiber is well defined up to homotopy. Call it F , and suppose
that for each t the R-module Ht(F ) is free of finite rank. Finally, assume that the restriction
H∗(E) → H∗(F ) is surjective. (One says that the fibration is “totally non-homologous to zero.”)
Because Ht(F ) is a free R-module for each t, the surjection H∗(E) → H∗(F ) admits a splitting;
pick one, say s : H∗(F )→ H∗(E). The projection map renders H∗(E) a module over H∗(B). The
H∗(B)-linear extension of s,

s : H∗(B)⊗R H∗(F )→ H∗(E)

is then an isomorphism of H∗(B)-modules.

Proof. First we claim that the group π1(B) acts trivially on the cohomology of F = π−1(∗). The
map of fibrations

E
1 //

π
��

E

��
B // ∗

shows that the map H∗(F ) → H∗(E) is equivariant with respect to the group homomorphisms
π1(B) → π1(∗). In cohomology, this says that the restriction H∗(E) → H∗(F ) has image in the
π1(B)-invariant subgroup (which, by the way, is H0(B;H∗(F ))). So the assumption that this map
is surjective guarantees that the action of π1(B) on H∗(F ) is trivial.

Now the edge homomorphism in the Serre spectral sequence

Es,t2 = Hs(B;Ht(F )) =⇒
s
Hs+t(E)

is that restriction map. Our assumption that Ht(F ) is free of finite rank implies (27.8) that

Es,t2 = Hs(B)⊗R Ht(F )

as R-algebras. All the generators lie on either t = 0 or s = 0. The ones on the base survive because
the differentials hit zero groups. The generators on the fiber survive by assumption. So inductively
you find that Er = Er+1, and hence that the entire spectral sequence collapses at E2.

We now define a new filtration on H∗(E) with the advantage that it is a filtration by H∗(B)-
modules. I call it the “Quillen filtration,” after [55, p. 544], though it is probably older. It’s the
increasing filtration given in terms of the decreasing filtration associated to the spectral sequence
by

FtH
n(E) = Fn−tHn(E) .

For instance, F0H
n(E) = FnHn(E) = im(Hn(B)→ Hn(E)); or

F0H
∗(E) = im(H∗(B)→ H∗(E)) .

On the level of associated graded modules,

grtH
n(E) = Fn−tHn(E)/Fn−t+1Hn(E) = En−t,t∞

– that is, the tth row: so
grtH

∗(E) = E∗,t∞

which, in case the spectral sequence collapses at E2, isH∗(B;Ht(F )). So for us it isH∗(B)⊗RHt(F ).
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Now we can think about the map s : H∗(B) ⊗ H∗(F ) → H∗(E). Filter H∗(B) ⊗ H∗(F ) by
degree in H∗(F ):

Ft(H
∗(B)⊗H∗(F )) = H∗(B)⊗

⊕
i≤t

H i(F ) .

The map s respects filtrations and is an isomorphism on associated graded modules: so it is an
isomorphism.

Returning now to the example of the projectivization of a vector bundle, P(ξ) ↓ X, the hypothe-
ses of the Leray-Hirsch Theorem are satisfied except perhaps surjectivity of the restriction to the
fiber.

Here’s where the representation of a cohomology class as a characteristic class comes in useful.
The cohomology of the fiber over x ∈ X is generated as an R-module by powers of the Euler class
of the canonical line bundle λx over P(ξx). Since i∗ : H∗(E) → H∗(CPn−1) is an R-algebra map,
it will suffice to see that e(λx) is in the image of i∗. Since the Euler class is natural, the natural
thing to do is to construct a line bundle over the whole of P(ξ) that restricts to λx on ξx. And
indeed these line bundles over fibers assemble themselves into a tautologous line bundle, call it λ,
over P(ξ).

So we have an expression for H∗(P(ξ)) as a module over H∗(X):

H∗(P(ξ)) = H∗(X)〈1, e, e2, . . . , en−1〉 .

where e = e(λ) ∈ H2(P(ξ)). This gives us some information about the algebra structure inH∗(P(ξ)),
but not complete information. What is lacking is an expression for en in terms of the basis given by
lower powers of e. The Euler class e satisfies a unique monic polynomial equation cξ(e) = 0, where
cξ(t) is the “Chern polynomial”

cξ(t) = tn + c1t
n−1 + · · ·+ cn−1t+ cn .

with ck ∈ H2k(X).
The naturality of this construction guarantees that the ck’s are natural in the n-plane bundle

ξ; they are characteristic classes. We will see that they satisfy the axioms for Chern classes set out
above.

Note that the Whitney sum formula has a nice expression in terms of the Chern polynomials:

cξ(t)cη(t) = cξ⊕η(t) .

Stiefel-Whitney classes

Exactly parallel theorems hold for real n-plane bundles, with mod 2 coefficients:

Theorem 71.6 (Stiefel-Whitney classes). There is a unique family of characteristic classes for
real vector bundles that assigns to a real n-plane bundle ξ over X its “kth Stiefel-Whitney class”
wk(ξ) ∈ Hk(X;F2), k ∈ N, such that:

• w0(ξ) = 1.

• If n = 1 then w1(ξ) = e(ξ).

• The Whitney sum formula holds: if ξ is a p-plane bundle and η is a q-plane bundle, then

wk(ξ ⊕ η) =
∑
i+j=k

wi(ξ) ∪ wj(η) ∈ H2k(X;F2).
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Moreover, if ξn is the universal n-plane bundle, then

H∗(BO(n);F2)∼=F2[w1, . . . , wn]

where wk = wk(ξn).

And the same construction produces them:

H∗(P(ξ);F2) = H∗(B;F2)[e]/(en + w1e
n−1 + · · ·+ wn−1e+ wn)

for unique elements wi ∈ H i(B;F2).

Remark 71.7. The Euler class depends only on the sphere bundle of the vector bundle ξ, but these
constructions appear to depend heavily on the existence of an underlying vector bundle. This is a
genuine dependence in the case of Chern classes, but it turns out that the Stiefel-Whitney classes
depend only on the sphere bundle. We’ll explain this later, in Proposition 77.9.

Remark 71.8. In the complex case, the triviality of the local coefficient system can be verified in
other ways as well. After all, the action of π1(X) on the fiber H∗(CPn−1) is compatible with the
action of π1(BU(n)) on the homology of the fiber of the projectivized universal example. But since
U(n) is connected, its classifying space is simply connected.

You can’t make this argument in the real case, but then you don’t have to since we are looking
at an action of π1(B) on a one-dimensional vector space over F2.

Example 71.9. Complex projective space CPn is a complex manifold, and its tangent bundle is
thereby endowed with a complex structure. A standard argument (Example 54.7) shows that

τCPn = Hom(λ, λ⊥) .

Adding ε = Hom(λ, λ), we find
τCPn ⊕ ε = (n+ 1)λ−1 ,

where λ−1 is the dual of the line bundle λ: λ−1 = Hom(λ, ε). Its Euler class is −e, where e is the
Euler class of λ. Thus by the Whitney sum formula

cτ (t) = cτ⊕ε(t) = cλ−1(t)n+1 = (1− et)n+1

and so
ck(τCPn) = (−1)k

(
n+ 1

k

)
ek .

Exercises

Exercise 71.10. Put an upper bound on the number of everywhere independent vector fields
you can put on RPn−1. In particular, for many n you can rule out the possibility that RPn−1 is
parallelizable. See Exercise 54.14. Note also that this result gives an upper bound for the number
of everwhere independent vector fields on Sn−1. The definitive result is due to Adams [2].

Exercise 71.11. An immersion of manifold M into manifold N is a smooth map f : M → N
that induces an injection on tangent bundles. Draw some immersions of the circle in R2. The
“Whitney-Graustein theorem” classifies them. Find out about the Boys surface, an immersion of
RP 2 into R3. Whitney proved that any closed n-manifold immerses in codimension n− 1.
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An immersion f : M → N determines an embedding τM ↪→ f∗τN of vector bundles over M . In
particular, an immersion M → Rn determines an embedding τM ↪→ nε. Not every m-plane bundle
admits an (n−m)-dimensional complement; this provides obstructions to possible immersions. In
fact Smale-Hirsch theory shows that this is the only obstruction; any map f : M → N that is covered
by a fiberwise linear embedding of the tangent bundles (not necessarily given by the derivative of
the map!) f is homotopic to an immersion.

Use this idea, together with Stiefel-Whitney classes, to put a lower bound on the codimension
of an immersion of RPn into Euclidean space. (Determination the minimal codimension of an
immersion of RPn in general is a very difficult computational problem, still not completely resolved.)

Using these examples, find, for each n, a closed n-manifold that does not immerse into R2n−α(n)−1,
where α(n) is the sum of the digits in the binary expansion of n.

This is a best possible result, according to a theorem of Ralph Cohen (following work of Ed
Brown and Frank Peterson): every closed n-manifold immerses in codimension n− α(n).

72 H∗(BU(n)) and the splitting principle

Here’s another characterization of the Chern classes.

Theorem 72.1. Let n ≥ 1. There is a unique family of characteristic classes ci(ξ) ∈ H2i(B(ξ)),
1 ≤ i ≤ n, for complex n-plane bundles ξ, such that if ξ is isomorphic to ζ ⊕ (n− i)ε then

ci(ξ) = (−1)ie(ζ)

where e(ζ) is the Euler class of the oriented real 2i-bundle underlying ζ. These classes generate
all characteristic classes for n-plane bundles and there are no universal algebraic relations among
them.

We will prove this by computing the cohomology of BU(n), by induction on n. Here’s how
BU(n) and BU(n− 1) are related. Embed U(n− 1) ↪→ U(n) by

A 7→
[
A 0
0 1

]
.

This subgroup is exactly the set of matrices fixing the last basis vector en in Cn. The orbit of en
under the defining action of U(n) on Cn is the subspace S2n−1 of unit vectors in Cn, which is thus
identified with the homogeneous space U(n)/U(n− 1).

Make a choice of EU(n) – a contractible space on which U(n) acts principally – the Stiefel model
Vn(C∞) for example. The orbit space is then the Grassmann model for BU(n). The subgroup
U(n− 1) also acts principally on EU(n), so we get a model for BU(n− 1):

BU(n− 1) = EU(n)/U(n− 1) = (EU(n)×U(n) U(n))/U(n− 1)

= EU(n)×U(n) (U(n)/U(n− 1)) = EU(n)×U(n) S
2n−1 .

This establishes p : BU(n − 1) → BU(n) as the unit sphere bundle in the universal complex
n-plane bundle ξn. The map BU(n− 1)→ BU(n) classifies the n-plane bundle ξn−1 ⊕ ε.

Here’s a restatement of Theorem 72.1 in terms of universal examples.

Theorem 72.2. There exist unique classes ci ∈ H2i(BU(n)) for 1 ≤ i ≤ n such that:
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1. the map p∗ : H∗(BU(n))→ H∗(BU(n− 1)) sends

ci 7→

{
ci for i < n

0 for i = n .

2. the Euler class e of the oriented real 2n-plane bundle underlying the universal complex n-plane
bundle ξn is related to the top class cn by the equation

cn = (−1)ne ∈ H2n(BU(n)) .

Moreover,
H∗(BU(n)) = Z[c1, . . . , cn] .

We postpone to Lecture 74 the verification that the classes we constructed in the last lecture
coincide with these.

Proof. We will study the Gysin sequence of the spherical fibration

S2n−1 → BU(n− 1)
p−→ BU(n) .

For a general oriented spherical fibration

S2n−1 → E
p−→ B

the Gysin sequence takes the form

· · · → Hq−1(E)
p∗−→ Hq−2n(B)

e·−→ Hq(B)
p∗−→ Hq(E)

p∗−→ Hq−2n+1(B)→ · · · .

where e ∈ H2n(B) is the Euler class.
Suppose we know that H∗(E) vanishes in odd dimensions. Then either the source or the target

of each instance of the umkher map p∗ is zero, so we receive a short exact sequence

0→ Hq−2n(B)
e·−→ Hq(B)

p∗−→ Hq(E)→ 0 .

This shows several things:

• e ∈ H2n(B) is a non-zero-divisor;

• p∗ is surjective and induces an isomorphism H∗(B)/(e)→ H∗(E);

• p∗ is an isomorphism in dimensions less than 2n;

• Hq(B) = 0 for q odd.

The last is clear for q < 2n, but feeding this into the leftmost term we find by induction that
Hq(B) = 0 for all odd q.

Now let’s suppose in addition thatH∗(E) is a polynomial algebra. Lift the generators to elements
in H∗(B). (If they all happen to lie in dimension less than 2n, these lifts are unique.) Extending
to a map of algebras gives a map H∗(E)→ H∗(B). Further adjoining e gives us an algebra map

H∗(E)[e]→ H∗(B)
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which when composed with p∗ kills e and maps H∗(E) by the identity. We claim this map is an
isomorphism. To see this, filter both sides by powers of e. Modulo e this map is an isomorphism
from what we observed above. On both sides, multiplication by e induces an isomorphism from one
associated quotient to the next, so the map induces an isomorphism on associated graded modules.
The five-lemma shows that it induces an isomorphism mod ek for any k. But the powers of e increase
in dimension, so we obtain an isomorphism in each dimension.

These observations provide the inductive step. All that remains is to start the induction. We
can, if we like, use what we know about H∗(CP∞) and start with n = 2, though starting at n = 1
makes sense too, and provides another perspective on the computation of H∗(CP∞).

We define cn ∈ H2n(BU(n)) to be (−1)ne(ξn), also a generator. The choice of sign will make it
agree with our earlier definition.

Once we verify that these classes coincide with the classes constructed in the last lecture, we
will have available an important interpretation of the top Chern class: up to sign it is the Euler
class of the underlying oriented real vector bundle.

The splitting principle

A wonderful fact about Chern classes is that it suffices to check relations among them on sums of
line bundles. This is captured by the following theorem.

Theorem 72.3 (Splitting principle). Let ξ : E ↓ X be a complex n-plane bundle. There exists a
map f : Fl(ξ)→ X such that:

1. f∗ξ∼=λ1 ⊕ · · · ⊕ λn, where the λi are line bundles on Fl(ξ), and

2. the map f∗ : H∗(X)→ H∗(Fl(ξ)) is monic.

Proof. We have already done the hard work, in our study of the projectivization π : P(ξ) → X.
We found that the Serre spectral sequence collapses at E2. This implies that the projection map
induces a monomorphism in cohomology. We used the “tautologous” line bundle λ on P(ξ). The key
additional point about this construction is that there is a canonical embedding λ ↪→ π∗ξ of vector
bundles over P(ξ). A vector in E(λ) is (v ∈ L ⊆ ξx) (where L is a line in the fiber ξx). A vector in
the pullback π∗ξ is (v ∈ ξx, L ⊆ ξx); E(λ) is the subspace of elements such that v ∈ L.

By picking a metric on ξ we see that when pulled back to P(ξ) a line bundle splits off. Now
just induct (using our important standing assumption that vector bundles have finite dimensional
fibers).

It’s worth being more explicit about what this “flag bundle” Fl(ξ) is. The complement of λ in π∗ξ
over P(ξ) is the the space of vectors of the form (v ∈ L⊥, L ⊆ ξx). If we iterated this construction,
we will get, in the end, the space of ordered orthogonal decompositions of fibers into lines. This can
be built as a balanced product. Let Fln be the space of “orthogonal flags,” that is, decompositions
of Cn into an ordered sequence of n 1-dimensional subspaces. There is an evident action of U(n)
on this space, and

Fl(ξ) = P ×U(n) Fln

where P ↓ X is the principal U(n) bundle associated to ξ (and a choice of Hermitian metric).
The action of U(n) on Fln is transitive, and the isotropy subgroup of (Ce1, . . . ,Cen) is the

subgroup of diagonal unitary matrices,

Tn = (S1)n ⊆ U(n) ,
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so
Fln = U(n)/Tn .

In the universal case, over BU(n),

Fl(ξn) = EU(n)×U(n) (U(n)/Tn) = EU(n)/Tn = BTn

and this is just a product of n copies of CP∞. So we have discovered that

H∗(BU(n)) ↪→ H∗(BTn) = Z[t1, · · · , tn]

where ti is the Euler class of the line bundle pr∗iλ, the pull back of the universal line bundle under
the projection onto the ith factor of CP∞. What is the image?

Well, the symmetric group Σn sits inside the unitary group as matrices with a single 1 in each
column. The maximal torus Tn is sent to itself by conjugation by a permutation matrix, which has
the effect of reordering the diagonal entries. In cohomology, the action permutes the generators.
These permutation matrices also act by conjugation on all of U(n), but there they act trivially on
H∗(BU(n)) since any matrix is connected to the identity matrix by a path in U(n). The consequence
is that the image of H∗(BU(n)) lies in the symmetric invariants:

H∗(BU(n)) ↪→ H∗(BTn)Σn .

These symmetric invariants are well-studied in Algebra! Define the elementary symmetric poly-
nomials σi as the coefficients in the product of t− ti’s:

n∏
i=1

(t− ti) =
n∑
j=0

σjt
n−j

For example,

σ0 = 1 , σ1 = −
n∑
j=1

tj , σn = (−1)n
n∏
j=1

tj .

The theorem from algebra is that the elementary symmetric polynonomials are algebraically inde-
pendent and generate the ring of symmetric invariants –

R[t1, . . . , tn]Σn = R[σ1, . . . , σn]

– over any coefficient ring R.
If we give each ti a grading of 2, the elementary symmetric polynomials are homogeneous and

|σi| = 2i.
So H∗(BU(n)) embeds into a graded algebra of exactly the same size. This does not yet show

that the embedding is surjective! For each q, we know that Hq(BU(n)) embeds into Hq(BTn)Σn

as a subgroup of the same rank. If L is a free abelian group of finite rank and L′ is a subgroup, the
little exact sequence

0→ Tor1(L/L′,Fp)→ L′ ⊗ Fp → L⊗ Fp
shows that the p-torsion in L/L′ vanishes if L′⊗Fp → L⊗Fp is injective. Now our argument above
actually works for any coefficient ring, so H∗(BU(n);Fp)→ H∗(BTn;Fp) is monic for any prime p.
Because H∗(BU(n)) is torsion free this says that H∗(BU(n)) ⊗ Fp → H∗(BTn) ⊗ Fp is monic for
any prime. The result is that the index of H∗(BU(n)) in H∗(BTn)Σn is prime to p for every prime
number p, and so this injection must also be surjective.

We have proven most of:
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Theorem 72.4. The inclusion Tn ↪→ U(n) induces an isomorphism

H∗(BU(n))
∼=−→ H∗(BTn)Σn .

Under this identification, the classes ci constructed in Theorem 72.2 map to the elementary sym-
metric functions.

In the context of Chern classes, the elements ti are called “Chern roots.” The extension
H∗(BU(n)) ↪→ H∗(BTn) adjoins the roots of the Chern polynomial

c(t) = tn + c1t
n−1 + · · ·+ cn .

Remark 72.5. Everything we have done admits a version for real vector bundles, with mod 2
coefficients. One point deserves some special attention: the argument we gave for why conjugation
by a permutation induces the identity on H∗(BU(n)) fails because the group O(n) is not path-
connected. However, there is a better and more general argument available; see Exercise 58.7.

Exercises

Exercise 72.6. Let ξ be an real n-plane bundle over B. Show that if n is odd then 2e(ξ) = 0 in
Hn(B). Give an example with n odd in which e(ξ) is nevertheless nonzero.

73 Thom class and Whitney sum formula

We now have four perspectives on Chern classes:

1. Axiomatic

2. Grothendieck’s definition in terms of H∗(P(ξ))

3. In terms of Euler classes

4. As elementary symmetric polynomials via the splitting principle

In this lecture we will explain why these are four facets of the same gem, though at the expense
of introducing a new perspective on the Euler class. Developing that perspective lets us introduce
another important construction in topology, the Thom space. We’ll use that to verify that (3)
and (4) agree. Then we’ll prove the Whitney sum formula from this perspective. We’ll take the
identification of Chern classes with symmetric polynomials as the starting point.

Thom space and Thom class

Let ξ : E
p−→ B be a real n-plane bundle. The Thom space is obtained by forming the one-point

compactification of each fiber, and then identifying all the newly adjoined basepoints to a single
point. If B is a compact Hausdorff space, this amounts to the one-point compactification of the
total space E(ξ).

Example 73.1. There is a canonical homeomorphism

Th(λ∗ ↓ RPn−1)→ RPn .

It is given by sending (ϕ ∈ L∗, L ⊆ Rn) to the graph of ϕ in Rn ×R. This map embeds E(λ∗) into
RPn, and misses only the line Ren+1. This establishes RPn as the one-point compactification of
E(λ∗). (It also shows that λ∗ is the normal bundle of the linear embedding RPn−1 ↪→ RPn.)
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By choosing a metric we get a different expression for the same space. Let D(ξ) and S(ξ) = ∂D(ξ)
denote the unit disk and unit sphere bundles. The Thom space of ξ is the quotient space

Th(ξ) = D(ξ)/S(ξ) .

Rather than this quotient space, you may prefer to think of the pair (D(ξ),S(ξ)); it is homotopy
equivalent to the pair (E(ξ), E(ξ)\Z), where Z is the image of the zero-section.

Note that Th(0) = B/∅ = B+, the base with a disjoint basepoint adjoined. The Thom space
of the n-plane bundle over a point is Dn/∂Dn = Sn.

An important point about the Thom space construction is its behavior on the product of two
bundles, say ξ and η. Since

∂(Dp ×Dq) = (∂Dp ×Dq) ∪ (Dp × ∂Dq) ,

we find

Th(ξ × η) =
D(ξ × η)

∂D(ξ × η)
=

D(ξ)× D(η)

S(ξ)× D(η) ∪ D(ξ)× S(η)
= Th(ξ) ∧ Th(η) .

In particular, if η is the n-plane bundle over a point, ξ × η = ξ ⊕ nε and

Th(ξ ⊕ nε) = Th(ξ) ∧ Sn = Σn Th(ξ) .

In general, the Thom space is a “twisted n-fold suspension.”
The Thom space construction is natural for bundle maps: Given f : B′ → B, covered by a

bundle map ξ′ → ξ (so that ξ′∼= f∗ξ) we get a canonical pointed map

f : Th(ξ′)→ Th(ξ) .

This construction can be used to define a module structure on the the cohomology of the Thom
space, in the following way. Notice that the bundle 0× ξ over B×B is just the pullback of ξ under
pr2 : B×B → B. The diagonal map ∆ : B → B×B satisfies pr2 ◦∆ = 1B, and is therefore covered
by a bundle map ξ → 0× ξ, which then induces a twisted diagonal map

Th(ξ)→ Th(0) ∧ Th(ξ) = B+ ∧ Th(ξ) .

This in turn induces a “relative cup product” in cohomology:

∪ : H∗(B)⊗H∗(Th(ξ))→ H
∗
(Th(0) ∧ Th(ξ))→ H

∗
(Th(ξ)) .

Since the diagonal map is associative and unital, this map defines on H∗(Th(ξ)) the structure of a
module over the graded ring H∗(B).

Here is the essential fact about the Thom space.

Proposition 73.2 (Thom isomorphism theorem). Let R be a commutative ring and let ξ be an
R-oriented real n-plane bundle over B. There is a unique class U ∈ Hn

(Th(ξ);R) that restricts on
each fiber to the dual of the orientation class, and the map

− ∪ U : H∗(B)→ H
∗
(Th(ξ))

is an isomorphism.
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Proof. The proof is very simple, if you grant yet another relative form of the Serre spectral sequence.
This time I want to have a fibration p : E → B – say a fiber bundle – together with a subbundle
p0 : E0 → B. Then there is spectral sequence

Es,t2 = Hs(B;Ht(p−1(−), p−1
0 (−))) =⇒

s
Hs+t(E,E0) .

It is a module over the multiplicative spectral sequence

Es,t2 = Hs(B;Ht(p−1(−))) =⇒
s
Hs+t(E) .

We will apply this to the fiber bundle pair (D(ξ), S(ξ)). The fiber pair is then (Dn, Sn−1), which
has cohomology in just one dimension! This spectral sequence has just one row: the nth row. It
collapses at E2, there are no extension problems, and we get a canonical isomorphism

Hs(B;Hn(p−1(−), p−1
0 (−)))→ Hs+n(D(ξ), S(ξ)) = H

s+n
(Th(ξ)) .

The assumed orientation identifies the local coefficient system with the constant system R. The
generator of E0,n

2 survives to a class U that restricts as stated, and the multiplicative structure of
the spectral sequence implies that this is an isomorphism of modules over H∗(B).

Thom and Euler

We now use this construction to define a new class in Hn(B) associated to the oriented n-plane
bundle ξ, by means of the composite

π : B → D(ξ)→ Th(ξ) .

The first map is the zero-section, homotopy inverse to the projection map. The second one is the
collapse map. The Thom class U ∈ Hn

(Th(ξ)) pulls back under this map to a class in Hn
(B).

This class is at least up to sign the Euler class as we defined it earlier:

Lemma 73.3. This class coincides up to sign with the Euler class: π∗U = ±e.

Proof. We will verify that they generate the same submodule. If the coefficient ring is of character-
istic 2, that gives the result. Otherwise, these classes are both in the image of integral classes, and
that again gives the result.

Work in the universal case. As a notational choice, we will work over Z, so we are looking at ξn
over BSO(n). We’ve seen that the total space of its sphere bundle is BSO(n−1). The Serre spectral
sequence for this fibration shows that the kernel of the projection map p∗ : Hn(BSO(n − 1)) →
Hn(BSO(n)) is the image of the transgression Hn−1(Sn−1) → Hn(BSO(n − 1)). So the kernel is
cyclic and generated by the Euler class. On the other hand, we have the cofibration sequence

BSO(n− 1)→ BSO(n)
π−→MSO(n)

where we are using Thom’s notation MSO(n) = Th(ξn). The Thom class U ∈ Hn(MSO(n)) gen-
erates this group (by the Thom isomorphism theorem) so its image in Hn(BSO(n)) also generates
ker(Hn(BSO(n))→ Hn(BSO(n− 1))).

We will see, as a consequence of a computation of H∗(BSO(n); Z[1/2]) in Theorem 74.5 that
this kernel is infinite cyclic if n is even, so then the generator is at least well defined up to sign. For
homework you will show that 2e = 0 if n is even, so the generator is then unique.
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But in fact, it’s better just to take π∗U as the definition of the Euler class. With that definition,
we get a new construction of the Gysin sequence: It’s the long exact cohomology sequence of the
pair (Th(ξ), B), aided by the Thom isomorphism:

· · · // Hs−1(B)
p∗ // Hs−1(E)

δ //

p∗

&&

H
s
(Th(ξ))

π∗ // Hs(B)
p∗ // Hs(E) // · · ·

Hs−n(B) .

−∪U∼=

OO
·e

88

This is a long exact sequence of modules overH∗(B). This gives a different perspective on integration
along the fiber:

(p∗x) ∪ U = δx .

We’ll just use this definition going forward. Notice that with this definition, the Euler class
is multiplicative for Whitney sum. We should be careful about orientations. The direct sum of
oriented vector spaces V and W has an orientation given by putting a positive ordered basis for V
first and follow it by a positive ordered basis for W . This convention orients the Whitney sum of
two vector bundles over a space.

Proposition 73.4. Let ξ and η be oriented vector bundles over spaces X and Y .

e(ξ × η) = e(ξ)× e(η) .

Proof. First, Uξ ∧Uη ∈ H
p+q

(Th(ξ)∧Th(η)) is a Thom class for ξ × η, since its restriction to each
fiber is dual to the direct sum orientation. Then the collapse maps are compatible:

Th(ξ × η)
= // Th(ξ) ∧ Th(η)

(X × Y )+
= //

πX×Y

OO

X+ ∧ Y+

πX∧πY

OO

commutes, and in cohomology we chase

Uξ ∧ Uη � //
_

��

Uξ×η_

��
e(ξ)× e(η) � // e(ξ × η)

to see the result.

If we take X = Y here and pull back along the diagonal, ξ × η goes to the Whitney sum and
e(ξ)× e(η) goes to the cup-product:

e(ξ ⊕ η) = e(ξ) · e(η) .

Euler class and symmetric polynomials

One of our descriptions of the Chern classes was this: If an n-plane bundle ξ splits ζ ⊕ (n − k)ε,
then ck(ξ) = (−1)ke(ζ). Let’s check that this holds for the classes defined by means of elementary
symmetric functions. It might be clearest if we look at the universal example, where the splitting
map f : BTn → BU(n) pulls ξn back to the direct sum of line bundles λ1 ⊕ · · · ⊕ λn and induces
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an isomorphism f∗ : H∗(BU(n)) → H∗(BTn)Σn . Let’s do the case k = n first, so I want to show
that (−1)ne(ξn) maps to σn. Using multiplicativity of the Euler class,

f∗e(ξn) = e(λ1 ⊕ · · · ⊕ λn) = e(λ1) · · · e(λn) .

With the notation ti = e(λi), this shows that

f∗((−1)ne(ξn)) = (−1)nt1 · · · tn = σn .

For smaller k, we’ll use the fact that the maximal tori T k ⊆ U(k) are compatible as k increases.
This gives the commutative diagram

H2k(BU(n)) //

��

H2k(BTn)Σn

��
H2k(BU(k)) // H2k(BT k)Σk

The elementary symmetric polynomial definition of ck specifies that it maps to σk along the top
arrow. We want to see that this class maps to (−1)ke(ξk) ∈ H2k(BU(k)). Well, by the k = n case
that we just did, we know that that class maps to σk along the bottom. So what remains is to check
that σk ∈ H2k(BTn)Σn maps to the class of the same name in H2k(BT k)Σk .

To keep things straight, let’s write σ(n)
k for the first class and σ(k)

k for the second. The restriction
H∗(BTn)→ H∗(BT k) sends ti to ti if i ≤ k and to 0 if i > k. So

∑n
i=0 σ

(n)
i tn−i =

∏n
j=1(t− tj)

_

��(∑k
i=0 σ

(k)
i tk−i

)
tn−k =

(∏k
j=1(t− tj)

)
tn−k

and comparing coefficients we see that σ(n)
k 7→ σ

(k)
k .

The Whitney sum formula

By our discussion above, the Whitney sum formula of Theorem 71.3 reduces to proving the following
identity:

σ
(p+q)
k =

∑
i+j=k

σ
(p)
i · σ

(q)
j

inside Z[t1, . . . , tp, tp+1, . . . , tp+q]. Here, σ(p)
i is thought of as a polynomial in t1, . . . , tp, while σ

(q)
j

is thought of as a polynomial in tp+1, . . . , tp+q. To derive this equation, simply compare coefficients
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in the following:
p+q∑
k=0

σ
(p+q)
k tp+q−k =

p+q∏
i=1

(t− ti)

=

p∏
i=1

(t− ti) ·
p+q∏
j=p+1

(t− tj)

=

(
p∑
i=0

σ
(p)
i tp−i

) q∑
j=0

σ
(q)
j tq−j


=

p+q∑
k=0

 ∑
i+j=k

σ
(p)
i σ

(q)
j

 tp+q−k .

Hassler Whitney once called this his hardest theorem. Apparently he didn’t have the splitting
principle working for him.

Exercises

Exercise 73.5. Let ξ be a complex n-plane bundle and λ a complex line bundle, both over a space
B. Find an explicit expression for the Chern classes of λ⊗ ξ in terms of the Chern classes of ξ and
the Euler class of λ.

74 Closing the Chern circle, and Pontryagin classes

Back to Grothendieck

Now we’ll use the splitting principle to show that the Chern classes (defined as corresponding to
the elementary symmetric polynomials) participate in a monic polynomial satisfied by the Euler
class of the tautologous bundle over the projectivization of a vector bundle. This will complete the
identification of the various versions of Chern classes.

So we have an n-plane bundle ξ over B, and consider the projectivization π : P(ξ) → B. We
observed in the last lecture that the tautologous bundle λ embeds (canonically) into the pullback
π∗ξ. Let λ denote the complex conjugate or inverse line bundle, so that λ ⊗ λ = ε. Tensoring π∗ξ
with λ thus results in a bundle with a trivial summand; that is, with a nowhere vanishing section.
Its Euler class therefore vanishes. We will compute what that Euler class is, using the splitting
principle.

The splitting principle allows us to assume that ξ is a sum of line bundles, say ξ = λ1⊕· · ·⊕λn.
Then

λ⊗ π∗ξ =

n⊕
i=1

λ⊗ π∗λi .

By multiplicativity of the Euler class, we find

e(λ⊗ π∗ξ) =

n∏
i=1

e(λ⊗ π∗λi) .

Write t for e(λ) ∈ H2(P(ξ)), so that e(λ) = −t. Also write ti = e(λi), so that

e(λ⊗ π∗λi) = π∗ti − t
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and

e(λ⊗ π∗ξ) =
n∏
i=1

(π∗ti − t) = (−1)n
n∑
j=0

(π∗cj(ξ))t
n−j .

Since e(λ⊗ π∗ξ) = 0, this shows that our new Chern classes satisfy the identity Grothendieck used
to define them. Since these coefficients were unique, this identifies Grothendieck’s definition with
the others we have introduced.

Stiefel-Whitney classes

Same story! Well, almost. We don’t have the even/odd argument working for us anymore. We
want to know that the Euler class is a non-zero-divisor. We do have the splitting principle, which
assures us that

f∗ : H ∗ (BO(n);F2) ↪→ H∗(BCn2 ;F2)Σn .

By multiplicativity of the Euler class, it maps to t1 · · · tn ∈ Hn(BCn2 ;F2), which is nonzero in this
integral domain and so is a non-zero-divisor. The result:

Proposition 74.1. H∗(BO(n);F2) = F2[w1, . . . , wn].

While we are talking about Stiefel-Whitney classes, let me point out that w1 ∈ H1(B;F2) is
precisely the obstruction to orientability of ξ : E ↓ B. If B is path-connected, it can be identified
with the homomorphism π1(B) → C2 that takes on the value −1 on σ if the orientation of the
fiber is reversed under the homotopy endomorphism of the fiber given by σ. You can check this
in the universal case: The class w1 ∈ H1(BO(n);F2) is represented by a map BO(n) → K(F2, 1).
This map is the bottom Postnikov stage of BO(n), and its homotopy fiber is the simply connected
Whitehead cover of BO(n). We know what that is, since SO(n) ↪→ O(n) is the connected component
of the identity (and is the kernel of det : O(n)→ C2).

The map BSO(n)→ BO(n) is (at least homotopy theoretically) a double cover; the fiber is S0,
so we are entitled to a Gysin sequence. The Euler class of this spherical fibration is exactly w1, a
non-zero-divisor, so we discover the short exact sequence

0→ H∗(BO(n);F2)
e·−→ H∗(BO(n);F2)→ H∗(BSO(n);F2)→ 0 .

This shows that H∗(BSO(n);F2) is the polynomial algebra on the images of w2, . . . , wn:

H∗(BSO(n);F2) = F2[w2, . . . , wn] .

It often happens that one cares about only the “stable” equivalence class of a vector bundle.
This leads one to consider the direct limit or union

BO = lim
n→∞

BO(n) .

Its cohomology is given by
H∗(BO) = F2[w1, w2, . . .], .

Of course the limit of the BSO(n)’s is written BSO. It is the simply-connected cover of BO. It’s
interesting to contemplate the rest of the Whitehead tower of BO. For a while the spaces involved
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have names:
BString

��
BSpin

��

p1/2 // K(Z, 4)

BSO

��

w2 // K(Z/2Z, 2)

X

;;

DD

HH

ξ // BO
w1 // K(Z/2Z, 1)

Pontryagin classes

Real vector bundles have integral characteristic classes too! They were studied by Lev Pontryagin
(1908–1988, Steklov Institute, blinded in a stove accident at age 14). The idea is to use Chern
classes to define such things. Given a real vector bundle ξ we can tensor up to the complex vector
bundle C⊗R ξ, and study its Chern classes.

Complex vector bundles arising in this way have some additional structure. Any complex vector
bundle ζ : E ↓ B has a “complex conjugate” vector bundle ζ with the same underlying real vector
bundle but with complex structure defined by letting z ∈ C act on ζ the way z acted on ζ. We’ve
already seen this construction for line bundles, when λ⊗ λ = ε.

The complexification C⊗R ξ of a real vector bundle comes equipped with an isomorphism

C⊗R ξ∼=C⊗R ξ

given by z ⊗ v 7→ z ⊗ v. We discover that

ci(C⊗R ξ) = ci(C⊗R ξ) ,

so we should ask: What are the Chern classes of the complex conjugate of a complex vector bundle?

Lemma 74.2. ci(ξ) = (−1)ici(ξ) .

Proof. Exercise; use any one of the perspectives on Chern classes that we have developed.

This puts no restriction on ci(C ⊗R ξ) for i even, but forces 2ci(C ⊗R ξ) = 0 for i odd. The
2-torsion will get in the way, so let’s work with coefficients in a ring R in which 2 is invertible –
a Z[1/2]-algebra, such as Q or Fp for p 6= 2. We already have Stiefel-Whitney classes with mod 2
coefficients, so this is not so bad.

Definition 74.3. The kth Pontryagin class of a real vector bundle ξ is

pk(ξ) = (−1)kc2k(C⊗R ξ) ∈ H4k(X;R) .

Of course pk(ξ) = 0 if k > n/2, since ξ ⊗ C is of complex dimension n. The strange sign does
not interfere with the Whitney sum formula:

pk(ξ ⊕ η) = (−1)k
∑
i+j=k

c2i(C⊗R ξ)c2j(C⊗R η) =
∑
i+j=k

pi(ξ)pj(η)
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since the odd terms contribute only 2-torsion, which we have eliminated by working over a Z[1/2]-
algebra.

The Pontryagin classes are defined for vector bundles, orientable or not. They are independent
of the orientation if there is one. But an oriented 2k-plane bundle over B has an Euler class
e(ξ) ∈ H2k(B) as well, and we might ask how it is related to the Pontryagin classes. The sign is
there in the definition of the Pontryagin classes so that the following important relation is satisfied.

Lemma 74.4. For any oriented 2k-plane bundle, pk(ξ) = e(ξ)2.

Proof. We need to be careful about orientations. We have the isomorphism of real vector bundles

ξ ⊕ ξ
∼=−→ C⊗R ξ ,

defined (v, w) 7→ v + iw. We have establishes an orientation on C ⊗R ξ. But suppose that ξ itself
came equipped with an orientation. This puts an orientation on the direct sum. How are the two
orientations related to each other? If e1, . . . , en is a positive basis for an oriented vector space V ,
then we are comparing the ordered bases

e1, e2, . . . , en, ie1, ie2, . . . , ien for V ⊕ V and
e1, ie1, e2, ie2, . . . , en, ien for C⊗R V .

Relating them requires

(n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2

transpositions, so they give the same orientation if this number is even and opposite orientations if
it is odd.

Now we can compute:

pk(ξ) = (−1)kc2k(C⊗R ξ) = (−1)ke(C⊗R ξ)

= (−1)k(−1)2k(2k−1)/2e(ξ ⊕ ξ) = e(ξ)2

since 2k(2k − 1)/2 ≡ k mod 2.

We can now systematically compute the cohomology of BSO(n) away from 2 by induction on
n using the Gysin sequence. Here’s the result.

Theorem 74.5. With coefficients in any Z[1/2]-algebra, the cohomology of BSO(n) is polynomial
for all n. When n = 2k + 1, the generators are p1, . . . , pk. When n = 2k, the generators are
p1, . . . , pk−1, en. The maps H∗(BSO(n)) → H∗(BSO(n − 1)) kill the Euler class and take Pon-
tryagin classes to themselves except that H4k(BSO(2k + 1)) → H4k(BSO(2k)) sends pk to e2

2k.

Here’s a table of the algebra generators, with the squares of the Euler classes added in to indicate
how pk restricts.

2 4 6 8 10 12
H∗(BSO(2)) e2 (e2

2)
H∗(BSO(3)) p1

H∗(BSO(4)) p1, e4 (e2
4)

H∗(BSO(5)) p1 p2

H∗(BSO(6)) p1 e6 p2 (e2
6)

H∗(BSO(7)) p1 p2 p3
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We can then compute H∗(BO(n);R) for R a Z[1/2]-algebra by using the fiber sequence

BSO(n)→ BO(n)→ RP∞ .

The spectral sequence has Es,t2 = Hs(RP∞;Ht(BSO(n))). There are local coefficients here, but
with any local coefficients the higher cohomology of RP∞ is killed by 2 and so vanishes for us. As
a result the edge homomorphism

H∗(BO(n);R)→ H∗(BSO(n);R)C2

is an isomorphism. The generator of π1(RP∞) tracks the effect of reversing orientations: it fixes
the Pontryagin classes and negates the Euler classes. The result is that

H∗(BO(2k);R)
∼=←− H∗(BO(2k + 1);R)

∼=−→ H∗(BSO(2k + 1);R)

and all are given by
R[p1, . . . , pk] .

Exercises

Exercise 74.6. Determine the Stiefel-Whitney classes of the real bundle underlying a complex
vector bundle, in terms of the mod 2 reductions of the Chern classes.

Exercise 74.7. (a) Embed C2 into O(n) as the scalar multiples of the identity matrix. This is a
central subgroup, so the translation action C2×O(n)→ O(n) is a group homomorphism. Compute
the effect of the induced map BC2 ×BO(n)→ BO(n) in mod 2 cohomology.
(b) Show that this action map restricts to an isomorphism C2×SO(n)→ O(n) if n is odd. Describe
the inverse homomorphism. Describe the resulting isomorphism in mod 2 cohomology.

Exercise 74.8. (a) Exhibit a real 2-plane bundle that is nontrivial but whose Stiefel-Whitney
classes vanish.
(b) Exhibit a complex 2-plane bundle that is nontrivial but whose Chern classes vanish.

Exercise 74.9. Express the mod 2 reduction of ck(C ⊗ ξ) as a polynomial in the Stiefel-Whitney
classes of the real vector bundle ξ.

Exercise 74.10. Observe that if V is a complex vector space then C ⊗ V = V ⊕ V . If M is
an “almost complex manifold” – endowed with a complex structure on its tangent bundle – give an
expression for the Pontryagin classes ofM in terms of its Chern roots (Theorem 72.4). In particular,
determine the Pontryagin classes of CPn.

Exercise 74.11. Show that

H∗(BO(2);Z) = Z[x, y, p1]/(2x, 2y, y2 = xp1) , |x| = 2 , |y| = 3 , |p1| = 4 .

Hint: Compare the spectral sequences for the fibration sequence BSO(2) → BO(2) → BC2, with
integer coefficients and with mod 2 coefficients. This will require the use of twisted coefficients.

Exercise 74.12. Follow Armand Borel’s computation [8] of the mod 2 cohomology of flag varieties.
Let p1 + · · ·+pk = n be an ordered partition of the positive integer n, and embed O(p1)×· · ·×O(pk)
into O(n) as a block diagonal subgroup. Write F (p1, . . . , pn) for the homogeneous space; this is the
space of flags of type (p1, . . . , pk). For example RPn−1 = F (n− 1, 1), and Grp(Rn) = F (p, q) with
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p + q = n. Write Fn for F (1, . . . , 1) = O(n)/Q(n), the quotient of O(n) by its diagonal subgroup
Q(n) = O(1)n = Cn2 . This is the space of ordered sets of n mutually orthogonal lines in Rn.
(a) By studying the fibration sequence F (n)→ BQ(n)→ BO(n), show that dimH1(F (n)) ≥ n−1.

(b) Construct fibration sequences Fn−1 → Fn → RPn−1, and use them to prove, inductively, that
dimH1(Fn) = n − 1 and that H∗(Fn) is generated as an algebra by its 1-dimensional classes.
Conclude that the spectral sequence from (a) collapses, and H∗(BQ(n)) → H∗(Fn) is surjective;
and in fact that H∗(Fn) = F2[t1, . . . , tn]/(σ1, . . . , σn).

(c) Construct a fibration sequence (in which p + q = n) Fp × Fq → Fn → F (p, q) and use it to
compute the Poincaré series

∑
i(dimH i(F (p, q))ti.

(d) Use the result of (c) to show that the spectral sequence associated to the fibration sequence
F (p, q) → BO(p) × BO(q) → BO(n) collapses at E2. Use this to determine the algebra structure
for H∗(F (p, q)).

(e) Generalize this result to F (p1, . . . , pk).
Armand Borel (1923–2003) was a Swiss mathematician, student of Leray, working mainly at the

Institute for Advanced Study, principally on algebraic groups. His early work, along with that of
his contemporary Jean-Pierre Serre, served to introduce spectral sequences to a broad audience.

75 Steenrod operations

We worked hard to show that mod 2 cohomology takes values not just in graded F2-vector spaces,
but actually in graded commutative F2-algebras. This additional structure has proven extremely
useful. What other natural structure is there on mod 2 cohomology? Both the sum and the cup
product are natural operations on two variables. The identity element 1 ∈ H0 is in a sense a natural
operation on zero variables (and is the only nonzero natural element in mod 2 cohomology). This
invites the question: are there nontrivial natural operations in one variable? Some of course are
generated from the product: x 7→ xr, for example. When r is a power of 2, this is an additive
operation. We know one other additive operation as well: the Bockstein,

β : Hn(X)→ Hn+1(X) .

(All our coefficients will be in F2 in this lecture.) This is obtained as the boundary map in the long
exact sequence associated to the short exact sequence 0→ C2 → C4 → C2 → 0.

Our goal in this lecture is to establish the following theorem, due to Norman Steenrod.

Theorem 75.1. There is a unique family of additive natural transformations

Sqk : Hn → Hn+k , n, k ≥ 0 ,

such that
Sq0x = x , Sqk(x) = x2 if k = |x| , Sqkx = 0 if k > |x| ,

and the “Cartan formula”
Sqk(xy) =

∑
i+j=k

(Sqix)(Sqjy)

is satisfied.
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It will transpire that Sq1 = β.
By the Yoneda lemma, natural transformations Hn → Hn+k are classified by Hn+k(Kn), where

we write
Kn = K(F2, n) .

We won’t try to compute the whole of H∗(Kn), at least not right away, though eventually it will
turn out that the entire cohomology of a mod 2 Eilenberg Mac Lane space is generated as an algebra
by iterates of the operations we will construct. But at least we can notice right off that

H i(Kn) = 0 for 0 < i < n

and
Hn(Kn) = F2 for n > 0

by the Hurewicz theorem, so the only nonzero operation on n-dimensional classes that lowers degrees
is the one sending every x to 1 ∈ H0.

The starting point is the failure of the Alexander-Whitney map (Lecture 28)

S∗(X × Y )→ S∗(X)⊗ S∗(Y )

– or any natural chain map lifting the natural map H0(X × Y )→ H0(X)⊗H0(×Y ) – to be com-
mutative, even with mod 2 coefficients. This failure reflects itself geometrically using the following
construction.

Definition 75.2. The extended square of a space X is the balanced product

S∞ ×C2 X
2 .

Here C2 acts antipodally on S∞, and swaps the factors in X2.

This is the total space of the bundle with fiber X2 associated to the universal principal C2

bundle S∞ ↓ RP∞. We will study it by means of the Serre spectral sequence.
Actually, it will be important to consider a pointed refinement of this. So suppose given a

basepoint ∗ ∈ X. It determines the subset

X ∨X ⊆ X ×X

consisting of the “axes” in the product. The pair (X2, X ∨ X) is equivariant, and determines a
bundle pair

S∞ ×C2 (X2, X ∨X) ↓ RP∞ .
A point in S∞ determines a fiber inclusion

i : (X2, X ∨X)→ S∞ ×C2 (X2, X ∨X) .

We’ll be working with the cohomology Künneth theorem, so let’s restrict ourselves to spaces
whose mod 2 cohomology is of finite type. (We’ll also suppose that the spaces are well-pointed.)
Serre’s mod C theory guarantees that Kn is in this category, and the Künneth theorem guarantees
that the category is closed under products.

Proposition 75.3. There is a unique natural transformation

P : H
n
(X)→ H2n(S∞ ×C2 (X2, X ∨X))

such that
i∗P (x) = x⊗2 ∈ H2n(X2, X ∨X) .
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Proof. We’ll study the associated Serre spectral sequence,

Hs(RP∞;Ht(X2, X ∨X)) =⇒
s
Hs+t(S∞ ×C2 (X2, X ∨X)) .

While the chain-level cross product isn’t equivariant, the cohomology cross product is: The cross
relative product map (Exercise 33.4)

H
∗
(X)⊗H∗(X)→ H∗(X2, X ∨X)

is equivariant, if we let C2 act by exchanging factors on the left and on the right. This map is
an isomorphism if H∗(X) is of finite type, and then the F2[C2]-module featuring as coefficients in
the spectral sequence can be written as H∗(X)⊗2. It’s interesting and not hard to analyze this
representation of C2, but we do not need to know about that to construct Steenrod operations. All
we need to know is that any x ∈ Hn

(X) determines an invariant class x⊗ x ∈ Hn
(X)⊗2.

Now comes the trick: It suffices to consider the universal example, ιn ∈ H
n
(Kn). Since

H
i
(Kn) = 0 for i < n, the entire E2 term of

Hs(RP∞;Ht(K2
n,Kn ∨Kn)) =⇒ H∗(S∞ ×C2 (K2

n,Kn ∨Kn))

lies in vertical dimensions t ≥ 2n.
So the group

E0,2n
2 = H2n(K2

n,Kn ∨Kn) = 〈ιn ⊗ ιn〉

survives to E0,2n
∞ . The element ιn ⊗ ιn lifts to an element of H2n(S∞ ×C2 (K2

n,Kn ∨Kn)), and this
lift is unique because all the lower filtration degrees vanish. This lifted class is Pιn. By definition
(and the edge homomorphism story) it restricts on (K2

n,Kn ∨Kn) to ιn ⊗ ιn.

The resulting natural transformation P : Hn(X) → Hn(S∞ ×C2 (X2, X ∨ X)) is the “total
square.” It’s a prime example of a “power operation.”

Now we “internalize,” by pulling back under the diagonal map. The commutativity of the
diagonal map becomes important:

∆ : X → X ×X

is equivariant, where C2 acts trivially on X and by swapping the factors in X × X. It induces a
map

S∞ ×C2 (X, ∗)→ S∞ ×C2 (X2, X ∨X) .

But
S∞ ×C2 (X, ∗) = RP∞ × (X, ∗)

so we have
δ : RP∞ × (X, ∗)→ S∞ ×C2 (X2, X ∨X) .

Pick x ∈ Hn
(X) and consider the pullback δ∗P (x). By the Künneth theorem,

H∗(RP∞ × (X, ∗)) = H∗(RP∞)⊗H∗(X)

so δ∗P (x) has an expression as a polynomial in the generator t ∈ H1(RP∞). The coefficients are
the Steenrod squares:

δ∗P (x) = (Sqnx) + (Sqn−1x)t+ · · ·+ (Sq0x)tn , Sqix ∈ Hn+i
(X) .
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Since H i
(Kn) = 0 for i < n, there are no natural transformations that decrease degree: so there are

no negatively indexed squares; the sum terminates as indicated.
Any operation on H∗ induces one on H∗ by using the isomorphism

H∗(X) = H
∗
(X+) .

Note that (X+)2 = X2 t (X+ ∨X+) so the total square specializes to a natural transformation

P : Hn(X)→ H2n(S∞ ×C2 X
2) .

Proposition 75.4. Sqn : Hn → H2n is the squaring map x 7→ x2.

Proof. This is the coefficient of 1 ∈ H0(RP∞), so we should pick a basepoint for RP∞, and watch
the evolution of the class Px in the cohomology of the commutative diagram

∗ ×X

��

∆ // S0 ×C2 X
2 = X2

��

1⊗ Sqnx = x2 x⊗ x�oo

RP∞ ×X δ // S∞ ×C2 X
2 1⊗ Sqnx+ · · ·

_

OO

Px .�oo
_

OO

Proposition 75.5. Sq1 = β.

Proof. Acting on Hq for q ≥ 1, both Sq1 and β are nonzero. (Exercise: Provide examples.) We
claim that dimHn+1(Kn) = 1 for n ≥ 1, so the two must coincide. Since K1 = RP∞, we know that
case. For the inductive step, use the Serre exact sequence on the fibration sequence

Kn−1 → PKn → Kn .

How about Sq0? Since Hn
(Kn) = F2, there are only two natural transformations Hn → H

n: the
identity and the zero map. The Steenrod operation Sq0 is one or the other; which is it? In a sense
the operations Sqk get more sophisticated as k decreases; identifying Sq0 is tricky. In fact there are
many other contexts in which Steenrod operations can be defined, and in a sense the topological
context is characterized by Sq0 = 1. We’ll study the simplest case first.

Proposition 75.6. Sq0 = 1 on H1.

Proof. It suffices to come up with a single example of a space with a nonzero class x ∈ H1
(X) such

that Sq0x = x. Our example will be S1 with the generator x ∈ H1
(S1).

It suffices to look at the subspace of the extended square in which S∞ is replaced by S1. Passing
to the quotient space of the pair S1 ×C2 (S1 × S1, S1 ∨ S1), we arrive at the pointed space

S1 ×C2 (S1 ∧ S1)

S1 ×C2 ∗

in which C2 exchanges the two factors of S1. The smash product may be identified with the one-
point compactification of R2, with C2 acting linearly by permuting the two basis vectors. This
representation of C2 is just 1⊕ σ, the sum of the trivial 1-dimensional representation with the sign
representation.

We have the double cover S1 ↓ RP 1. This is a principal C2-bundle, and the space we are looking
at is exactly the Thom space of the vector bundle over RP 1 associated to this principal C2 bundle
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and the representation 1⊕σ: it is Th(ε⊕λ) where λ is the tautological line bundle over RP 1. Thus
we arrive at

S1 ×C2 (S1 ∧ S1)

S1 ×C2 ∗
= ΣRP 2 .

The fiber inclusion into the extended square corresponds under this identification with the fiber
inclusion in the Thom space. So the nontrivial class in H2(ΣRP 2) is the Thom class; it restricts to
x⊗ x in the fiber, and hence the Thom class is the total square Px.

The diagonal inclusion
S1 ×C2 S

1

S1 ×C2 ∗
→ S1 ×C2 (S1 ∧ S1)

S1 ×C2 ∗

corresponds to including the fixed point subspace into the representation 1 ⊕ σ. This produces a
bundle map ε→ ε⊕ λ covering the inclusion RP 1 ↪→ RP 2. We obtain a map of Thom spaces

ΣRP 1
+ → ΣRP 2

that (by naturality of the Thom isomorphism) is an isomorphism in dimension 2. This is generated
by the class t⊗ x, and we conclude that Sq0x = x.

The Cartan formula is quite easy to verify as well, but we won’t carry that out here. Notice
though that it has an important corollary.

Proposition 75.7. The Steenrod operations are stable: For all n and q the diagram

H
q
(X)

Sqn //

σ
��

H
q+n

(X)

σ
��

H
q+1

(ΣX)
Sqn // H

q+n+1
(ΣX)

commutes.

Proof. The suspension isomorphism is induced by the relative cross product

∧ : H
1
(S1)⊗Hq

(X)→ H
q+1

(ΣX) .

The Cartan formula together with the fact that Sq0 = 1 on H1 gives the result.

.

Corollary 75.8. Sq0 is the identity on Hq for any q.

Proof. We just check this on ιq ∈ Hq(Kq). The map K1×Kq−1 → Kq representing the cup product
sends ι1 ⊗ ιq−1 to ιq, and the result then follows by induction and the Cartan formula.

Corollary 75.9. Sqn : H
q → H

q+n is additive.

This is surprising, since the total power operation P is not additive.



276 CHAPTER 8. CHARACTERISTIC CLASSES

Proof. Any stable operation Kq → Kq+n is additive: Being stable means that

Kq

'
��

Sqn // Kq+n

'
��

ΩkKq+k
ΩkSqn // Kq+k+n

commutes up to homotopy. TheH-space structure ofKq as a loop space is the structure representing
the sum in Hq, so Sqn : Kq → Kq+n induces a homomorphism in [X,−].

The Steenrod algebra A∗ is the algebra of cohomology operations generated by the Steenrod
operations. This is a noncommutative graded F2-algebra. It is not a free algebra: the Steenrod op-
erations satisfy relations, starting with Sq1Sq1 = 0. In fact, all relations among them are determined
by two facts:

• Sq2n−1Sqn = 0 and

• The assignment Sqn 7→ Sqn−1 extends to a derivation on A∗.

An explicit generating family of relations is given by the Adem relations

SqiSqj =
∑
k

(
j − k − 1

i− 2k

)
Sqi+j−kSqk , i < 2j .

(José Adem, 1921–1991, was a student of Steenrod and a founding father of algebraic topology
in Mexico.) This relation looks quadratic, and almost is, but fails to be whenever the binomial
coefficient with k = 0 in the summation is nonzero. If n is not a power of 2, let j be the largest
power of 2 less than n and let i = n − j. Then the binomial coefficient

(
j−1
i

)
is nonzero, so the

Adem relation shows that Sqn is decomposable: a sum of products of positive-dimensional elements.
From this we learn:

Proposition 75.10 (Adem). A∗ is generated as an algebra by Sq1, Sq2, Sq4, Sq8, . . ..

This leads to information about the “Hopf invariant.” Among its many interpretations, the Hopf
invariant asks how far the sequence of 3-cell complexes RP 2, CP 2, HP 2, can be extended. The
“octonions” O provide us with one more, OP 2. Adem’s theorem puts a first restriction on such
spaces:

Corollary 75.11. Suppose there is a space X such that H∗(X) = F2[x]/x3. Then |x| is a power of
2.

Proof. Let n = |x|. Then Sqnx = x2 6= 0. But if n is not a power of 2, this operation factors
through groups between dimension n and 2n.

This theorem was improved by Frank Adams to: |x| = 1, 2, 4 or 8; there are no examples beyond
the classical ones. (John Frank Adams (1930–1989) was a key figure in the development of twentieth
century homotopy theory, Lowndean Professor at Cambridge University.)
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Exercises

Exercise 75.12. Use the splitting principal to prove Wu’s formula for the action of Steenrod
operations on Stiefel-Whitney classes:

Sqiwj =
∑
k

(
j + k − i− 1

k

)
wi−kwj+k

(where w0 = 1).

76 Cobordism

René Thom (1923–2002, IHES) discovered [71] how to use all this machinery to give a classification
of closed smooth manifolds, which, while crude, is valid in all dimensions. His equivalence relation
was cobordism (or “bordism” – opinions vary):

Definition 76.1. Let M and N be two closed smooth n-manifolds. A cobordism between them is
an (n+ 1)-manifold-with-boundary W together with a diffeomorphism

∂W ∼=M tN .

If there is a cobordism, M and N are said to be “cobordant.”

If M and N are diffeomorphic, we may use W = M × I along with the diffeomorphism at one
end to see that they are cobordant. Cobordism is an equivalence relation on the class of closed
n-manifolds. Disjoint union endows the set (why “set”?)

Nn = ΩO
n

of cobordism classes of n-manifolds with the structure of a commutative monoid. In fact it is a
vector space over F2, since the same cylinder can be regarded as a null-bordism of M tM . The
product of manifold actually renders the collection of bordism groups a graded commutative algebra.
Thom proved:

Theorem 76.2 (Thom). N∗ = F2[xi : i+ 1 is positive and not a power of 2 ] , where |xi| = i.

We will sketch his proof of this amazing classification theorem over the next few lectures. (Bob
Stong’s notes [64] provide an excellent secondary source.)

Thom also addressed a question formulated by Norman Steenrod – but this question must have
been in Poincaré’s mind much earlier. There are two competing notions of an n-cycle: the singular
one we have been using (or the equivalent but even more combinatorial version involving simplicial
complexes), and the notion of the fundamental cycle of a closed n-manifold. Are they equivalent?
Here’s Steenrod’s formulation of this question. Given an n-dimensional mod 2 homology class x in
a space X, is there a closed n-manifold M and a continuous map f : M → X such that f∗[M ] = x?

This question has an obvious integral variant as well, in which we demand that the manifold M
is oriented.

Theorem 76.3 (Thom [71]). The answers to these questions are: “Yes” in the unoriented case and
“No” in the oriented case.
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The Pontryagin-Thom collapse

A smooth map f : M → N of manifolds is an immersion if it induces a monomorphism on all
tangent spaces. One then has an embedding of vector bundles over M , df : τM ↪→ f∗τN . The
quotient bundle is the normal bundle of f , νf . If we equip τN with a metric, we receive a metric on
f∗τN and can identify νf with the orthogonal complement of τM in f∗τN :

τM ⊕ νf ∼= f∗τN .

Suppose thatM is compact. An embedding f : M → N is an injective immersion: an immersion
without double points. In that case, the tubular neighborhood theorem (see [10, p. 93], for example)
asserts that the subspace f(M) ⊆ N admits a “regular” neighborhood that is equipped with a
diffeomorphism rel M to the normal bundle νf . This regular neighborhood is moreover unique up
to diffeomorphism rel M . In view of this identification we will denote the regular neighborhood by
E(ν).

This observation provides a contravariant relationship between M and N : collapse the comple-
ment of E(ν) to a point. This provides a map

c : N+ → Th(ν)

from the one-point compactification of N to the Thom space of the normal bundle. This is the
Pontryagin-Thom collapse. It’s a special case of the fact that one-point compactification provides
a contravariant functor on the category of locally compact Hausdorff spaces and open inclusions.

When N = Rn+k, this construction associates to an embedded n-manifold j : M ↪→ Rn+k a
map Sn+k → Th(νj). If we vary the embedding through an isotopy (a smooth homotopy through
embeddings) and vary the tubular neighborhood, the resulting maps vary through a homotopy.

Now comes Thom’s observation: the normal bundle is classified by a map M → BO(k), which
induces a map on the level of Thom spaces. By composing, we get a map

Sn+k → Th(νj)→ Th(ξk) = MO(k) .

This provides a map from the set of isotopy classes of embeddings of n-manifolds into Rn+k to the
homotopy group πn+k(MO(k)). Disjoint unions get sent to the sum in the homotopy group. The
empty manifold gets sent to zero.

But homotopy corresponds to a still broader equivalence relation on embedded n-manifolds.
Given M0 and M1, both embedded in Rn+k, an ambient cobordism between them is a manifold
with boundary, W , embedded in Rn+k × I, meeting Rn+k × 0 and Rn+k × 1 transversely in M0

(along Rn+k × 0) and M1 (along Rn+k × 1). Isotopies provide cobordisms, but the cobordism could
have some more complicated topology as well, and the ends of a cobordism do not have to be
even homotopy equivalent. It’s not hard to see that cobordisms produce homotopies. Here’s the
geometric content of Thom’s work.

Theorem 76.4 (Thom). The Pontryagin-Thom collapse map from the set of ambient cobordism
classes of closed n-manifolds in Rn+k to the corresponding homotopy class in πn+k(MO(k)) is
bijective.

For example, MO(1) = RP∞, so π2(MO(1)) = 0: a union of i circles embedded in R2 can be
written as the boundary of a 2-sphere in R2 × I with i discs removed.

The inverse map is just as interesting. Start with a map

f : Sn+k →MO(k) .
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Compress it through an approximation,

g : Sn+k → Th(ξq,k ↓ Grk(Rq)) .

Approximate this by a nearby (and hence homotopic) map that is smooth on the pre-image of
E(ξq,k), and deform it further so that it meets the image Z of the zero section transversely. Then
the implicit function theorem guarantees that the preimage g−1(Z) is a submanifold M ↪→ Sn+k.
The zero section has codimension k in E(ξq,k), so M is an n-manifold.

This construction is pretty clearly inverse to the Pontryagin-Thom collapse. The whole story
generalizes to allow structure on the normal bundle: for example an orientation or a complex
structure or a trivialization. The key observation is that the normal bundle of the zero section
in the Thom space of an appropriate manifold approximation of the relevant universal bundle can
be identified with the restriction of the universal bundle and so inherits the same structure. The
relevant homotopy groups are then πn+k(MSO(k)) or πn+k(MU(k/2)) in the first two cases. Giving
a trivialization of a vector bundle is the same thing as giving an isomorphism with the pullback of
a bundle over a point, so we can take a point as the corresponding classifying space. The Thom
space is a sphere; so in that case the relevant homotopy group is πn+k(S

k). This gives a spectacular
interpretation of the homotopy groups of spheres. It is the case Pontryagin considered.

Umkher maps

The Pontryagin-Thom collapse gives us a topological way to construct umkehr maps, studied earlier
in Lecture 67. LetM and N be smooth manifolds, of dimension m and n, and f : M → N a smooth
map. Embed M into Rm+p for some p, and consequently form an embedding M ↪→ N × Rm+p of
M into a trivial vector bundle over N . Write ν for the normal bundle of this embedding; it’s an
(n+ p)-plane bundle over M . The Pontryagin-Thom collapse gives us a map

c : Σm+pN+ → Th(ν) .

Now an R-orientation of ν determines the Thom isomorphism in the following composite:

Hq(M)∼=H
n+p+q

(Th(ν))
c∗−→ H

n+p+q
(Σm+pN+)∼=Hq+n−m(N) .

If f : M → N is a fiber bundle, this map coincides with the one arising from the Serre spectral
sequence.

Stabilization

Now it is definitely interesting to consider embedded manifolds, but perhaps abstract manifolds,
without a chosen embedding, are even more interesting, or at least simpler. Whitney proved that
any closed manifold embeds in Euclidean space of twice its dimension, and if you allow the ambient
space to be of even higher dimension you find that any two embeddings are isotopic. Similarly, in
high codimension the cobordisms become unconstrained.

Passing from an embedding in Rn+k to an embedding in Rn+k+1 replaces the normal bundle ν
with ν ⊕ ε. Correspondingly, the map BO(k)→ BO(k + 1) classifies ξk ⊕ ε. This gives us maps

ΣMO(k)→MO(k + 1)

for each k ≥ 1, and hence maps

πn+k(MO(k))→ πn+k+1(MO(k + 1))→ πn+k+2(MO(k + 2))→ · · ·
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that correspond to considering manifolds embedded in higher and higher dimension. We also get
maps in homology,

Hn+k(MO(k))→ Hn+k+1(MO(k + 1))→ Hn+k+2(MO(k + 2))→ · · ·

This is a beautiful and motivating example of a (topological!) spectrum: A sequence of pointed
spaces Ek together with maps ΣEk → Ek+1. The direct limit

πn(E) = lim
k→∞

πn+k(Ek)

is the nth homotopy group of the spectrum E. Similarly we can define the homology of the spectrum
E as

Hi(E) = lim
k→∞

Hn+k(Ek) .

Spectra are by default “pointed”; there’s no “unreduced” homology of a spectrum.
We have already seen a number of other spectra! For example, the Eilenberg Mac Lane spectrum

HA for the abelian group A has K(A,n) as its nth space, and the map ΣK(A,n) → K(A,n + 1)
that classifies the suspension of the fundamental class – the adjoint of the equivalence K(A,n) →
ΩK(A,n+ 1).

Spectra are the central objects of study in stable homotopy theory. Here’s a tiny part of that
theory. It is a consequence of the definition of homotopy equivalence for spectra that the following
two proposed definitions of the suspension of a spectrum E are equivalent.

• (ΣE)n = ΣEn, and the bonding maps are the suspensions of the bonding maps in E;

• (ΣE)n = En+1, and the bonding maps are the same.

So for example ΣHA is equivalently given by

ΣK(A, 0),ΣK(A, 1), . . . and K(A, 1),K(A, 2), · · · .

The second definition of suspension is clearly a categorical equivalence on the category of spectra.
The spectrum built from Thom spaces as above is the unoriented Thom spectrum, and is denoted

simplyMO. The spaceMO(k) is (k−1)-connected, so the Freudenthal suspension theorem assures
us that the direct limit defining πn(MO) is achieved. We also have Thom spectra MSO and MU ;
the Thom spectrum corresponding to framed manifolds is the sphere spectrum S, with nth space
Sn.

The ambient cobordism theorem stabilizes to give:

Theorem 76.5 (Thom). The Pontryagin-Thom construction gives an isomorphism from the group
of cobordism classes of closed n-manifolds to πn(MO):

Nn
∼=−→ πn(MO) .

So Thom’s classification theorem amounts to computing the homotopy groups of the Thom
spectrum MO.
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Characteristic numbers

To compute these homotopy groups we need a way to distinguish cobordism classes from each other:
We need a supply of “cobordism invariants.” Characteristic classes afford such invariants.

Let M be an n-manifold. Embed it in some Euclidean space, M ↪→ Rn+k, and denote the
normal bundle of the embedding by ν. Its mod 2 characteristic classes are polynomials in the
Stiefel-Whitney classes; there are lots of them. The ones that happen to lie in Hn(M) can be
paired against the fundamental class [M ]. The resulting elements of F2 are characteristic numbers.

Lemma 76.6. Characteristic numbers are cobordism invariants.

Proof. We have to show that if M = ∂N then

〈w(ν), [M ]〉 = 0

for any w ∈ Hn(BO). The class [M ] is the boundary of the relative fundamental class [N,M ] ∈
Hn+1(N,M), so using the adjointness of the boundary and coboundary maps

〈w(ν), [M ]〉 = 〈δw(ν), [N,M ]〉 .

We claim that δw(ν) = 0, and we will show that by exhibiting a class in Hn(N) that restricts to
w(ν). By increasing the codimension if necessary, we can assume that the bounding manifold W
embeds in Rn+k× [0,∞), meeting Rn+k× 0 transversely in M . So the normal bundle ν extends the
normal bundle νN of N ↪→ Rn+k × [0,∞), and w(ν) = w(i∗νN ) = i∗w(νN ) (where i : M ↪→ N is
the inclusion of the boundary).

Putting all the characteristic numbers in play at once, we get the “characteristic number map”

Nn → Hom(Hn(BO),F2) = Hn(BO) .

We’ll reinterpret this map in terms of the Thom spectrum MO.
Let ξ be a real n-plane bundle over a space B. The cohomology Thom isomorphism relied on

the pairing
Th(ξ)→ B+ ∧ Th(ξ) ,

and was given by pairing with the Thom class U ∈ Hn(Th(ξ)). In homology, this pairing produces
the top row in

H∗+n(Th(ξ)) //

∼=

))

H∗(B)⊗Hn(Th(ξ))

1⊗<U,−>
��

H∗(B) .

The vertical map is defined using the Kronecker pairing with the Thom class. The diagonal map is
the homology Thom isomorphism.

In the universal case we have isomorphisms

H∗+n(MO(n))
∼=−→ H∗(BO(n)) .

These maps are compatible with stabilization and give the stable Thom isomorphism

Φ : H∗(MO)
∼=−→ H∗(BO) .
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These constructions fit together in the commutative diagram:

Nn α //

��

Hom(Hn(BO;F2),F2)

Hn(BO;F2)

β

∼=

ii

Φ
∼=uu

πn(MO)
h // Hn(MO;F2) .

Thom proved that the mod 2 Hurewicz homomorphism h is a monomorphism. As a corollary:

Corollary 76.7. If the closed n-manifolds M and N have the same Stiefel-Whitney numbers, then
they are cobordant.

This uses algebraic topology to guarantee a very geometric outcome! For example, if all the
Stiefel-Whitney numbers vanish then the manifold is null-bordant: it is the boundary of some
(n+ 1)-manifold-with-boundary.

Thom’s basic homotopy-theoretic theorem is this:

Theorem 76.8 (Thom). The spectrum MO is a product of suspensions of the mod 2 Eilenberg Mac
Lane spectrum.

This implies a positive solution to Steenrod’s question. A convenient way to explain this is via
an observation of Michael Atiyah [6]. Let X be any space (a “background,” in physics parlance),
and consider the set of continuous maps from closed n-manifolds into X, modulo the equivalence
relation given by cobordism of manifolds together with extension of the maps. This is an abelian
group depending covariantly on X,

X 7→ ΩO
n (X) .

Atiyah showed that it is a generalized homology theory. Its “coefficients” are

ΩO
n (∗) = Nn .

There is a natural map, the “Thom reduction,”

ΩO
n (X)→ Hn(X;F2)

given by sending f : M → X to f∗([M ]) ∈ Hn(X;F2). Steenrod’s question asks whether this map
is surjective.

Generalized homology theories are “represented” by spectra. Given a spectrum E and a pointed
space Y , one can form the “smash product” spectrum E ∧ Y with

(E ∧ Y )n = En ∧ Y

and the obvious bonding maps.

Theorem 76.9 (George Whitehead and Edgar Brown, [79, 12]; see also [3]). Given any spectrum
E, the functors

E∗ : X 7→ πn(E ∧X)

constitute a reduced homology theory, and any homology theory admits such a representation.
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In particular

ΩO
n (X) = πn(MO ∧X) and Hn(X;F2) = πn(HF2 ∧X)

so the fact that there is a section of the Thom class U : MO → HF2 (given by including the bottom
factor into the product) implies a positive answer to Steenrod’s question.

Exercise

Exercise 76.10. Suppose that a compact smooth R-oriented manifold M embeds into Rk. Show
that the Euler class of the normal bundle vanishes.

77 Hopf algebras

Product structure

There is more structure to exploit in our study of the bordism groups. The product of a closed m-
manifoldM and a closed n-manifold N is a closed (m+n)-manifold. This is what gives ΩO

∗ = ΩO
∗ (∗)

its structure as a commutative graded ring. To pass this through the Pontryagin-Thom collapse,
notice that M ×N embeds into the product of ambient Euclidean spaces, and the resulting normal
bundle is the product of the two normal bundles. The universal case of a product of m-plane and
n-plane bundles is represented by a map

BO(m)×BO(n)→ BO(m+ n)

which is covered by the bundle map ξm× ξn → ξm+n and hence induces a map on the level of Thom
spaces:

MO(m) ∧MO(n)→MO(m+ n) .

These maps render MO a “ring spectrum,” making π∗(MO) a graded ring, and the map

ΩO
∗ → π∗(MO)

is a ring isomorphism. Equally, H∗(MO) is a graded ring and the Hurewicz map is a ring homomor-
phism. The homology Thom isomorphism is also multiplicative: The space BO has a commutative
H-space structure derived from Whitney sum, and the map Φ : H∗(BO)→ H∗(MO) is an isomor-
phism of graded rings.

Hopf algebras

With a field for coefficients, the Künneth theorem delivers for any space X a map

∆ : H∗(X)→ H∗(X ×X)
∼=←− H∗(X)⊗H∗(X)

(all tensors over the coefficient field k) variously termed a “coproduct,” “comultiplication,” or “di-
agonal.” The unique map X → ∗ gives us a “counit” H∗(X) → k. This renders H∗(X) a graded
coalgebra, as observed in Definition 26.1. We’ll say that a graded k-coalgebra is connected if it
vanishes in negative dimensions and the counit is an isomorphism in dimension 0; so H∗(X) is a
connected coalgebra just when X is path connected.

The diagonal in H∗(X) is dual to the cup product: the universal coefficient isomorphism

Hom(H∗(X), k)∼=H∗(X)
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sends the diagonal to the cup product and ε to the unit map k → H∗(X; k).
Now, if X is an H-space, the product induces the “Pontryagin product” µ : H∗(X)⊗H∗(X)→

H∗(X). Since the product and the basepoint inclusion ∗ → X are maps of spaces, they are maps of
coalgebras. We have to say what the coalgebra structure is on a tensor product of coalgebras, say
A and B: define

∆A⊗B : A⊗B ∆⊗∆−−−→ (A⊗A)⊗ (B ⊗B)
1⊗T⊗1−−−−→ (A⊗B)⊗ (A⊗B)

and
εA⊗B : A⊗B ε⊗ε−−→ k ⊗ k = k .

Then the dual of Proposition 29.3 asserts that

H∗(X)⊗H∗(Y )→ H∗(X × Y )

is a map of coalgebras.
We have described the structure of a bialgebra: an associative multiplication with unit and

an associative comultiplication with counit on the same (possibly graded) vector space, that are
compatible in the sense that the unit and multiplication are coalgebra maps, or, equivalently, that
the counit and comultiplication are algebra maps.

If the H-space X has an “inverse” – a map x 7→ x−1 making it into a group in the homotopy
category – then A = H∗(X) becomes a Hopf algebra: it is a bialgebra, and there is a map χ : A→ A
such that

A
∆ //

ε

**

A⊗A 1⊗χ // H ⊗A µ // A

A

η

44

commutes. This “canonical anti-automorphism” χ exists uniquely if A is a connected graded bial-
gebra.

The authoritative reference for the theory of Hopf algebras is the paper [45] by Milnor and
Moore.

An important and motivating example of an ungraded Hopf algebra is given by the group algebra
of a group G: k[G] admits the diagonal determined by ∆g = g⊗g for g ∈ G. The anti-automorphism
is induced by the map g 7→ g−1. Indeed, a Hopf algebra with commutative diagonal is just a group
object in the category of commutative coalgebras.

The k-linear dual of a k-coalgebra is a k-algebra. If a Hopf algebra is of finite type, its dual
is again a Hopf algebra. So if X is an H-space of finite type then H∗(X) is also a Hopf algebra;
the coproduct comes from the multiplication in X. It’s a good exercise to go through our list of
H-spaces and understand the Hopf algebra structure on their homology and cohomology. Here’s an
example, with coefficients in F2.

Proposition 77.1 (e.g. [69, Theorem 16.17]). Whitney sum renders BO a commutative H-space,
and the map RP∞ = BO(1) → BO sends the vector space generators of H∗(BO(1)) to polynomial
generators ai:

H∗(BO) = F2[a1, a2, . . .] .

Thus H∗(BO) is “bipolynomial”: both homology and cohomology are polynomial algebras.
The diagonal puts strong restrictions on the algebra structure of a Hopf algebra.
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Proposition 77.2 (Hopf and Leray; e.g. [45, Theorem 7.5]). Let A be a connected commutative
graded algebra over a field of characteristic zero that admits the structure of a Hopf algebra. Then
A is a free commutative graded algebra.

This means that A is a tensor product of a polynomial algebra on even generators and an exterior
algebra on odd generators.

Corollary 77.3 (Hopf). The rational cohomology of any connected Lie group is an exterior algebra
on odd generators.

Here’s an analogue in finite characteristic.

Proposition 77.4 (Borel; e.g. [45, Theorem 7.11]). Let A be a connected commutative graded
algebra of finite type over a perfect field of characteristic p that admits the structure of a Hopf
algebra. If p is odd, A is an exterior algebra on odd generators tensored with a polynomial algebra
on even generators modulo the ideal generated by pkth powers of some of those generators. If p = 2,
it is a polynomial algebra modulo 2kth powers of some generators.

The Steenrod algebra and its dual

Given two modules M and N over a Hopf algebra A, their tensor product over k has a canonical
structure of module over A again:

A⊗M ⊗N ∆⊗1⊗1−−−−−→ A⊗A⊗ (M ⊗N)
1⊗T⊗1−−−−→ (A⊗M)⊗ (A⊗N)

ϕ⊗ϕ−−−→M ⊗N

When A = k[G], this is the familiar diagonal tensor product of representations.
John Milnor [42] made the observation that the Cartan formula may be formulated in terms of

a Hopf algebra structure on the Steenrod algebra itself:

Proposition 77.5. The association

∆ : Sqk →
∑
i+j=k

Sqi ⊗ Sqj

extends to an algebra map, and provides the (commutative!) coproduct in a Hopf algebra structure
on the Steenrod algebra A∗.

The Cartan formula then merely asserts that the cup product H∗(X) ⊗H∗(X) → H∗(X) is a
map of A∗-modules.

This is pleasant, but much more striking is the insight this gives you into the structure of the
Steenrod algebra. Write A∗ for the Hopf algebra dual to A∗.

Proposition 77.6 ([42]). There exist elements ζi ∈ A2i−1 such that

A∗ = F2[ζ1, ζ2, . . .]

and (with ζ0 = 1)
∆ζk =

∑
i+j=k

ζ2j

i ⊗ ζj .

This is equivalent to the Adem relations, but it’s much easier to remember!
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Lagrange and Thom

Theorem 77.7 ([71]). H∗(MO) is free as module over the Steenrod algebra A∗.

Thom gave a fairly elaborate combinatorial proof of this theorem, writing down a basis. It turns
out that a little bit of Hopf algebra technology makes this a lot simpler (or at least more believable).

Lemma 77.8 (“Lagrange”; see e.g. [64], p. 94). Let A be a connected Hopf algebra and C a connected
coalgebra with compatible A-module structure (so that the counit and diagonal are A-module maps).
Let u ∈ C0 be such that εu = 1. If Au is free, then C is free as A-module.

The reference to Lagrange is this: A common application of this lemma is to take C to be a Hopf
algebra containing A as a subalgebra. The result is that C is automatically free as an A-module.
This is analogous to an observation attributed to Lagrange: If G is a group and H < G a subgroup
then the translation action of H on G is free.

We will apply it with A = A∗ and C = H∗(MO). Then H0(MO) is generated by the Thom
class U , so what we have to do is to check that A∗ acts freely on the Thom class.

This is proved using the following amazing observation of Thom’s:

Proposition 77.9 ([70]). Let ξ be a real n-plane bundle over B, with Thom space Th(ξ). Then

SqiU = wi ∪ U ∈ Hn+i(Th(ξ)) .

This provides a definition of the Stiefel-Whitney classes that only uses the spherical fibration
determined by the vector bundle, and indeed one that makes sense for any spherical fibration. It’s
quite easy to prove that these classes satisfy the axioms.

Conclusion

Stably, cohomology is represented by the Eilenberg Mac Lane spectrum. Pick a basis B forH∗(MO)
as an A∗-module. Each element b ∈ B determines a homotopy class MO → Σ|b|HF2. Assembling
them gives a map

MO →
∏
b∈B

Σ|b|HF2

that is an isomorphism in mod 2 cohomology. Since the homotopy of MO is all 2-torsion, this map
is actually weak equivalence.

The Eilenberg Mac Lane spectrum HF2 is a commutative ring spectrum as well; the ring struc-
ture represents the cup product in cohomology. Its homology is thus a graded commutative algebra,
namely the dual of the Steenrod algebra (which is the cohomology ofHF2!). We can now estimate the
size of π∗(MO): Each basis element produces a suspended copy of A∗ in H∗(MO) = F2[a1, a2, . . .].
It looks like the Milnor generators, ζi ∈ A2i−1 account for some of the ai’s. The rest must come
from the homotopy. Some further argumentation leads to the conclusion that

N∗ = π∗(MO) = F2[xi : i+ 1 is not a power of 2 ] .

Exercises

Exercise 77.10. Prove Lemma 77.8.
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Exercise 77.11. Let M be a closed smooth n-manifold. By Poincaré duality, there is for each k a
unique class vk ∈ Hk(M) such that 〈vkx, [M ]〉 = 〈Sqkx, [M ]〉 for all x ∈ Hn−k(M). These are the
Wu classes of the manifold. Show that

wk(τM ) =
∑
i+j=k

Sqivj .

The tangential Stiefel-Whitney classes are therefore homotopy invariants of the manifold. Show
that the normal Stiefel-Whitney classes are as well, and conclude that if two closed manifolds are
homotopy equivalent then they are cobordant.

Exercise 77.12. Verify that the classes defined in Proposition 77.9 satisfy the axioms for Stiefel-
Whitney classes.

78 Applications of cobordism

Oriented cobordism

The Pontryagin-Thom collapse/transversality story is very general, and provides for example an
isomorphism

ΩSO
∗
∼=π∗(MSO) .

The oriented bordism groups were computed completely by C.T.C. Wall [74]. All torsion is
killed by 2. The first few groups are

n 0 1 2 3 4 5 6 7

ΩSO
n Z 0 0 0 Z Z/2Z 0 0

Wall’s computation is involved, but Thom computed π∗(MSO)⊗Q. This is quite easy, by virtue
of a general observation.

Proposition 78.1. For any spectrum E, the rational Hurewicz map

π∗(E)⊗Q→ H∗(E;Q)

is an isomorphism.

There are many ways to see this. For example, up to weak equivalence we may build up a
spectrum by attaching cells. Both πs∗ and H∗ are generalized homology theories; they send cofiber
sequences to long exact sequence. So it’s enough to show that the map is an isomorphism for the
case of the sphere spectrum, where it follows from Serre’s calculation of the rational homotopy of
spheres.

So we have the commutative diagram of algebra isomorphisms

ΩSO
∗ ⊗Q α //

��

Hom(H∗(BSO;Q),Q)

H∗(BSO;Q)

β
ii

Φ

uu
π∗(MSO)⊗Q h // H∗(MSO;Q) .
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where the top arrow is the characteristic number map sending [M ] to (p 7→ 〈p(ν), [M ]〉). This
already says something important: The rational Pontryagin numbers of a manifold determine is
position in the rational oriented bordism ring. If they all vanish on a manifold M , some multiple
of M bounds an oriented manifold-with-boundary.

Again, BSO is a commutativeH-space, so H∗(BSO;Q) is a Q-Hopf algebra, and so by the Hopf-
Leray theorem (Proposition 77.2) it is a polynomial algebra. Since H∗(BSO;Q) = Q[p1, p2, . . .],
we find that the homology is also a polynomial algebra on generators of dimension 4k. An analysis
of the characteristic numbers of projective spaces shows that we may take the classes of the even
complex projective spaces as the polynomial generators:

ΩSO
∗ ⊗Q = Q[[CP2], [CP4], . . .] .

Steenrod operations on the Thom class

When Thom tried to move beyond this rational calculation, and follow his analysis of the homotopy
type of MO, he ran into trouble at odd primes. There are odd primary Steenrod operations,
constructed in the same way as the squares were. (A nice reference for this is [24].) They take the
form

P i : Hn(X;Fp)→ Hn+2(p−1)i(X;Fp) .

Now P 0x = x, Pnx = xp if |x| = 2n, Pnx = 0 if |x| < 2n. There is also the Bockstein operation
β : Hn(X;Fp) → Hn+1(X;Fp). These operations generate all the additive operations on mod p
cohomology. The dual of A∗, for p odd, has the form [42]

A∗ = E[τ0, τ1, . . .]⊗ Fp[ξ1, ξ2, . . .] , |τi| = 2pi − 1 , |ξi| = 2pi − 2 .

Now H1(BSO) = 0 (we’ve killed w1!), so H1(MSO) = 0 as well; the Thom class U ∈ H0(MSO)
is killed by the Bockstein. It turns out that at p = 2, β = Sq1 generates the annihilator ideal of U .
This isn’t so bad, since in fact

H∗(HZ;F2) = A∗/A∗Sq1

and indeed MSO(2) splits as a product of Eilenberg Mac Lane spectra (but now not just HF2’s but
also HZ(2)’s).

But at an odd prime the situation is worse; the annihilator of U ∈ H0(MSO;Fp) is the left ideal
generated by βP i for all i. This implies, for example, that βP 1 kills the Thom class of the normal
bundle for any embedding of an oriented manifold into Euclidean space. The Thom spectrumMSO
does not split as a product of Eilenberg Mac Lane spectra at an odd prime.

Duality

To see how this behavior of Steenrod operations on the Thom class leads to Thom’s counterexample
to the oriented form of Steenrod’s question, we have to explain something about duality in homotopy
theory. One of the motivations for the development of the stable homotopy category was a desire
to make this story smooth. We will be brief, however.

Any finite complex K may be embedded into some finite dimensional Euclidean space Rm. It
can be arranged that the complement has a finite subcomplex L as a deformation retract. Alexander
duality (Theorem 38.4) then gives us an isomorphism

α : Hq(K)∼= H̃m−q−1(L)

for any q.
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A homotopy-theoretic duality underlies this homological duality: L (or an appropriate desuspen-
sion of it in the stable homotopy category) is the “Spanier-Whitehead dual” of K+. This geometry
implies that with mod p coefficients this isomorphism commutes with the action of Steenrod oper-
ations. To make sense of this, use the universal coefficient theorem to reexpress homology as the
linear dual of cohomology:

Hq(K) = Hq(K)∨ .

This imposes a “contragredient” right action of A∗ on homology, with θ ∈ Ar acting in such a way
that

〈x, cθ〉 = 〈θx, c〉 , x ∈ Hq−r(K) , c ∈ Hq(K) , θ ∈ Ar .

The isomorphism α demands a left action of A∗, which is achieved by acting in homology by θ where
θ 7→ θ is the Hopf anti-automorphism. The duality isomorphism is compatible with this action; that
is, for c ∈ Hq(K),

θ(αc) = α(cθ) .

Now suppose that M ↪→ Rn+k is an embedding of a closed smooth n-manifold, with normal
bundle ν. Let N be the closure of a regular neighborhood of M ; it may be identified with D(ν).

The complement Rn+k − E(ν) is our finite complex L. Here’s an important point: we have
equivalent cofiber sequences

Rn+k − E(ν) //

'
��

Rn+k //

'
��

Rn+k/(Rn+k − E(ν)) ∼=

'
��

D(ν)/S(ν) = Th(ν)

L // CL // ΣL

so
Th(ν) ' ΣL .

In short, the Thom space of the normal bundle is (up to suspension) the Spanier-Whitehead dual
of M+. This is Milnor-Spanier duality. Michael Atiyah [5] proved a version of this for manifolds-
with-boundary and it is often called “Atiyah duality.”

The duality isomorphism is thus

α : Hq(M)
∼=−→ H

n−q+k
(Th(ν)) .

Combining this with the Thom isomorphism gives an isomorphism

Hq(M)
∼=−→ Hn−q(M) .

This is Poincaré duality! and indeed a proof of it can be given along these lines.

Thom’s counterexample

The duality map sends the fundamental class [M ] ∈ Hn(M) to the Thom class U ∈ Hk(Th(ν)).
Thus if θ ∈ Ar annihilates the Thom class, we find that

α([M ]θ) = θ(α[M ]) = θU = 0 ,

so for any x ∈ Hn−r(M)
0 = 〈x, [M ]θ〉 = 〈θx, [M ]〉 .

The image of θ in Hn(M) annihilates the fundamental class.
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Let f : M → X be any map, and x ∈ Hn−r(X), and compute

〈θx, f∗[M ]〉 = 〈f∗θx, [M ]〉 = 〈θ(f∗x), [M ]〉 = 0 .

So in order for a class in Hn(X) to be carried by an oriented n-manifold the image of θ : Hn−r(X)→
Hn(X) must annihilate it.

For a specific example, Thom looked at K1 = K(Z/3Z, 1). This is an infinite “lens space.” The
cohomology is

H∗(K1;F3) = E[e]⊗ F3[x] , |e| = 1 , |x| = 2 .

The Steenrod action is determined by

βe = x , P 1x = x3 .

The anti-automorphism is easily seen to send both β and P 1 to their negatives, so

βP 1 = P 1β .

The class x3 ∈ H6(K1;F3) is in the image of this class, so the dual homology class cannot be carried
by an oriented closed manifold.

This is a counter-example to Steenrod’s question in mod p homology; how about integrally? The
Bocksteins tell us thatH∗(K1;Z) is unfortunately concentrated in odd degrees, while P 1βH∗(K1;F3) =
0 in odd degrees. So Thom moves up a dimension to K2 = K(Z/3Z, 2). It’s known, and not hard to
verify by pulling back under the map K1×K1 → K2 classifying the cup product, that βP 1βι2 6= 0.
In homology, then, there is a class c ∈ H8(K2;F3) such that cβP 1β 6= 0 in H2(K2;F3). The class
cβ ∈ H7(K2;F3) can’t be carried by an oriented manifold since

〈P 1βι, cβ〉 = 〈βP 1(βι), c〉 6= 0 .

But the Bockstein factors as

H8(K2;F3)
∂−→ H7(K2;Z)

ρ−→ H7(K2,F3) ,

so ∂c ∈ H7(K2;Z) can’t be carried by a manifold since its reduction βc ∈ H7(K2;F3) can’t be.
The Postnikov system for MSO provides further obstructions.

The Brown-Peterson spectrum

The annihilator ideal of U ∈ H0(MSO) at an odd prime is the two-sided ideal generated by the
Bockstein. The quotient by this ideal turns out to be the cohomology of a ring spectrum – not
an Eilenberg Mac Lane spectrum, but rather a new gadget called the “Brown-Peterson spectrum”
and denoted (without reference to the prime p) by BP . (Frank Peterson, 1930–2000, was an MIT
faculty member and long-time treasurer of the AMS.) At odd primes, MSO splits into a product
of suspensions of BP . The mod p Thom class restricts to a map BP → HFp that induces an
embedding of H∗(BP ) ↪→ A∗ as the polynomial algebra on the ξ’s.

The homotopy type of MU was studied by Milnor using the Adams spectral sequence. It turns
out that

π∗(MU) = Z[x1, x2, . . .] , |xi| = 2i ,

and that MU localized at any prime p splits as a product of the p-local Brown-Peterson spectrum
as well (even if p = 2). The homotopy of BP is also a polynomial algebra, but now much sparser:

π∗(BP ) = Z(p)[v1, v2, . . .] , |vi| = 2pi − 2 .
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Surgery

There is a simple way to modify a manifold to give a new manifold with different topology but
related by a cobordism. The most classical example of surgery occurs in dimension 2. Start with
an embedded loop L in a closed surface M . Assume that the normal bundle of L is framed (always
the case ifM is orientable), so that we have an embedding of S1×D1 intoM . This kind of product
is familiar! In general

∂(Dp ×Dq) = Sp−1 ×Dq ∪Sp−1×Sq−1 Dp × Sq−1 .

In our case p = 2 and q = 1. We can remove the interior of ∂D2 × D1 and replace it with the
interior of D2× ∂D1 = D2×S0, to get a new manifold M ′. If the regular neighborhood of the loop
was a belt around a waste (or “handle”), this has the effect of removing the belt and capping off the
two body parts. This process is called “surgery.”

What’s a little harder to see is that Dp ×Dq can be used to construct a cobordism between M
and M ′.

A proof using Morse theory [44] shows that any two closed smooth n manifolds in the same
bordism class can be connected by a bordism constructed by a series of surgeries.

The surgery operation, pioneered by Milnor and Wallace and later Browder, Novikov, and Wall,
led to an enormous research program aimed at the classification of manifolds up to diffeomorphism.

Remark 78.2. The surgery process involves killing homology groups in a manifold. It requires
establishing that (1) the class is spherical – in the image of the Hurewicz map; (2) the map from a
sphere is a smooth embedding; and (3) the normal bundle of this embedded sphere is trivial.

Typically the first requirement is met using the Hurewicz theorem; we try to kill bottom di-
mensional homology. The second can be achieved by Whitney embedding theorem as long as we
are below the middle dimension of the manifold. The third is much more problematic. One way
to ensure that the process can continue above dimension one is to work with framed bordism. The
Pontryagin-Thom theorem identifies this with stable homotopy, so there is considerable interest in
this case. The surgery process then works to find a “highly connected” representative of a framed
bordism class in which the homology is concentrated in the middle dimension. When n is odd, any
class in Ωfr

n has is represented by a homotopy sphere, since there is then no middle dimension. The
same turns out to be true when n = 4k. When n = 4k + 2, there is a potential obstruction, the
Kervaire invariant, with values in C2. It’s already visible in dimension 2, when the square of the
nontrivially framed circle (which represents the stable homotopy class η of the Hopf map S3 → S2)
is not framed null-bordant (since in fact η2 6= 0). The higher dimensional Hopf fibrations give other
examples in dimensions 6 and 14. Bill Browder proved that the invariant could be nonzero only in
dimensions of the form 2j − 2, and identified the invariant in terms of the Adams spectral sequence.
In the 1970’s examples were constructed using homotopy theory in dimensions 30 and 62, and in
2015 work of Mike Hill, Mike Hopkins, and Doug Ravenel finally showed that the invariant is in
fact trivial for dimensions larger than 126 (where it remains unknown today).

Signature

This ability to move around within a cobordism class suggests that there are very few bordism invari-
ants that one an derive from cohomology. What homological features of a manifold are cobordism
invariants?

When M is an oriented 4k-manifold, H2k(M ;Q) supports a symmetric bilinear form, the “in-
tersection form”

x · y = 〈xy, [M ]〉
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which is nondegenerate on account of Poincaré duality. A fact from linear algebra: Any symmetric
bilinear form over Q is diagonal with respect to some basis. If it is nondegenerate then all the
diagonal entries in the diagonalization are nonzero, and the difference between the number of positive
entries and the number of negative entries is a independent of the diagonalizing basis. It is the
signature of the bilinear form.

Lemma 78.3 (Thom). The signature of the intersection form of an oriented 4k-manifold is a
multiplicative oriented bordism invariant.

This follows from Lefschetz duality 37.7 and the Künneth theorem. The result is a graded ring
homomorphism

σ : ΩSO
∗ → Z[u] , |u| = 4 .

Such a ring homomorphism is a genus. (This term entered mathematics from biology through
Gauss’s work on quadratic forms, and then spread to the genus of a surface, and then to other
numerical invariants of manifolds.) Since the characteristic number map is a rational isomorphism,
the value of a rational genus on a 4k-manifold M is some Pontryagin number.

The even complex projective spaces generate ΩSO
∗ rationally, so giving the value of a genus on

them completely specifies the value of the genus on any oriented manifold. Since CP2k obviously
has signature 1 for any k, the signature is in a sense the simplest genus. For each k there is a
polynomial

Lk ∈ H4k(BSO;Q)

in the Pontryagin classes such that for any closed oriented 4k-manifold M

σ(M) = 〈Lk(τM ), [M ]〉 .

This is the “Hirzebruch signature theorem.” Identifying these polynomials is a beautiful story [25].
The results are for example that

L1 =
p1

3
, L2 =

7p2 − p2
1

45
, L3 =

62p3 − 13p2p1 + 2p3
1

945
, . . . .

These formulas put divisibility conditions on certain combinations of Pontryagin classes of the
tangent bundle of an oriented closed smooth manifold: while the L-class has denominators, you get
an integral class when you pair it against the fundamental class. The first tangential Pontryagin
class of an orientable 4-manifold has to be divisible by 3, for example. This was observed even
earlier by Rohlin.

The signature theorem in dimension 8 played a key role in Milnor’s proof [40] that certain S3-
bundles over S4 are not diffeomorphic to the standard 7-sphere despite being homeomorphic to it.

Exercises

Exercise 78.4. Show that any positive dimensional oriented bordism class contains a connected
manifold. Show that any oriented cobordism class of dimension at least 2 contains a simply con-
nected manifold. Display counterexamples to these to statements in lower dimensions.

Exercise 78.5. Identify representatives of the four elements of N4.

Exercise 78.6. Verify Thom’s Lemma 78.3.

Exercise 78.7. Using Exercise 74.10, verify the signature theorem for CP2, CP4, and CP6.
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